Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2024, Vol. 19 Issue (1) : 14701    https://doi.org/10.1007/s11467-023-1333-z
REPORT
STCF conceptual design report (Volume 1): Physics & detector
M. Achasov3, X. C. Ai82, L. P. An54, R. Aliberti38, Q. An63,72, X. Z. Bai63,72, Y. Bai62, O. Bakina39, A. Barnyakov3,50, V. Blinov3,50,51, V. Bobrovnikov3,51, D. Bodrov23,60, A. Bogomyagkov3, A. Bondar3, I. Boyko39, Z. H. Bu73, F. M. Cai20, H. Cai77, J. J. Cao20, Q. H. Cao54, X. Cao33, Z. Cao63,72, Q. Chang20, K. T. Chao54, D. Y. Chen62, H. Chen81, H. X. Chen62, J. F. Chen58, K. Chen6, L. L. Chen20, P. Chen78, S. L. Chen6, S. M. Chen66, S. Chen69, S. P. Chen69, W. Chen64, X. Chen74, X. F. Chen58, X. R. Chen33, Y. Chen32, Y. Q. Chen36, H. Y. Cheng34, J. Cheng48, S. Cheng28, T. G. Cheng2, J. P. Dai80, L. Y. Dai28, X. C. Dai54, D. Dedovich39, A. Denig19,38, I. Denisenko39, J. M. Dias4, D. Z. Ding58, L. Y. Dong32, W. H. Dong63,72, V. Druzhinin3, D. S. Du63,72, Y. J. Du77, Z. G. Du41, L. M. Duan33, D. Epifanov3, Y. L. Fan77, S. S. Fang32, Z. J. Fang63,72, G. Fedotovich3, C. Q. Feng63,72, X. Feng54, Y. T. Feng63,72, J. L. Fu69, J. Gao59, Y. N. Gao54, P. S. Ge73, C. Q. Geng15, L. S. Geng2, A. Gilman71, L. Gong43, T. Gong21, B. Gou33, W. Gradl38, J. L. Gu63,72, A. Guevara4, L. C. Gui26, A. Q. Guo33, F. K. Guo4,69,2, J. C. Guo63,72, J. Guo59, Y. P. Guo11, Z. H. Guo16, A. Guskov39, K. L. Han69, L. Han63,72, M. Han63,72, X. Q. Hao20, J. B. He69, S. Q. He63,72, X. G. He59, Y. L. He20, Z. B. He33, Z. X. Heng20, B. L. Hou63,72, T. J. Hou74, Y. R. Hou69, C. Y. Hu74, H. M. Hu32, K. Hu57, R. J. Hu33, W. H. Hu54, X. H. Hu9, Y. C. Hu49, J. Hua61, G. S. Huang63,72, J. S. Huang47, M. Huang69, Q. Y. Huang69, W. Q. Huang69, X. T. Huang57, X. J. Huang33, Y. B. Huang14, Y. S. Huang64, N. Hüsken38, V. Ivanov3, Q. P. Ji20, J. J. Jia77, S. Jia62, Z. K. Jia63,72, H. B. Jiang77, J. Jiang57, S. Z. Jiang14, J. B. Jiao57, Z. Jiao24, H. J. Jing69, X. L. Kang8, X. S. Kang43, B. C. Ke82, M. Kenzie5, A. Khoukaz76, I. Koop3,50,51, E. Kravchenko3,51, A. Kuzmin3, Y. Lei60, E. Levichev3, C. H. Li42, C. Li55, D. Y. Li33, F. Li63,72, G. Li55, G. Li15, H. B. Li32,69, H. Li63,72, H. N. Li61, H. J. Li20, H. L. Li27, J. M. Li63,72, J. Li32, L. Li56, L. Li59, L. Y. Li63,72, N. Li64, P. R. Li41, R. H. Li30, S. Li59, T. Li57, W. J. Li20, X. Li33, X. H. Li74, X. Q. Li6, X. H. Li63,72, Y. Li79, Y. Y. Li72, Z. J. Li33, H. Liang63,72, J. H. Liang61, Y. T. Liang33, G. R. Liao13, L. Z. Liao25, Y. Liao61, C. X. Lin69, D. X. Lin33, X. S. Lin63,72, B. J. Liu32, C. W. Liu15, D. Liu63,72, F. Liu6, G. M. Liu61, H. B. Liu14, J. Liu54, J. J. Liu74, J. B. Liu63,72, K. Liu41, K. Y. Liu43, K. Liu59, L. Liu63,72, Q. Liu69, S. B. Liu63,72, T. Liu11, X. Liu41, Y. W. Liu63,72, Y. Liu82, Y. L. Liu63,72, Z. Q. Liu57, Z. Y. Liu41, Z. W. Liu45, I. Logashenko3, Y. Long63,72, C. G. Lu33, J. X. Lu2, N. Lu63,72, Q. F. Lü26, Y. Lu7, Y. Lu69, Z. Lu62, P. Lukin3, F. J. Luo74, T. Luo11, X. F. Luo6, Y. H. Luo54, H. J. Lyu24, X. R. Lyu69, J. P. Ma35, P. Ma33, Y. Ma15, Y. M. Ma33, F. Maas19,38, S. Malde71, D. Matvienko3, Z. X. Meng70, R. Mitchell29, A. Nefediev40, Y. Nefedov39, S. L. Olsen22,53, Q. Ouyang32,63, P. Pakhlov23, G. Pakhlova23,52, X. Pan60, Y. Pan62, E. Passemar29,65,67, Y. P. Pei63,72, H. P. Peng63,72, L. Peng27, X. Y. Peng8, X. J. Peng41, K. Peters12, S. Pivovarov3, E. Pyata3, B. B. Qi63,72, Y. Q. Qi63,72, W. B. Qian69, Y. Qian33, C. F. Qiao69, J. J. Qin74, J. J. Qin63,72, L. Q. Qin13, X. S. Qin57, T. L. Qiu33, J. Rademacker68, C. F. Redmer38, H. Y. Sang63,72, M. Saur54, W. Shan26, X. Y. Shan63,72, L. L. Shang20, M. Shao63,72, L. Shekhtman3, C. P. Shen11, J. M. Shen28, Z. T. Shen63,72, H. C. Shi63,72, X. D. Shi63,72, B. Shwartz3, A. Sokolov3, J. J. Song20, W. M. Song36, Y. Song63,72, Y. X. Song10, A. Sukharev3,51, J. F. Sun20, L. Sun77, X. M. Sun6, Y. J. Sun63,72, Z. P. Sun33, J. Tang64, S. S. Tang63,72, Z. B. Tang63,72, C. H. Tian63,72, J. S. Tian78, Y. Tian33, Y. Tikhonov3, K. Todyshev3,51, T. Uglov52, V. Vorobyev3, B. D. Wan15, B. L. Wang69, B. Wang63,72, D. Y. Wang54, G. Y. Wang21, G. L. Wang17, H. L. Wang61, J. Wang49, J. H. Wang63,72, J. C. Wang63,72, M. L. Wang32, R. Wang63,72, R. Wang33, S. B. Wang59, W. Wang59, W. P. Wang63,72, X. C. Wang20, X. D. Wang74, X. L. Wang63,72, X. L. Wang20, X. P. Wang2, X. F. Wang41, Y. D. Wang48, Y. P. Wang6, Y. Q. Wang17, Y. L. Wang20, Y. G. Wang63,72, Z. Y. Wang63,72, Z. Y. Wang73, Z. L. Wang69, Z. G. Wang48, D. H. Wei13, X. L. Wei33, X. M. Wei49, Q. G. Wen1, X. J. Wen33, G. Wilkinson71, B. Wu63,72, J. J. Wu69, L. Wu44, P. Wu62, T. W. Wu15, Y. S. Wu63,72, L. Xia63,72, T. Xiang54, C. W. Xiao7,13, D. Xiao41, M. Xiao74, K. P. Xie2, Y. H. Xie6, Y. Xing9, Z. Z. Xing32, X. N. Xiong7, F. R. Xu37, J. Xu82, L. L. Xu63,72, Q. N. Xu30, X. C. Xu63,72, X. P. Xu60, Y. C. Xu79, Y. P. Xu48, Y. Xu43, Z. Z. Xu63,72, D. W. Xuan63,72, F. F. Xue49, L. Yan11, M. J. Yan4, W. B. Yan63,72, W. C. Yan82, X. S. Yan20, B. F. Yang20, C. Yang57, H. J. Yang59, H. R. Yang33, H. T. Yang63,72, J. F. Yang63,72, S. L. Yang69, Y. D. Yang20, Y. H. Yang69, Y. S. Yang33, Y. L. Yang20, Z. W. Yang54, Z. Y. Yang63,72, D. L. Yao28, H. Yin6, X. H. Yin33, N. Yokozaki81, S. Y. You41, Z. Y. You64, C. X. Yu46, F. S. Yu41, G. L. Yu48, H. L. Yu63,72, J. S. Yu28, J. Q. Yu28, L. Yuan2, X. B. Yuan6, Z. Y. Yuan54, Y. F. Yue20, M. Zeng66, S. Zeng74, A. L. Zhang63,72, B. W. Zhang6, G. Y. Zhang20, G. Q. Zhang31, H. J. Zhang63,72, H. B. Zhang69, J. Y. Zhang69, J. L. Zhang21, J. Zhang64, L. Zhang57, L. M. Zhang66, Q. A. Zhang2, R. Zhang75, S. L. Zhang28, T. Zhang59, X. Zhang4, Y. Zhang63,72, Y. J. Zhang2, Y. X. Zhang54, Y. T. Zhang82, Y. F. Zhang63,72, Y. C. Zhang62, Y. Zhang18, Y. Zhang74, Y. M. Zhang64, Y. L. Zhang63,72, Z. H. Zhang74, Z. Y. Zhang77, Z. Y. Zhang63,72, H. Y. Zhao33, J. Zhao21, L. Zhao63,72, M. G. Zhao46, Q. Zhao32, R. G. Zhao49, R. P. Zhao69, Y. X. Zhao33, Z. G. Zhao63,72, Z. X. Zhao30, A. Zhemchugov39, B. Zheng74, L. Zheng8, Q. B. Zheng73, R. Zheng49, Y. H. Zheng69, X. H. Zhong26, H. J. Zhou20, H. Q. Zhou62, H. Zhou63,72, S. H. Zhou30, X. Zhou77, X. K. Zhou6, X. P. Zhou2, X. R. Zhou63,72, Y. L. Zhou15, Y. Zhou63,72, Y. X. Zhou69, Z. Y. Zhou62, J. Y. Zhu21, K. Zhu32, R. D. Zhu60, R. L. Zhu44, S. H. Zhu54, Y. C. Zhu63,72, Z. A. Zhu63,72, V. Zhukova40, V. Zhulanov3, B. S. Zou4,69,33, Y. B. Zuo42
1. Anhui University, Hefei 230039, China
2. Beihang University, Beijing 100191, China
3. Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
4. CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
5. Cavendish Laboratory, University of Cambridge, JJ Thomson Ave, Cambridge CB3 0HE, United Kingdom
6. Central China Normal University, Wuhan 430079, China
7. Central South University, Changsha 410083, China
8. China University of Geosciences, Wuhan 430074, China
9. China University of Mining and Technology, Xuzhou 221116, China
10. École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
11. Fudan University, Shanghai 200433, China
12. Goethe University Frankfurt, D-60325 Frankfurt am Main, Germany
13. Guangxi Normal University, Guilin 541004, China
14. Guangxi Uninversity, Nanning 530004, China
15. Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
16. Hebei Normal University, Shijiazhuang 050024, China
17. Hebei University, Baoding 071002, China
18. Hefei University of Technology, Hefei 230601, China
19. Helmholtz Institute Mainz, Staudinger Weg 18, D-55099 Mainz, Germany
20. Henan Normal University, Xinxiang 453007, China
21. Henan University, Kaifeng 475004, China
22. High Energy Physics Center, Chung-Ang University, Seoul 06974, Korea
23. Higher School of Economy 11 Pokrovsky Bulvar, Moscow 109028, Russia
24. Huangshan University, Huangshan 245000, China
25. Hubei University of Automotive Technology, Shiyan 442002, China
26. Hunan Normal University, Changsha 410081, China
27. Hunan University of Science and Technology, Xiangtan 411201, China
28. Hunan University, Changsha 410082, China
29. Indiana University, Bloomington, Indiana 47405, USA
30. Inner Mongolia University, Hohhot 010021, China
31. Institute of Advanced Science Facilities, Shenzhen 518107, China
32. Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
33. Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
34. Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, China
35. Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
36. Jilin University, Changchun 130012, China
37. Jinan University, Guangzhou 510632, China
38. Johannes Gutenberg University of Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany
39. Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia
40. Josef Stefan Institute, 1000 Ljubljana, Slovenia
41. Lanzhou University, Lanzhou 730000, China
42. Liaoning Normal University, Dalian 116029, China
43. Liaoning University, Shenyang 110036, China
44. Nanjing Normal University, Nanjing 210023, China
45. Nanjing University, Nanjing 210023, China
46. Nankai University, Tianjin 300071, China
47. Nanyang Normal University, Nanyang 473061, China
48. North China Electric Power University, Beijing 102206, China
49. Northwestern Polytechnical University, Xi'an 710072, China
50. Novosibirsk State Technical University, Novosibirsk 630073, Russia
51. Novosibirsk State University, Novosibirsk 630090, Russia
52. P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991, Russia
53. Particle and Nuclear Physics Institute, Institute for Basic Science, Daejeon 34126, Korea
54. Peking University, Beijing 100871, China
55. Qufu Normal University, Qufu 273165, China
56. Renmin University of China, Beijing 100872, China
57. Shandong University, Jinan 250100, China
58. Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
59. Shanghai Jiao Tong University, Shanghai 200240, China
60. Soochow University, Suzhou 215006, China
61. South China Normal University, Guangzhou 510006, China
62. Southeast University, Nanjing 211189, China
63. State Key Laboratory of Particle Detection and Electronics, Beijing 100049, Hefei 230026, China
64. Sun Yat-Sen University, Guangzhou 510275, China
65. Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, USA
66. Tsinghua University, Beijing 100084, China
67. Universitat de València, E-46071 València, Spain
68. University of Bristol, Bristol BS8 1TL, United Kingdom
69. University of Chinese Academy of Sciences, Beijing 100049, China
70. University of Jinan, Jinan 250022, China
71. University of Oxford, Keble Road, Oxford OX13RH, United Kingdom
72. University of Science and Technology of China, Hefei 230026, China
73. University of Shanghai for Science and Technology, Shanghai 200093, China
74. University of South China, Hengyang 421001, China
75. University of Wisconsin-Madison, Wisconsin-Madison 53706, USA
76. University Münster, Wilhelm-Klemm-Str.9, 48149 Münster, Germany
77. Wuhan University, Wuhan 430072, China
78. Xi’an Institute of Optics and Precision Mechanics of Chinese Academy of Sciences, Xi’an 710119, China
79. Yantai University, Yantai 264005, China
80. Yunnan University, Kunming 650500, China
81. Zhejiang University, Hangzhou 310027, China
82. Zhengzhou University, Zhengzhou 450001, China
 Download: PDF(18750 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The super τ-charm facility (STCF) is an electron−positron collider proposed by the Chinese particle physics community. It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of 0.5 × 1035 cm−2·s−1 or higher. The STCF will produce a data sample about a factor of 100 larger than that of the present τ-charm factory — the BEPCII, providing a unique platform for exploring the asymmetry of matter-antimatter (charge-parity violation), in-depth studies of the internal structure of hadrons and the nature of non-perturbative strong interactions, as well as searching for exotic hadrons and physics beyond the Standard Model. The STCF project in China is under development with an extensive R&D program. This document presents the physics opportunities at the STCF, describes conceptual designs of the STCF detector system, and discusses future plans for detector R&D and physics case studies.

Keywords electron−positron collider      tau-charm region      high luminosity      STCF detector      conceptual design     
Issue Date: 26 September 2023
 Cite this article:   
M. Achasov,X. C. Ai,L. P. An, et al. STCF conceptual design report (Volume 1): Physics & detector[J]. Front. Phys. , 2024, 19(1): 14701.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-023-1333-z
https://academic.hep.com.cn/fop/EN/Y2024/V19/I1/14701
Fig.1  (a) The free parameters of the Standard Model. Note that the neutrino masses and mixing angles are not included here. (b) The behavior of the QCD coupling strength αs(Q) vs. 1/Q (bottom axis) and distance (top axis).
CME (G eV) Lumi (ab1) Samples σ(nb) No. of events Remarks
3.097 1 J/ψ 3400 3.4× 1012
3.670 1 τ+τ 2.4 2.4× 109
3.686 1 ψ(3686) 640 6.4× 1011
τ+τ 2.5 2.5× 109
ψ(3686)τ+ τ 2.0× 109
3.770 1 D0D ¯0 3.6 3.6× 109
D+D ¯ 2.8 2.8× 109
D0D ¯0 7.9× 108 Single tag
D+D ¯ 5.5× 108 Single tag
τ+τ 2.9 2.9× 109
4.009 1 D0D ¯0+ c.c. 4.0 1.4× 109 CP D0D ¯0=+
D0D ¯0+ c.c. 4.0 2.6× 109 CP D0D ¯0=
Ds+Ds 0.20 2.0× 108
τ+τ 3.5 3.5× 109
4.180 1 Ds+Ds+c.c. 0.90 9.0× 108
Ds+Ds+c.c. 1.3× 108 Single tag
τ+τ 3.6 3.6× 109
4.230 1 J/ψπ+π 0.085 8.5× 107
τ+τ 3.6 3.6× 109
γX (3872)
4.360 1 ψ(3686)π + π 0.058 5.8× 107
τ+τ 3.5 3.5× 109
4.420 1 ψ(3686)π + π 0.040 4.0× 107
τ+τ 3.5 3.5× 109
4.630 1 ψ(3686)π + π 0.033 3.3× 107
ΛcΛ ¯c 0.56 5.6× 108
ΛcΛ ¯c 6.4× 107 Single tag
τ+τ 3.4 3.4× 109
4.0–7.0 3 300-point scan with 10 MeV steps, 1 fb1/point
>5 2–7 Several ab1 of high-energy data, details dependent on scan results
Tab.1  The expected numbers of events per year at different STCF energy points.
XYZ Y(4260) Zc(3900) Zc(4020) X(3872)
No. of events 109 108 108 5× 106
Tab.2  The expected numbers of produced XYZ-particle events before reconstruction per year at the STCF.
Fig.2  The mass spectrum of charmonia and XYZ states in comparison with the predictions from the Godfrey–Isgur quark model [92].
XYZ IG(JPC ) Production processes Decay modes
X(3872) 0+(1++ ) BKX /KπX, e+e γX, π+π J/ ψ, ωJ/ψ, D 0 D ¯0,
pp/pp ¯ inclusive, PbPb, γ γ γJ /ψ, γ ψ(3686)
X(3915) 0+(0or2++ ) BKX, γγ X ωJ /ψ
X(4140) 0+(1++ ) BKX, pp ¯ inclusive ϕJ /ψ
X(4274) 0+(1++ ) BKX
X(4500) 0+(0++ )
X(4700) 0+(0++ )
X(3940) ??(??? ) e+eJ/ψ+ X DD ¯
X(4160) ??(??? ) DD ¯
X(4350) 0+(??+ ) γγ X ϕJ /ψ
Y(4008) 0(1) e+eY ππ J/ ψ
Y(4260) 0(1) e+eY ππ J/ ψ, DD ¯π, χc0 ω, hcππ
Y(4360) 0(1) e+eY ππ ψ(3686)
Y(4660) 0(1) ππ ψ(3686), ΛcΛ ¯c
Zc(3900) 1+(1+) e+eπZ c, inclusive b-hadron decays πJ /ψ, D D ¯
Zc(4020) 1+(??) e+eπZ c πhc, DD ¯
Z1(4050) 1(??+ ) BKZc π±χc1
Z2(4250) 1(??+ )
Zc(4200) 1+(1+) BKZc π±J /ψ
Zc(4430) 1+(1+) π±J /ψ, π±ψ(3686)
Zcs (3985) 12(??) e+eKZ cs D ¯sD, D ¯sD
Zcs (4000) 12(1+) B+ϕ Zcs J/ψK
Zcs (4220) 12(1+) B+ϕ Zcs J/ψK
Tab.3  Some of the XYZ states in the charmonium mass region as well as the observed production processes and decay modes. For the complete list and more detailed information, we refer to the latest version of the Review of Particle Physics (RPP) [34].
BESIII STCF Belle II
Luminosity 2.93 fb−1 at 3.773 GeV 1 ab−1 at 3.773 GeV 50 ab−1 at Υ(nS)
B (D+μ +νμ) 5.1%stat 1.6%syst [120] 0.28%stat 2.8%stat [66]
fD+μ (MeV) 2.6%stat 0.9%syst [120] 0.15%stat
|Vcd | 2.6%stat 1.0%syst* [120] 0.15%stat
B (D+τ +ντ) 20%stat 10%syst [121] 0.41%stat
B( D+τ+ ντ)B(D+ μ+νμ ) 21%stat 13%syst [121] 0.50%stat
Luminosity 6.3 fb−1 at (4.178, 4.226) GeV 1 ab−1 at 4.009 GeV 50 ab−1 at Υ(nS)
B (Ds + μ+νμ) 2.4%stat 3.0%syst [122] 0.30%stat 0.8%stat 1.8%syst
fDs+μ (MeV) 1.2%stat 1.5%syst [122] 0.15%stat
|Vcs | 1.2%stat 1.5%syst [122] 0.15%stat
B (Ds + τ+ντ) 1.7%stat 2.1%syst [123] 0.24%stat 0.6%stat 2.7%syst
fDs+τ (MeV) 0.8%stat 1.1%syst [123] 0.11%stat
|Vcs | 0.8%stat 1.1%syst [123] 0.11%stat
f ¯Ds+μ&τ (MeV) 0.7%stat 0.9%syst 0.09%stat 0.3%stat 1.0%syst
|V ¯csμ&τ| 0.7%stat 0.9%syst 0.09%stat
fDs+ /fD+ 1.4%stat 1.7%syst [124] 0.21%stat
B( Ds+τ+ντ) B (Ds + μ+νμ) 2.9%stat 3.5%syst 0.38%stat 0.9%stat 3.2%syst
Tab.4  For studies on D( s)+ +ν, the precisions achieved at BESIII and the projected precisions at the STCF and Belle II. Considering that the LQCD uncertainty of fD( s)+ has been updated to be approximately 0.2% [119], the | Vc d| value measured at BESIII has been recalculated; this recalculated value is marked with *. For Belle II, we assume that the systematic uncertainties can be reduced by a factor of 2 compared to the Belle results.
Decay B Decay B Decay B
Λc+Λ π+ 1.30±0.07 Λc+Λ ρ+ 4.06± 0.52 Λc+Δ ++K 1.08± 0.25
Λc+Σ 0π+ 1.29±0.07 Λc+Σ 0ρ+ Λc+Σ 0π+ 0.65± 0.10
Λc+Σ +π0 1.25±0.10 Λc+Σ +ρ0 <1.7 Λc+Σ +π0 0.59± 0.08
Λc+Σ +η 0.44±0.20 Λc+Σ +ω 1.70±0.21 Λc+Σ +η 1.05± 0.23
Λc+Σ +η 1.5±0.6 Λc+Σ +ϕ 0.38±0.06 Λc+Σ +η
Λc+Ξ 0K+ 0.55±0.07 Λc+Ξ 0K+ Λc+Ξ 0K+ 0.43±0.09
Λc+pKS 1.59±0.08 Λc+pK ¯0 1.96±0.27 Λc+Δ + K ¯ 0
Tab.5  The measured branching fractions of the Cabibbo-allowed two-body decays of Λc+ (in units of %) taken from the PDG [34]. We have included the new BESIII measurements of Λc+Λ ρ+, Σ +π0 and Σ0π+ [179].
Σc+Λc+γ Σc+Λ c+γ Σc++Λc++γ Σc0Σc0γ Ξc + Ξc+γ Ξc + Ξc+γ Ξc 0 Ξc0γ Ξc 0 Ξc0γ Ωc0Ωc0γ
LO 91.5 150.3 1.3 1.2 19.7 63.5 0.4 1.0 0.9
NLO 164.2 893.0 11.6 2.9 54.3 502.1 0.02 3.8 4.8
NNLO 65.6 161.8 1.2 0.49 5.4 21.6 0.46 0.42 0.32
Tab.6  Electromagnetic decay rates (in units of keV) of S-wave charmed baryons in heavy hadron chiral perturbation theory to LO [210,211], NLO [212] and NNLO [213].
JP(nL ) States Mass difference(s)
3 ¯ 12+(1S) Λc( 2287)+, Ξc (2470)+, Ξc(2470)0 Δ mΞcΛc=183
12( 1P) Λc( 2595)+, Ξc (2790)+, Ξc(2790)0 Δ mΞcΛc=198
32( 1P) Λc( 2625)+, Ξc (2815)+, Ξc(2815)0 Δ mΞcΛc=190
12+(2S) Λc( 2765)+, Ξc (2970)+, Ξc(2970)0 Δ mΞcΛc=200
32+(1D) Λc( 2860)+, Ξc (3055)+, Ξc(3055)0 Δ mΞcΛc=201
52+(1D) Λc( 2880)+, Ξc (3080)+, Ξc(3080)0 Δ mΞcΛc=196
6 12+(1S) Ωc( 2695)0, Ξc(2575 ) +,0,Σc(2455)+ +,+,0 Δ mΩc Ξc=119, ΔmΞ cΣc=124
32+(1S) Ωc( 2770)0, Ξc(2645 ) +,0,Σc(2520)+ +,+,0 Δ mΩc Ξc=120, ΔmΞ cΣc=128
Tab.7  Antitriplet and sextet states of charmed baryons. The mass differences Δ mΞcΛcmΞ c mΛc, ΔmΞ cΣcmΞ cm Σc, and ΔmΩ cΞ cm ΩcmΞ c are all in units of MeV.
Fig.3  Cross sections for e+e J/ψηc (left) and e+eJ/ψc c ¯ (right) as calculated using NRQCD with the charm quark mass fixed at 1.5 GeV. The solid and dashed curves represent the results from the next-to-leading-order and leading-order calculations, respectively.
Decay mode B (×104) [34] η/η events
J/ψγη 52.1± 1.7 1.8× 1010
J/ψγη 11.08± 0.27 3.7× 109
J/ψϕη 7.4± 0.8 2.5× 109
J/ψϕη 4.6± 0.5 1.6× 109
Tab.8  The expected numbers of η/η events as calculated from the 3.4×1012J /ψ events anticipated to be produced at the STCF per year.
Decay mode Best upper limit 90% CL STCF limit ( 3.4×1012 J /ψ events) Theoretical prediction Physics
ηe+e 5.6× 10 9 1.5 ×1010 1.1× 10 10 leptoquark
ημ+μ 1.5 ×1010 1.1× 10 7 leptoquark
ηe+e e+e 2.4×1010 1× 10 4 γγ
ημ+μ μ+μ 2.4×1010 4× 10 7 γγ
ηπ0μ+μ 6.0× 10 5 2.4×1010 C violation
ηπ0e+e 1.4× 10 3 2.4×1010 C violation
ηπ0π0 9.0× 10 4 2.9×109 CP violation
ηπ+π 2.9× 10 3 1.5×1010 CP violation
ημ+e+μ e+ 4.7× 10 4 1.5×1010 LPV
η invisible 5.3× 10 4 3.3×108 Dark matter
ηηe +e 2.4× 10 3 5.9×1010 C violation
ηημ +μ 1.5× 10 5 5.9×1010 C violation
Tab.9  The statistical sensitivities to rare and forbidden η decays. The expected sensitivities are estimated by considering the detector efficiencies for different decay modes at the STCF. We assume that there is no background dilution and that the observed number of signal events is zero. The STCF limits are given at the 90% confidence level.
Decay mode B (in units of 10 4) Angular distribution parameter αψ Detection efficiency No. of events expected at the STCF
J/ψΛ Λ ¯ 19.43±0.03± 0.33 0.469 ±0.026 40% 1100× 106
ψ(3686)ΛΛ ¯ 03.97±0.02±0.12 0.824 ±0.074 40% 130× 106
J/ψΞ 0 Ξ ¯ 0 11.65± 0.04 0.66 ±0.03 14% 230× 106
ψ(3686)Ξ0Ξ ¯0 02.73±0.03 0.65 ±0.09 14% 32× 106
J/ψΞ Ξ ¯+ 10.40± 0.06 0.58 ±0.04 19% 270× 106
ψ(3686)Ξ Ξ ¯ + 02.78±0.05 0.91 ±0.13 19% 42× 106
Tab.10  Branching fractions for some J/ ψ,ψ(3686)BB ¯ decays and the estimated sizes of the data samples from the full data set of 3.4× 1012J/ψ and 3.2 ×109 ψ(3686) to be collected by the STCF. The approximate detection efficiencies for the final states reconstructed using the Λ pπ and Ξ Λ π decay modes are based on the published BESIII analyses using partial data sets [325-327].
AΞ AΛ AΞΛ ( ζp ζs)Ξ
Eq. (2.24)
( ζp ζs)Ξ
Eq. (2.26)
J/ψΛ Λ ¯ 1.7× 10 4
J/ψΞ Ξ ¯+ (ΔΦ =0) 2.2× 10 4 2.1× 10 4 2.5× 10 4 2.4× 10 3 6.5× 10 4
Tab.11  Statistical sensitivity for asymmetry parameters extracted using STCF data samples. The input values of the parameters are taken from Tab.10 and Ref. [75].
Fig.4  The box diagrams for the short-distance contributions to K0 K ¯0 mixing.
Fig.5  (a) A simulated J/ψK π+K0(τ); K0(τ)π+π event in the BESIII detector. (b) The solid circles show the proper time distribution for simulated strangeness-tagged K0(τ)π+π decays (the open circles are K ¯0(τ)π + π decays). (c) The reduced asymmetry, A π+πreduced= A π+π×e12ΔΓτ, which weights the asymmetries according to their relative statistical significance, is plotted for the events shown in panel b. Here ϕ =ϕ SW+δϕηCP T.
Fig.6  Constraints on the mixing strength ? versus the dark photon mass mA> 1 MeV from the measurements of the electron and muon anomalous magnetic moments, low-energy e+e colliders, beam dump experiments and fixed-target experiments. For details, see Ref. [349]. Reproduced from Ref. [349].
Fig.7  The sensitivity to the mixing strength ? at the STCF for e+eγ+A( l+l) with 1 ab−1 of data. Reproduced from Ref. [368].
Fig.8  Monophoton cross sections for millicharged partic-les (solid) and for the SM irreducible BG (dashed) versus the collision energy s. These cross sections are computed with the following detector pre-selection cuts: Eγ>25 MeV for cos? θγ< 0.8 and Eγ>50 MeV for 0.86<cos? θγ<0.92. The model parameters ?=0.001 and mχ=0.1 GeV are used for the millicharged particles model. Reproduced from Ref. [381].
Fig.9  The expected 95% C.L. upper bounds on millicharged particles from the STCF as well as from Belle II, BESIII, and BaBar. The dot-dashed curves are obtained with the bBG cut for the STCF, BESIII, and Belle II, while gBG is neglected [381]. Reproduced from Ref. [381].
Fig.10  The expected 95% C.L. upper bounds on millicharged particles with 10 ab−1 of data assumed for each of the three STCF s values. The solid curves are analyzed with the bBG cut. Reproduced from Ref. [381].
s (GeV) 2 2 4 4 7 7
m (MeV) 1 100 1 100 1 100
? 3× 10 5 7× 10 5 9 ×105 1× 10 4 2 ×104 3× 10 4
Tab.12  The expected 95% C.L. upper bounds on ? for millicharged particles with 10 ab−1 of data for three STCF s values, namely, 2 GeV, 4 GeV, and 7 GeV, as analyzed with the bBG cut [381].
Physics process Optimized parameter
τKsπ ντ; J/ ψΛ Λ ¯ Vertex reconstruction; tracking (efficiency, momentum resolution)
τγμ; τl ll; Dsμν; Dπ μν PID (range, μ/π suppression power, efficiency)
e+eπ + π+X, KK+X; Dsτν τ PID (range, π/K and K /π misidentification, efficiency)
τγμ; J/ ψΛ Λ ¯ Photon (position/energy resolution)
e+enn ¯, e+eγnn ¯ n (position/time resolution)
D0KLπ+π KL (position/time resolution)
Tab.13  Summary of the physics processes and the corresponding responses to be optimized.
Fig.11  Momentum distributions of charged particles from various processes at the truth level, normalized to 104 entries.
Fig.12  (a) Six tracking efficiency curves of charged pions used for optimization of benchmark processes. (b) The relative improvement in the detection efficiency Δ( ?) for the processes for the six efficiencies, where solid circles represent Ds+K+Kπ+, triangles represent τKSπντ and open circles represent J/ ψΛ Λ ¯ pπ n ¯π 0.
Fig.13  The distribution of (a) Δ E and (b) MBC associated with the spatial resolution of the track system in process e+e D0 D ¯ 0 at s=3.77 GeV with D0K π+. The different colored lines represent different spatial resolutions. (c) Detection efficiency with different charged track position resolutions in the J/ ψΛ Λ ¯ process. (d) 2D scattering plot of position resolution versus momentum resolution in the J /ψΛ Λ ¯ process.
Fig.14  Energy distribution of photons at the truth level, normalized to 104 entries.
Fig.15  The RMS of Mπ0 versus the momentum of π0 under different (a) energy resolution ΔE/E and (b) spatial resolution σz when E=1 GeV.
Fig.16  Momentum distribution of neutral particles (KL/n) from various physics processes, which is depicted at the truth level and normalized to 104 entries.
Fig.17  Expected time resolution (Δ T) for distinguishing neutral particles, neutrons/KL from photons with a separation power of 3σ versus their incident momenta for a flight length of 1.5 m.
Process Physics interest Optimized subdetector Requirements
τKsπ ντ, CPV in the τ sector, ITK+MDC Acceptance: 93% of 4 π; Trk. Effi.:
J/ψΛ Λ ¯, CPV in the hyperon sector, >99% at pT>0.3 GeV/c; >90% at pT= 0.1 GeV/c,
D(s ) tag Charm physics σp/p=0.5%, σγϕ=130 μm at 1 GeV/c
e+eKK +X, Fragmentation function, PID π/K and K /π misidentification rate <2%,
D(s ) decays CKM matrix, LQCD, etc. PID efficiency of hadrons >97% at p < 2 GeV/c
τμμμ, τγ μ, cLFV decay of τ, PID+MUD μ/π suppression power over 30 at p < 2 GeV/c,
Dsμν CKM matrix, LQCD, etc. μ efficiency over 95% at p = 1 GeV/c
τγμ, cLFV decay of τ, EMC σE/E2.5% at E = 1 GeV,
ψ(3686)γη(2S) Charmonium transition σpos5 mm at E = 1 GeV
e+enn ¯, Nucleon structure EMC+MUD σT= 300p3(GeV 3)ps
D0KLπ+π Unity of CKM triangle
Tab.14  Benchmark physics processes used to determine the physics requirements of the STCF detector.
Parameter Value
Circumference (m) 600
Beam energy range (GeV) 1−3.5
Optimized beam energy (GeV) 2
Current (A) 2
Crossing angle 2 θ (mrad) 60
Natural energy spread 4.0× 10 4
Bunch length (mm) 12
Luminosity (×1035 cm 2?s1) >0.5
Tab.15  The designed machine parameters for the STCF.
Fig.18  The MDI structure layout includes an inner pipe (white), Y-shaped pipe (orange and green), separated pipe (pink), stainless shield (yellow), copper shield (blue), tungsten shield (dark red) and magnets (red).
Luminosity-related RBB e+e RBB photon Two photon process
Cross-section (mb) 2.99 2.99, n ¯γ=1.3573 5.15
Luminosity (cm−2·s−1) 1× 1035
Particle rate (Hz) 5.98× 108 1.07× 108 1.03× 109
Beam-related Touschek effect Coulomb scattering Bremsstrahlung
Particle rate (Hz) 1.12× 109 2.09× 108 2.1× 106
Tab.16  Calculated particle rates for various background sources. The thresholds for the scattering angle and radiated photon energy for radiative Bhabha scattering are set to 4.47 mrad and 1 MeV, respectively. The average number of radiated photons in a radiative Bhabha event is denoted by n ¯γ. No threshold is set for the two photon process. The particle rate of the beam-related background is calculated by the theoretical lifetime.
Fig.19  Particle distribution near the IP if it hits the vacuum chamber for the electron beam, which is supposed to transfer from left to right. The positron beam is considered lost at the symmetrical position from the IP. The dark blue line and light blue line means the radius of the beamline in x and y direction, respectively. The yellow line means the bias distance between the center of the electron/positron cluster and the center of the beam pipe in the shared pipe section.
Fig.20  The TID value (a), NIEL damage (b) and background count rate (c) distributions of the STCF detector system.
Detector TID value (Gy/y) NIEL damage (1 MeV neutron·cm−2·y−1) Total count rate (Hz)
Silicon-inner-1 1170 2.71× 1010 3.90× 108
Silicon-inner-2 243 1.02× 1010 3.59× 108
Silicon-inner-3 64.9 1.71× 1010 2.92× 108
μRWELL-inner-1 10.9 9.95× 109 5.35× 108
μRWELL-inner-2 4.55 1.15× 1010 4.75× 108
μRWELL-inner-3 4.66 1.44× 1010 6.81× 108
MDC 11.0 4.27× 1010 7.27× 108
PID-Barrel (RICH) 2.96 8.67× 109 4.50× 108
PID-Endcap (DTOF) 1.34 4.65× 109 8.30× 108
EMC-Barrel 0.35 1.41× 1010 2.64× 109
EMC-Endcap 0.32 7.26× 109 9.38× 108
MUD-Barrel-RPC 0.028 3.23× 108 5.58× 106
MUD-Barrel-Scintillator 0.040 3.89× 1011 1.06× 107
MUD-Endcap-RPC 0.017 7.03× 107 3.53× 106
MUD-Endcap-Scintillator 0.027 1.86× 1011 1.22× 107
Tab.17  GEANT4 simulated TID and NIEL in the STCF subdetectors. The numbers are given as the mean values along the beam direction for each subdetector. For the ITK, the results are given for two different design options, the silicon pixel-based and the μRWELL-based designs.
Detector Highest TID value per pixel (Gy/y) Highest NIEL damage per pixel (1 MeV neutron·cm−2·y−1) Highest count rate per channel (Hz/channel)
Silicon-inner-1 3490 1.75× 1011 2.61× 102
Silicon-inner-2 320 3.72× 1010 2.74× 101
Silicon-inner-3 150 2.68× 1010 8.51× 100
μRWELL-inner-1 118 1.12× 1010 3.35× 105
μRWELL-inner-2 61.8 1.46× 1010 1.63× 105
μRWELL-inner-3 38.6 5.67× 1010 1.61× 105
MDC 60.5 4.87× 1010 4.00× 105
PID-Barrel (RICH) 4.25 1.07× 1010 3.3× 103
PID-Endcap (DTOF) 44.3 1.98× 1010 1.20× 105
EMC-Barrel 21.1 1.76× 1010 9.00× 105
EMC-Endcap 45.1 1.88× 1010 1.50× 106
MUD-Barrel-RPC 0.093 3.74× 1011 1.76× 103
MUD-Barrel-Scintillator 0.047 4.88× 1011 1.15× 103
MUD-Endcap-RPC 0.37 1.22× 1010 2.83× 104
MUD-Endcap-Scintillator 0.24 2.79× 1012 9.8× 104
Tab.18  GEANT4 simulated TID and NIEL in the STCF subdetectors. The numbers are given as the maximum values along the beam direction for each subdetector. For the inner tracker, the results are given for two different design options, the silicon pixel-based and the μRWELL-based designs.
Electronic component TID value (Gy/y) NIEL damage (1 MeV neutron·cm−2·y−1) Highest TID value per pixel (Gy/y) Highest NIEL damage per pixel (1 MeV neutron·cm−2·y−1)
Inner-1-electronic 1420 5.09× 1010 1460 5.94× 1010
Inner-2-electronic 238 2.22× 1010 250 2.35× 1010
Inner-3-electronic 95.9 2.95× 1010 97.2 3.24× 1010
MDC-electronic 5.2 6.44× 109 7.4 2.20× 1010
PID-Barrel-electronic 2.45 6.87× 109 2.95 8.37× 109
PID-Endcap-electronic 1.02 2.70× 109 6.81 3.96× 109
EMC-Barrel-electronic 0.046 1.51× 109 1.03 3.88× 109
EMC-Endcap-electronic 0.67 9.44× 108 60.5 1.78× 1010
MUD-Barrel-electronic 0.020 1.45× 108 0.065 3.42× 1011
MUD-Endcap-electronic 0.28 1.87× 108 3.56 1.79× 109
Tab.19  GEANT4 simulated TID and NIEL values in the STCF electronic subsystems.
Fig.21  The contribution of the background to the TID, NIEL damage and count.
Fig.22  Schematic layout of the STCF detector concept.
Fig.23  Geometry of the STCF detector: (a) 3D cutaway view, (b) cross-section view in the xy plane, and (c) cross-section view in the z r plane. It consists of ITK, PID system, EMC, SCS and MUD from inner to outmost.
Fig.24  (a) The schematic structure of the μRWELL-based inner tracker. (b) The structure of each layer of the μRWELL detector.
Structure Material Thickness (cm) Material budget (X0)
Inner cylinder Aluminum (X0 = 8.897 cm) 0.001 0.011%
Polyimide (X0 = 28.57 cm) 0.01 0.035%
Aramid honeycomb/Rohacell ( X0 267 cm) 0.2 0.075%
Gas volume Argon-based gas mixture ( X0 = 11760 cm) 0.5 0.00425%
Outer cylinder (μRWELL foil) Alumium (X0 = 8.897 cm) 0.0015 0.017%
Polyimide (X0 = 28.57 cm) 0.03 0.106%
DLC (X0 = 12.13 cm) 0.0001 0.00082%
Total 0.249%
Tab.20  The material budget of the μRWELL-based inner tracker design.
Fig.25  The rϕ spatial resolution as a function of various parameters based on the GEANT4 simulation.
Fig.26  Dependence of the (a) Lorentz angle, (b) electron drift velocity and (c) transverse diffusion coefficient on the drift electric field strength with the 1 atm gas mixtures, simulated by GARFIELD-9.
Fig.27  (a) The spatial resolution σr ϕ as a function of the incidence angle with the μRWELL detector operated in the μ-TPC mode. The spatial resolution in the (b) r ϕ and (c) beamline direction of various particles with the same transverse momentum of 100 MeV/c and the μRWELL detector operated in the μ-TPC mode.
Fig.28  The simulated resolution of the impact parameters (a) d0 and (b) z0 and (c) the momentum p and (d) transverse momentum pT as a function of pT of the incident particle. The results with different material budgets, expressed in terms of the radiation length, are compared.
Fig.29  The X/ V readout strips of the μRWELL detector.
Fig.30  Block diagram of the readout electronics for the μRWELL-based ITK detector.
Fig.31  Block diagram of the front−end ASIC.
Fig.32  Block diagram of the digital deconvolution and low-pass filter circuit.
Inner PI film Inner adhesive Structure support material Outer adhesive Outer PI film Total
Honeycomb-based 0.028% 0.009% 0.033% 0.009% 0.030% 0.105%
Rohacell-based 0.028% 0.009% 0.010% 0.008% 0.029% 0.084%
Tab.21  The material budgets of the inner cylinders manufactured in the preresearch stage.
Fig.33  The Rohacell foam-based inner cylinder (left) and aramid honeycomb-based detector model (right) produced in the preresearch stage.
Fig.34  The simulated resolution of the impact parameters (a) d0 and (b) z0 and (c) the momentum p and (d) transverse momentum pT as a function of pT of the incident particle. The results with different layout configurations, the default with radii of 36 mm, 98 mm and 160 mm and alternative radii of 60 mm, 110 mm and 160 mm, are compared.
Fig.35  The simulated resolution of the impact parameters (a) d0 and (b) z0 and (c) the momentum p and (d) transverse momentum pT as a function of pT of the incident particle. The results with different material budgets, expressed in terms of the radiation length, are compared.
Fig.36  Block diagram of the pixel sensor readout circuit.
Superlayer Radius (mm) Num. of layers Stereo angle (mrad) Num. of cells Cell size (mm)
A 200.0 6 0 128 9.8 to 12.5
U 271.6 6 39.3 to 47.6 160 10.7 to 12.9
V 342.2 6 −41.2 to −48.4 192 11.2 to 13.2
A 419.2 6 0 224 11.7 to 13.5
U 499.8 6 50.0 to 56.4 256 12.3 to 13.8
V 578.1 6 −51.3 to −57.2 288 12.6 to 14.0
A 662.0 6 0 320 13.0 to 14.3
A 744.0 6 0 352 13.3 to 14.5
Total 200 to 827.3 48 11520
Tab.22  The main parameters of the STCF MDC conceptual design.
Fig.37  The schematic structure of the MDC.
Fig.38  (a) Cross-section view of the layout of wire layers and superlayers. (b) Enlarged cross-section view of the wire layout. Open circles represent field wires, and dots represent sense wires. The square-shaped drift cell structure can be seen, with a sense wire in the center and field wires forming a square.
Fig.39  The simulated resolution of the transverse momentum of the MDC-only tracking system with different wire diameter settings, with polar angles of (a) cosθ = 0 and (b) cos θ = 0.5.
Fig.40  The simulated drift time for particles entering the drift cell at a distance of half cell width from the sense wire and at a polar angle of 45 degree, with the cell aspect ratio of 1 (left) and 1.1 (right), respectively.
Fig.41  The simulated transverse momentum resolution with different numbers of layer, with polar angles of cosθ = 0 (left) and cosθ = 0.5 (right).
Gas Mixture Ar/CO2/CH4 (89/10/1) He/CH4 (60/40) He/C2H6 (50/50) He/C3H8 (60/40) He/iC4H10 (80/20)
Drift velocity of an electron 5.0 3.7 4.0 3.8 3.4
vd (cm/μs)
Transverse diffusion coefficient 233 191 170 154 159
σL (μm/ cm 12) @ E=760 V/cm
Lorentz angle 41 28 29 24 21
θL (degree) @ E=760 V/cm
Primary ionizing power (i.p./cm) 30 10 23 30 21
Radiation length (m) 124 808 640 550 807
Tab.23  The main parameters of several kinds of gas mixtures, pressure = 1 atm, temperature = 20 Celsius, magnetic field strength = 1 T.
Fig.42  The simulated resolution of the transverse momentum of the MDC with different working gases, with the polar angle of cosθ= 0.5.
Fig.43  The simulated resolution of the impact parameters (a) d0 and (b) z0 and (c) momentum p and (d) transverse momentum pT as a function of pT. The results with different polar angles of incident particles, with cosθ = 0, 0.2 and 0.8, are compared.
Fig.44  The simulated resolution of the impact parameters (a) d0 and (b) z0 and (c) momentum p and (d) transverse momentum pT as a function of the pT of an incident particle with a polar angle of cos θ = 0. The results with different ITK designs are compared. For the comparison of the z0 resolution, the results for the MDC-only option are not shown since the design of the MDC alone cannot provide precise z0 measurements.
Fig.45  (a) The distribution of the original dE/dx in one MDC cell, with penetrating π particles with p=0.5 GeV/c. (b) The calculated dE/dx resolution of p=0.5 GeV/c π with the truncated average method.
Fig.46  The simulated relationship between dE/dx and momentum with various particles (a) and the simulated PID performance of the MDC (b).
Fig.47  The simulated relationship between momentum and dE/dx resolution for various particles.
Fig.48  Drift time distribution in the STCF MDC.
Fig.49  Block diagram of the MDC electronics.
Fig.50  Time and charge measurement circuit for the MDC.
Fig.51  The π/ K/ p PID separation abilities of different radiators assuming 2.5mrad angular resolution. The results for quartz and C6F 14 with a refractive index of 180nm are depicted.
Fig.52  The RICH detector structure.
Thickness [mm] X/X 0
Top ceramic plate 3 0.03
Quartz window 3 0.03
Radiator C6F 14 10 0.05
THGEM+Micromegas 0.4 0.01
Anode+FEE 8 0.02
Aluminum plate 5 0.05
FEE cooling 5 0.05
Total 0.24
Tab.24  Material budget of the RICH detector.
Fig.53  The Cherenkov light propagation in the RICH detector.
Source Error (mrad) Simulation (mrad)
Chromatic 6.0 5.0
Geometric 2.6 3.1
Localization 1.6 1.8
Multiple scattering 1.1 1.1
Total 6.8 6.2
Tab.25  Systematic error for RICH reconstruction.
Fig.54  RICH reconstruction system error versus the Lorentz factor γ.
Fig.55  (a) Refractive indexes for liquid C6F 14 and quartz, (b) transmission rate of each optical component, (c) photoelectron distribution, and (d) reconstructed Cherenkov angle distribution.
Fig.56  Examples of Cherenkov images in a RICH module. The blue image depicts the distribution of hits for 2GeV/c pion with incident angle θ= 0, perpendicular to RICH, while the red image depicts θ=40.
Fig.57  RICH PID capabilities in terms of (a) π/K efficiency and (b) misidentification efficiency.
Fig.58  PID capability scans for (a) π efficiency, (b) π/K mis-ID rate.
Generation rate (Hz) RICH rate (Hz) Counting rate (Hz/mm2)
RBB e± 5.98×108 1.25×108 50.7
RBB γ 1.07×108 3.71×106 1.47
Two photon 1.03×109 2.44×107 9.65
Touschek 1.12×109 5.04×106 1.99
Coulomb 2.09×108 2.90×108 115
Brems 2.10×106 2.10×102 negligible
Tab.26  The background simulation for the RICH detector.
Fig.59  The conceptual design of the RICH detector: (a) the overall layout and (b) a schematic view of the module box.
Fig.60  Block diagram of the RICH electronics.
Fig.61  Block diagram of the front−end ASIC.
Fig.62  An example of the radiator sector for the DTOF detector and the light path of the radiator.
Fig.63  Main DTOF timing error factors and their dependences on the distance from the incident point of the particle (kaon at p=1 GeV/c) to the photon detector
Fig.64  The conceptual design of the DTOF detector.
Fig.65  The simulated TOP vs. hit position pattern of the DTOF detector.
Fig.66  The coordinate system used in DTOF reconstruction (left) and the direction of Cherenkov photons (deep blue line).
Fig.67  The expected timing error and propagation length uncertainty of Cherenkov photons in a DTOF quadrant.
Fig.68  The TOF resolution of the DTOF detector for a single photoelectron and the average of all photons.
Fig.69  The TOF PID capabilities of the DTOF detector for π/K separation at 2 GeV/c, without (left) and with (right) contributions from other timing uncertainties.
Fig.70  The likelihood PID capabilities of the DTOF detector for π/K separation at 2 GeV/c emitted at different angles.
Fig.71  The likelihood PID capabilities of the DTOF detector for π/K separation in different directions and at different momenta.
Fig.72  The rate at which T0 is determined correctly using the DTOF detector for π samples in different directions and at different momenta.
Configuration/Geometry ID 0 1 2 3 4 5 6
Radiator shapes (sector number) 4 12 24 4 4 4 4
Radiator thickness (mm) 15 15 15 10 20 15 15
Outer side surface A A A A A R 45° R
Inner side surface A A A A A A A
Lateral side surface R R R R R R R
Tab.27  Description of the different DTOF geometry configurations, where A stands for absorber and R for reflective mirror.
Fig.73  Three different configurations on the outer surface of the radiator. An absorber (left) or mirror (middle) on the outer surface and a mirror on the 45 chamber of the outer side surface (right).
Configuration/Geometry ID 0 1 2 3 4 5 6
Npe for pions 21.8 21.9 17.0 15.5 25.7 33.2 38.7
Accumulated charge density on 10.8 10.5 9.6 8.8 11.8 17.0 25.6
MCP-PMT anode (C /cm 2)
π/K separation power 4.17σ 4.08σ 3.66σ 3.99σ 4.27σ 4.26σ 4.19σ
Tab.28  Performance of different geometries at p=2 GeV/c, θ=24 and ϕ =45 .
Fig.74  Overall time distribution of background particles hitting the DTOF detector.
Fig.75  2-D time-position map of DTOF hits (left) and reconstructed TOF distribution of a single photoelectron signal (right), with multiple-hit correction.
Fig.76   π/ K identification capabilities (at 2 GeV/c) of DTOF with multiple-hit correction.
Fig.77  The preliminary structure of the DTOF readout electronic system.
Fig.78  The shower longitudinal distribution.
Fig.79  The schematic arrangement of crystals.
Fig.80  The energy resolution of the EMC. The pCsI front face size is 5 cm (a) and 3 cm (b).
Fig.81  The EMC position resolution based on the logarithmic energy weighting method, with (a) 5 cm × 5 cm and (b) 3 cm × 3 cm crystal front face sizes.
Fig.82  The efficiency of the EMC for π0.
Fig.83  The EMC layout design.
Fig.84  The EMC defocus design.
Condition Intri Carbon fiber (200 μm) Uni (5%) APD Noise (1 MeV)
EneRes @ 1 GeV (%) 1.52 1.96 2.06 2.11 2.15
Tab.29  The energy resolution considering different effects.
Fig.85  The expected energy resolution of the EMC, (a) the intrinsic performance without considering material effects and (b) with several main factors.
Fig.86  The expected performance of (a) the energy linearity, and (b) the energy resolution.
Fig.87  The expected (a) position resolution and (b) angular resolution for 1 GeV photons.
Fig.88  (a) The time resoluiton of 100 MeV gamma rays and (b) time resolution curve.
Fig.89  The energy resolution of EMC with different thicknesses of upstream materials. (a) 23% X0, (b) 27% X0, (c) 31% X0 and (d) 35% X0.
Fig.90  The reconstruction efficiency curve of the EMC with upstream materials.
Fig.91  The radiation length of the inner subdetectors in front of the EMC.
Fig.92  (a) Comparison of the energy resolution of the EMC (barrel) as a function of the energy with full detector simulation and EMC-only simulation. (b) The energy resolution as a function of the incident polar angle for 1 GeV photons.
Fig.93  The background simulation in the EMC: (a) the deposited energy distribution and (b) the background counting rate.
Fig.94  The EMC energy response for 1 GeV photons (a) without background and (b) with background included in the simulation.
Fig.95  (a) An example output pulse of the EMC with multiwaveform fitting. The dotted green curve is a simulated waveform, which is a superposition of the signal and background spectra. The red curve represents the signal template, and the blue represents the fitting results of the background. (b) The energy resolution of 1 GeV γ rays in the EMC using the multifit method.
Fig.96  The expected EMC energy resolution with the multifit method for (a) the barrel region and (b) the endcap region.
Fig.97  The structure of CSA-based readout electronics.
Fig.98  The pCsI crystal for the EMC.
Fig.99  The energy deposition of MIPs. (a) S8664-55 result and (b) S8664-1010 result.
Fig.100  Prototype electronics of the CSA-based method (FEE on the left and BEU on the right).
Fig.101  Noise of the readout system at different shaping times.
Channel Low limit (MeV) High limit (MeV)
High gain 3 150
Low gain 10 3000
Tab.30  The dynamic range of EMC.
Fig.102  Schematic of the MUD design. (a) Half-section view of the MUD, and partial enlarged view of the sandwich placement of the Bakelite-RPC, plastic scintillator, and iron yoke. (b) Cutaway view of the MUD and the setting of the main structural parameters.
Fig.103  Module layout of the MUD design. (a) Bakelite-RPC in barrel MUD. (b) Scintillator in barrel MUD. (c) Bakelite-RPC and scintillator in endcap MUD.
Parameter Baseline design
Rin [cm] 185
Rout [cm] 291
Re [cm] 85
LBarrel [cm] 480
TEndcap [cm] 107
Segmentation in ϕ 8
Number of detector layers 10
Iron yoke thickness [cm] 4/4/4.5/4.5/6/6/6/8/8 cm
(λ=16.77 cm) Total: 51 cm, 3.04λ
Solid angle 79.2% × 4π in barrel
14.8% × 4π in endcap
94% × 4π in total
Total area [m2] Barrel ~717
Endcap ~520
Total ~1237
Tab.31  The structure parameters of the conceptual baseline design of the MUD. Rin and Ro ut are the inner and outer radius of the barrel MUD, respectively, including the 15 cm-thick iron plate shielding outside the detector system. Re is the inner radius of the endcap MUD. LB arrel and TE ndcap are the length of the barrel and endcap MUD in the z-direction, respectively. The size of neutron shielding layer is not included.
Fig.104  The muon detection efficiency curve from the GEANT4 simulation. Efficiencies are compared with different detector layer settings. The results for two scenarios of muon/pion suppression power, 33 and 100, are shown.
Fig.105  The muon detection efficiency curves with different combinations of Bakelite-RPC and plastic scintillator in the MUD design along the direction of θ=90 and ϕ =90 (θ: polar angle, ϕ: azimuth angle) including the background.
Fig.106  GEANT4-simulated muon detection efficiency with different granularities along the zenith direction.
Fig.107  The probability that a muon arrives at the MUD as a function of the muon momentum in the zenith direction.
Fig.108  The muon detection efficiency curve from the GEANT4 simulation, with a polar angle of 90 degrees. Results for two scenarios of muon/pion suppression power, 33 and 100, are also shown.
Fig.109  2D map of the muon identification efficiency as a function of the momentum and the θ angle from GEANT4 simulation. The μ/π suppression power is assumed to be 33.
Neutron KL
Average cluster size in scintillators Probability of cluster size 2 Average cluster size in scintillators Probability of cluster size 2
200 MeV/c 2.42 5% 4.42 32%
400 MeV/c 4.07 31% 6.48 50%
600 MeV/c 5.57 49% 7.88 68%
800 MeV/c 7.23 66% 9.20 74%
1000 MeV/c 8.31 74% 8.96 76%
1200 MeV/c 9.03 79% 11.18 84%
Tab.32  The GEANT4 simulated neutron and KL cluster parameters in plastic scintillator detector layers.
Fig.110  The detection efficiency curves of various neutral hadrons in the MUD (notice: all of these neutral hadrons deposit less than 40 MeV energy in the EMC).
Detector type Bakelite-RPC Plastic scintillator
Detector layer 1 2 3 4 5 6 7 8 9 10
Simulated background count rate in the barrel (Hz/cm2) 9.2 3.54 1.42 4.25 6.50 2.80 1.77 0.76 0.39 0.36
Tab.33  The GEANT4 simulated barrel MUD background count rate.
Detector layer Half-length in X (cm) Barrel half-length in Z (cm) MUD channel number in X Channel number in Z Inner radius (cm) Endcap outer radius (cm) MUD channel number in X Channel number in Z
Bakelite-RPC 1 76.6 240 1535 1920 94 290 960 784
2 79.9 240 1600 1920 94 290 960 784
3 83.3 240 1670 1920 98 290 960 768
Plastic scintillator 4 86.8 240 0 1920 98 290 960 768
5 90.3 240 0 1920 102 290 960 752
6 94.4 240 0 1920 102 290 960 752
7 98.6 240 0 1920 106 290 960 736
8 102.7 240 0 1920 110 290 960 720
9 107.7 240 0 1920 114 290 960 704
10 112.7 240 0 1920 118 290 960 688
Tab.34  The estimated readout channel requirement in the MUD conceptual design.
Cryostat
Inner radius 1.450 m
Outer radius 1.850 m
Length 4.760 m
Coil
Mean radius 1.565 m
Length 4.000 m
Conductor dimension 4.67 × 15.0 mm2
Electrical parameters
Central field 1.0 T
Nominal current 3820 A
Inductance 1.68 H
Stored energy 12.3 MJ
Cold mass 4.6 ton
Radiation thickness 1.9 X0
Cool down time from room temperature 7 days
Quench recovery time 7 hours
Tab.35  Main parameters of the STCF detector superconducting magnet.
Fig.111  2D geometrical layout of the STCF detector magnet, which consists of a superconducting coil and an iron yoke with a barrel yoke and two end-cap yokes.
Fig.112  Flux of the magnetic field.
Fig.113  (a) Bz as a function of z along the beam axis. (b) The field uniformity in the tracking area.
Fig.114  The equivalent stress distribution in the coil.
Fig.115  Conceptual structure layout of the solenoid.
Rated current 3820 A
Critical current at 4.2 K & 2 T 15000 A
Conductor length 9.15 km
Cable dimension 4.67 mm × 15 mm
Rutherford cable parameters
Number of strands 16
Cable transposition pitch 100 ± 5 mm
Cu:NbTi 1:1
NbTi filament diameter 30 ± 5 μm
Number of filaments 600
N value@2T 35
Aluminum stabilizer parameters
RRR@0T, 4.2K 500
Yield strength@4.2K 60 MPa
Impurity content >1000 ppm
Cross-section ratio of aluminum >80%
Tab.36  Main parameters of the superconducting conductor.
Fig.116  Cross-sectional view of the superconductor for the STCF detector magnet.
Fig.117  Configuration of the iron yoke with pole tips for the STCF detector.
Fig.118  Stress and deformation of vacuum vessel(2D 1/2 Model).
Heat load components 77 K 4.5 K
Caused by the support rods in cryostat 27 W 1.0 W
Caused by the radiation in cryostat 74 W 3.2 W
Caused by the current leads 7.9 W + 0.4 g/s
Caused by the radiation in chimney & SP 10 W 0.4 W
Caused by the support rods in chimney & SP 4 W 0.1 W
Caused by the bayonet and valves in SP 46 W 13 W
Caused by the measuring wires 5 W 0.8 W
Total 166 W 26.4 W + 0.4 g/s
Adopted heat load (× 1.5) 249 W 39.6 W + 0.6 g/s
Tab.37  Heat load estimation.
Fig.119  A schematic view of the iron yoke in the (a) barrel and (b) endcap regions.
Fig.120  A cross-sectional view of the detector (a) and an overall view of the detector (b).
Physics process Cross-section (nb) Rate (Hz)
s =3.097 GeV, L=0.75×1035 cm 2?s1, ΔE= 0.848 MeV
J/ψ 4500 337500
e+e 270 20000
μ+μ 270 20000
Bhabha ( θ( 20,160)) 734 55000
γγ (θ(20,160)) 36 2700
μ+μ 11.4 900
Hadronic from continuum 25.6 2000
2γ process (θ(20,160)),E> 0.1 GeV ~23.3 1740
Total ~5300 ~400000
s =3.773 GeV, L=1.0×1035 cm 2?s1
ψ(3770) 9 900
Bhabha ( θ( 20,160)) 517 51700
γγ (θ(20,160)) 24.5 2450
μ+μ 7.9 790
Hadronic from continuum 18 1800
2γ process (θ(20,160)),E> 0.1 GeV ~25 2500
Total ~601 ~60100
Tab.38  Summary of the cross-sections and event rates from physics processes at s =3.097 GeV and s =3.773 GeV.
Fig.121  The schematic of STCF trigger system.
Fig.122  Block diagram of the trigger electronics for the STCF.
Fig.123  Block diagram of the clock system for the readout electronics in the STCF.
Component Num. of channels Readout time window Event size (B) Total (B/s)
ITK (Silicon) 50M 500 ns 14300 5.72G
ITK (μRWELL) 10552 500 ns 17232 6.89G
MDC 11520 1 μs 20400 8.16G
PID (RICH) 518400 500 ns 15600 6.24G
PID (DTOF) 6912 500 ns 7380 2.95G
EMC 8670 500 ns 15000 6.00G
MUD 41280 500 ns 262 105M
Total(Silicon) 50.6M 72.9k 29.2G
Total(μRWELL) 5.94 × 105 75.9k 30.4G
Tab.39  Estimated data size of each detector system. The readout time window is adjusted for each detector system to collect the stored events after receiving the trigger. A 50 ns jitter for the event starting time is assumed. The estimated event size includes both the physics events and the background contribution within the corresponding readout time.
Fig.124  Conceptual hardware architecture (FL).
Fig.125  Conceptual hardware architecture (SL).
Fig.126  Multiple point-to-point (MPP) model.
Fig.127  Processing map for data stream.
Fig.128  Overview of the STCF offline software system.
Fig.129  Structure of the geometry parameters repository. The library of elements and materials is shared by all sub-detectors. Different sub-detector designs are separately managed in different XML files; if a sub-detector has more than one designs, the parameters for different designs are stored in different XML files with version numbers. A mother XML file can include several daughter XML files.
Fig.130  Workflow of the DDXMLSvc. The geometry parameters in the repository are parsed by detector constructors and converted to formats for simulation, reconstruction and visualization.
Fig.131  Full detector described by the GMS and printed using the default 3D visualization plugin of DD4Hep. 2D sections are viewed from different directions: (a) Z−R view and (b) X−Y view.
Fig.132  Overview of the full detector simulation framework for STCF.
Fig.133  Number of expected samples at STCF under 0.2 ab−1 and 1 ab−1 integrated luminosity, compared with current BESIII statistics and Belle II 50 ab−1 expected.
Fig.134  Precision of various measurements to test SM, such as muon g-2, tau mass, CKM matrix and CPV, from current precision and STCF expected with 0.2 ab−1 and 1 ab−1 integrated luminosity. The uncertainties of STCF expected consider the sources from statistics (sta.), reducible systematic (sys.) such as tracking, PID, and other selection criteria, irreducible systematic from theoretic input and instrument effects such as beam energy and beam spread.
Fig.135  Sensitivity of processes that are forbidden or rare in SM prediction, from current results and STCF expect with 0.2 ab−1 and 1 ab−1, and compared with predictions from theoretical models beyond the SM.
Observable BESIII (2020) Belle II (50 ab−1) STCF (1 ab−1)
Charmonium(like) spectroscopy:
Luminosity between 4−5 GeV 20 fb−1 0.23 ab−1 1 ab−1
Collins fragmentation functions:
Asymmetry in e+e KK+X 0.3 [470] <0.002 [471]
CP violations:
Acp in hyperon 0.014 [26] 0.00023
Acp in τ O(103)/ 70 [251] 0.0009 [250]
Leptonic decays of D(s):
Vcd 0.03 [472] 0.0015
fD 0.03 0.0015
B(Dτν) B(Dμ ν) 0.2 0.005
Vcs 0.02 [473] 0.005 0.0015
fDs 0.02 0.005 0.0015
B(Dsτν) B(Dsμν) 0.04 0.009 0.0038
D mixing parameter:
x 0.03 0.05 [474]
y 0.02 0.05
τ properties:
mτ (MeV/c−2) 0.12 [475] 0.012
dτ (e cm) 2.02× 10 19 5.14× 10 19
cLFV decays of τ(U.L at 90% C.L.):
τlll 1× 10 9 1.4× 10 9
τγμ 5× 10 9 1.8× 10 8
J/ψeτ 7.5× 10 8 7.1× 10 10
Tab.40  Summary of the statistical sensitivities for some benchmark physics processes, not inclusive yet.
Fig.136  (a) Definition of ϕ0 as the angle between the plane spanned by the beam axis and the momentum of the second hadron ( P2) and the plane spanned by the transverse momentum pt of the first hadron relative to the second hadron. (b) Different K π mis-IDs versus the background level fKπ.
Fig.137  (a) Invariant mass of KSπ with combined e-tag and μ-tag from τ+ decay. (b) Selection efficiencies for the signal process at different CMEs from s=4.0 GeV to 5.0 GeV.
Fig.138  (a) Distribution of Mbc from signal tag DsK + Kπ. (b) Distribution of extra energy for Dsτν with τe νν, where the open dots come from class I background, the shaded green comes from class II background, and the dashed blue comes from class III background. The plots are depicted with 0.1 ab−1 simulated cocktail MC.
Fig.139  Comparison of | Vc s|.
Fig.140  Comparison of fDs.
Fig.141  (a) The number of surviving background events NB G and (b) the selection efficiency with different π/μ mis-ID rates for τl ll.
Fig.142  Expected timeline for the STCF project.
1 H. Hoddeson L.Brown L.Riordan M. Dresden (Eds.) M., The Rise of the standard model: Particle physics in the 1960s and 1970s, Proceedings, Conference, Stanford, USA, June 24–27, 1992 (1997)
2 S. Abrams G.. et al.. The mark-II detector for the SLC. Nucl. Instrum. Meth. A, 1989, 281 : 55
https://doi.org/10.1016/0168-9002(89)91217-5
3 Bernstein D.. et al.. The mark-III spectrometer. Nucl. Instrum. Meth. A, 1984, 226 : 301
https://doi.org/10.1016/0168-9002(84)90043-3
4 E. Augustin J.. et al.. Dm2: A magnetic detector for the Orsay storage ring DCI. Phys. Scripta, 1981, 23 : 623
https://doi.org/10.1088/0031-8949/23/4B/004
5 Asner (CLEO) D., The CLEO-c research program, AIP Conf. Proc. 722, 82 (2004), arXiv: hep-ex/0312034
6 Z. Bai J.. et al.. The BES detector. Nucl. Instrum. Meth. A, 1994, 344 : 319
https://doi.org/10.1016/0168-9002(94)90081-7
7 Z. Bai J.. et al.. Measurement of the mass of the tau lepton. Phys. Rev. Lett., 1992, 69 : 3021
https://doi.org/10.1103/PhysRevLett.69.3021
8 Ablikim M.(BESIII) ., et al.., Precision measurement of the mass of the τ lepton, Phys. Rev. D 90, 012001 (2014), arXiv: 1405.1076
9 Z. Bai J.(BES) ., et al.., Measurements of the cross section for e+e− → Hadrons at center-of-mass energies from 2 to 5 GeV, Phys. Rev. Lett. 88, 101802 (2002), arXiv: hep-ex/0102003
10 Z. Bai J.. et al.. Evidence for the leptonic decay Dμνμ. Phys. Lett. B, 1998, 429 : 188
https://doi.org/10.1103/PhysRevLett.88.101802
11 Z. Bai J.(BES) ., et al.., Observation of a near-threshold enhancement in the p p ¯ mass spectrum from radiative J/ψγ pp ¯ decays, Phys. Rev. Lett. 91, 022001 (2003), arXiv: hep-ex/0303006
12 Ablikim M.(BES) ., et al.., Observation of a resonance X(1835) in J/ψγπ+πη', Phys. Rev. Lett. 95, 262001 (2005), arXiv: hep-ex/0508025
13 Ablikim M.(BESIII) ., et al.., Spin-parity analysis of pp ¯ mass threshold structure in J/ψ and ψ(3686) radiative decays, Phys. Rev. Lett. 108, 112003 (2012), arXiv: 1112.0942
14 Ablikim M.(BESIII) ., et al.., Observation of an anomalous line shape of the η' π+π− mass spectrum near the p p ¯ mass threshold in J/ψγη' π+π−, Phys. Rev. Lett. 117, 042002 (2016), arXiv: 1603.09653
15 Ablikim M.(BES) ., et al.., The sigma pole in J/ψωπ+π−, Phys. Lett. B 598, 149 (2004), arXiv: hep-ex/0406038
16 Ablikim M.(BES) ., et al.., Observation of charged κ in J/ψK*(892)∓ Ksπ±, K*(892)∓ → Ksπ∓ at BESII, Phys. Lett. B 698, 183 (2011), arXiv: 1008.4489
17 Zhang C.-A., in: 32nd International Conference on High Energy Physics (2004), pp 993–997
18 Ablikim M.(BESIII) ., et al.., Design and construction of the BESIII detector, Nucl. Instrum. Meth. A 614, 345 (2010), arXiv: 0911.4960
19 Ablikim M.(BESIII) ., et al.., Observation of an isoscalar resonance with exotic JPC = 1−+ quantum numbers in J/ψγηη', Phys. Rev. Lett. 129, 192002 (2022), arXiv: 2202.00621 [hep-ex]
20 Ablikim M.(BESIII) ., et al.., Partial wave analysis of J/ψγηη', Phys. Rev. D 106, 072012 (2022), arXiv: 2202.00623 [hep-ex]
21 Horn D., Mandula J.. A model of mesons with constituent gluons. Phys. Rev. D, 1978, 17 : 898
https://doi.org/10.1103/PhysRevD.17.898
22 Ablikim M.(BESIII Collaboration) ., et al.., Observation of a state X(2600) in the π+πη' system in the process J/ψγπ+πη', Phys. Rev. Lett. 129, 042001 (2022), arXiv: 2201.10796 [hep-ex]
23 Ablikim M.(BESIII) ., et al.., First observation of η(1405) decays into f0(980)π0, Phys. Rev. Lett. 108, 182001 (2012), arXiv: 1201.2737
24 Ablikim M.(BESIII) ., et al.., Observation of a00(980)-f0(980) mixing, Phys. Rev. Lett. 121, 022001 (2018), arXiv: 1802.00583
25 N. Achasov N., A. Devyanin S., N. Shestakov G.. s*−δ0 mixing as the threshold phenomenon. Phys. Lett. B, 1979, 88 : 367
https://doi.org/10.1016/0370-2693(79)90488-X
26 Ablikim M.(BESIII) ., et al.., Polarization and entanglement in baryon−antibaryon pair production in electron-positron annihilation, Nature Phys. 15, 631 (2019), arXiv: 1808.08917 [hep-ex]
27 Ablikim M.(BESIII) ., et al.., Precise measurements of decay parameters and CP asymmetry with entangled Λ−Λ ¯ pairs, Phys. Rev. Lett. 129, 131801 (2022), arXiv: 2204.11058 [hep-ex]
28 Ablikim M.(BESIII) ., et al.., Probing CP symmetry and weak phases with entangled double- strange baryons, Nature 606, 64 (2022), arXiv: 2105.11155[hep-ex]
29 Ablikim M.(BESIII) ., et al.., Analysis of D+ → K ¯0 e+νe and D+ → π0e+νe semileptonic decays, Phys. Rev. D 96, 012002 (2017), arXiv: 1703.09084
30 Ablikim M.(BESIII) ., et al.., Study of dynamics of D0 → Ke+νe and D0 → πe+νe decays, Phys. Rev. D 92, 072012 (2015), arXiv: 1508.07560
31 Ablikim M.(BESIII) ., et al.., Determination of the pseudoscalar decay constant fDs+ via Ds+ → µ+νµ, Phys. Rev. Lett. 122, 071802 (2019), arXiv: 1811.10890
32 Ablikim M.(BESIII) ., et al.., Measurement of the Ds+ → +νℓ branching fractions and the decay constant fD+, Phys. Rev. D 94, 072004 (2016), arXiv: 1608.06732
33 Ablikim M.(BESIII) ., et al.., Measurements of absolute hadronic branching fractions of the Λ+ baryon, Phys. Rev. Lett. 116, 052001 (2016), arXiv: 1511.08380
34 L. Workman R., (Particle Data Group) .. et al.. Review of Particle Physics. PTEP, 2022, 2022 : 083C01
https://doi.org/10.1093/ptep/ptac097
35 Ablikim M.(BESIII) ., et al.., Measurement of the DKπ+ strong phase difference in ψ(3770) → D 0 D ¯ 0, Phys. Lett. B 734, 227 (2014), arXiv: 1404.4691
36 Ablikim M.(BESIII) ., et al.., Model-independent determination of the relative strong-phase difference between D 0 and D ¯0 → KS,L0π+π− and its impact on the measurement of the ckm angle γ/ϕ3, Phys. Rev. D 101, 112002 (2020), arXiv: 2003.00091
37 Ablikim M.(BESIII) ., et al.., Improved model-independent determination of the strong-phase difference between D 0 and D ¯0 → KS,L0K+K− decays, Phys. Rev. D 102, 052008 (2020), arXiv: 2007.07959
38 Ablikim M.(BESIII) ., et al.., Measurement of the Cross Section for e+e− →Hadrons at energies from 2.2324 to 3.6710 GeV, Phys. Rev. Lett. 128, 062004 (2022), arXiv: 2112.11728 [hep-ex]
39 Davier M.Hoecker A.Malaescu B.Zhang Z., Reevaluation of the hadronic vacuum polarisation contributions to the standard model predictions of the muon g-2 and α(mz2) using newest hadronic cross-section data, Eur. Phys. J. C 77, 827 (2017), arXiv: 1706.09436
40 Ablikim M.(BESIII) ., et al.., Measurement of the ππ cross section between 600 and 900 mev using initial state radiation, Phys. Lett. B 753, 629 (2016) [Erratum: Phys. Lett. B 812, 135982 (2021)], arXiv: 1507.08188
41 Grange J.(Muon g-2) ., et al.., Muon (g-2) technical design report, FERMILAB-FN-0992-E, FERMILAB-DESIGN-2014–02 (2015–01), arXiv: 1501.06858
42 Abi B.(Muon g-2) ., et al.., Measurement of the positive muon anomalous magnetic moment to 0.46 ppm, Phys. Rev. Lett. 126, 141801 (2021), arXiv: 2104.03281[hep-ex]
43 Mibe (J-PARC g-2) T.. New g-2 experiment at J-PARC. Chin. Phys. C, 2010, 34 : 745
https://doi.org/10.1088/1674-1137/34/6/022
44 Ablikim M.(BESIII) ., et al.., Measurement of proton electromagnetic form factors in e+e− → pp ¯ in the energy region 2.00–3.08 GeV, Phys. Rev. Lett. 124, 042001 (2020), arXiv: 1905.09001
45 Ablikim M.(BESIII) ., et al.., Oscillating features in the electromagnetic structure of the neutron, Nature Phys. 17, 1200 (2021), arXiv: 2103.12486 [hep-ex]
46 Ablikim M.(BESIII) ., et al.., Observation of a cross-section enhancement near mass threshold in e+e− → ΛΛ ¯, Phys. Rev. D 97, 032013 (2018), arXiv: 1709.10236
47 Ablikim M.(BESIII) ., et al.., Complete measurement of the Λ electromagnetic form factors, Phys. Rev. Lett. 123, 122003 (2019), arXiv: 1903.09421
48 Ablikim M.(BESIII) ., et al.., Measurements of Σ+ and Σ− time-like electromagnetic form factors for center-of-mass energies from 2.3864 to 3.0200 GeV, Phys. Lett. B 814, 136110 (2021), arXiv: 2009.01404
49 Ablikim M.(BESIII) ., et al.., Measurement of cross section for e+e− → Ξ− Ξ ¯+ near threshold at BESIII, Phys. Rev. D 103, 012005 (2021), arXiv: 2010.08320
50 Ablikim M.(BESIII) ., et al.., Observation of a resonant structure in e+e− → K+ Kπ0π0, Phys. Rev. Lett. 124, 112001 (2020), arXiv: 2001.04131
51 Ablikim M.(BESIII) ., et al.., Observation of a structure in e+e− → ϕη' at s from 2.05 to 3.08 GeV, Phys. Rev. D 102, 012008 (2020), arXiv: 2003.13064
52 Ablikim M.(BESIII) ., et al.., Measurement of e+e− → K+K− cross section at s = 2.00 ~ −3.08 GeV, Phys. Rev. D 99, 032001 (2019), arXiv: 1811.08742
53 Ablikim M.(BESIII) ., et al.., Cross section measurements of e+e− → K+KK+K− and ϕK+K− at center-of-mass energies from 2.10 to 3.08 GeV, Phys. Rev. D 100, 032009 (2019), arXiv: 1907.06015
54 Ablikim M.(BESIII) ., et al.., Observation of a charged charmoniumlike structure in e+e− → π+πJ/ψ at s = 4.26 GeV, Phys. Rev. Lett. 110, 252001 (2013), arXiv: 1303.5949
55 Ablikim M.(BESIII) ., et al.., Observation of a charged charmoniumlike structure Zc(4020) and search for the Zc(3900) in e+e− → π+πhc, Phys. Rev. Lett. 111, 242001 (2013), arXiv: 1309.1896
56 Ablikim M.(BESIII) ., et al.., Observation of a near-threshold structure in the K+ recoil-mass spectra in e+e− → K+(DsD*0 + Ds*−D0), Phys. Rev. Lett. 126, 102001 (2021), arXiv: 2011.07855
57 Ablikim M.(BESIII) ., et al.., Precise measurement of the e+e− → π+πJ/ψ cross section at center- of-mass energies from 3.77 to 4.60 GeV, Phys. Rev. Lett. 118, 092001 (2017), arXiv: 1611.01317
58 Ablikim M.(BESIII) ., et al.., Observation of e+e− → γX(3872) at BESIII, Phys. Rev. Lett. 112, 092001 (2014), arXiv: 1310.4101
59 J. Marciano W.. The tau decay puzzle. Phys. Rev. D, 1992, 45 : 721
https://doi.org/10.1103/PhysRevD.45.R721
60 Aaij R.(LHCb) ., et al.., Observation of the doubly charmed baryon Ξ cc ++, Phys. Rev. Lett. 119, 112001 (2017), arXiv: 1707.01621
61 P. Peng H., et al.. Physics Potential of a Super tau-Charm Facility, Snowmass2021-Letter of Interest (2021)
62 Luo Q., in: 8th International Particle Accelerator Conference (2017)
63 Biagini M., Super τ/charm project in Italy (2014)
64 Adachi I., E. Browder T., Križan P., Tanaka S., Ushiroda (Belle-II) Y.. Detectors for extreme luminosity: Belle II. Nucl. Instrum. Meth. A, 2018, 907 : 46
https://doi.org/10.1016/j.nima.2018.03.068
65 A. Alves A.. et al.. The LHCB detector at the LHC. JINST, 2008, 3 : S08005
https://doi.org/10.1088/1748-0221/3/08/S08005
66 Altmannshofer W.(Belle II) ., et al.., The Belle II Physics Book, PTEP 2019, 123C01 (2019) [Erratum: PTEP 2020, 029201 (2020)], arXiv: 1808.10567 [hep-ex]
67 Aaij R.(LHCb) ., et al.., Physics case for an LHCB upgrade II − opportunities in flavour physics, and beyond, in the HL-LHC era, LHCB-PUB-2018-009, CERN-LHCC-2018–027 (2018), arXiv: 1808.08865 [hep-ex]
68 Aad G.(ATLAS) ., et al.., Observation of a new particle in the search for the standard model Higgs boson with the atlas detector at the LHC, Phys. Lett. B 716, 1 (2012), arXiv: 1207.7214
69 Chatrchyan S.(CMS) ., et al.., Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716, 30 (2012), arXiv: 1207.7235
70 M. Asner D., et al.., Physics at BES-III, Int. J. Mod. Phys. A 24, S1 (2009), arXiv: 0809.1869 [hep-ex]
71 Ablikim M.(BESIII) ., et al.., Future physics programme of BESIII, Chin. Phys. C 44, 040001 (2020), arXiv: 1912.05983
72 Grossman Y.Passemar E.Schacht S., On the statistical treatment of the Cabibbo angle anomaly, JHEP 07, 068 (2020), arXiv: 1911.07821 [hep-ph]
73 P. Lees J.(BaBar) ., et al.., Search for CP violation in the decay τ− → πKs0(≥0π0)ντ, Phys. Rev. D 85, 031102 (2012) [Erratum: Phys. Rev. D 85, 099904 (2012)], arXiv: 1109.1527 [hep-ex]
74 S. Tsai Y.. Production of polarized τ pairs and tests of CP violation using polarized e± colliders near threshold. Phys. Rev. D, 1995, 51 : 3172
https://doi.org/10.1103/PhysRevD.51.3172
75 Adlarson P.Kupsc A., CP symmetry tests in the cascade−anticascade decay of charmonium, Phys. Rev. D 100, 114005 (2019), arXiv: 1908.03102 [hep-ph]
76 S. Swanson E., The new heavy mesons: A status report, Phys. Rept. 429, 243 (2006), arXiv: hep-ph/0601110
77 B. Voloshin M., Charmonium, Prog. Part. Nucl. Phys. 61, 455 (2008), arXiv: 0711.4556 [hep-ph]
78 Chen H.-X.Chen W.Liu X.Zhu S.-L., The hidden-charm pentaquark and tetraquark states, Phys. Rep. 639, 1 (2016), arXiv: 1601.02092 [hep-ph]
79 Hosaka A.Iijima T.Miyabayashi K.Sakai Y.Yasui S., Exotic hadrons with heavy flavors: X, Y, Z, and related states, PTEP 2016, 062C01 (2016), arXiv: 1603.09229 [hep-ph]
80 F. Lebed R.E. Mitchell R.S. Swanson E., Heavy-quark QCD exotica, Prog. Part. Nucl. Phys. 93, 143 (2017), arXiv: 1610.04528 [hep-ph]
81 Esposito A.Pilloni A.D. Polosa A., Multiquark Resonances, Phys. Rep. 668, 1 (2017), arXiv: 1611.07920 [hep-ph]
82 Guo F.-K.Hanhart C.Meißner U.-G.Wang Q.Zhao Q. Zou B.-S., Hadronic molecules, Rev. Mod. Phys. 90, 015004 (2018) [Erratum: Rev. Mod. Phys. 94, 029901 (2022)], arXiv: 1705.00141 [hep-ph]
83 Ali A.S. Lange J.Stone S., Exotics: Heavy pentaquarks and tetraquarks, Prog. Part. Nucl. Phys. 97, 123 (2017), arXiv: 1706.00610 [hep-ph]
84 L. Olsen S.Skwarnicki T.Zieminska D., Nonstandard heavy mesons and baryons: Experimental evidence, Rev. Mod. Phys. 90, 015003 (2018), arXiv: 1708.04012 [hep-ph]
85 Karliner M.L. Rosner J.Skwarnicki T., Multiquark states, Ann. Rev. Nucl. Part. Sci. 68, 17 (2018), arXiv: 1711.10626 [hep-ph]
86 Yuan C.-Z., The XYZ states revisited, Int. J. Mod. Phys. A 33, 1830018 (2018), arXiv: 1808.01570 [hep-ex]
87 Cerri A., et al.., Report from Working Group 4: Opportunities in flavour physics at the HL-LHC and HE-LHC, CERN Yellow Rep. Monogr. 7, 867 (2019), arXiv: 1812.07638 [hep-ph]
88 Liu Y.-R.Chen H.-X.Chen W.Liu X.Zhu S.-L., Pentaquark and tetraquark states, Prog. Part. Nucl. Phys. 107, 237 (2019), arXiv: 1903.11976 [hep-ph]
89 Brambilla N.Eidelman S.Hanhart C.Nefediev A.Shen C.-P. E. Thomas C.Vairo A.Yuan C.-Z., The XYZ states: Experimental and theoretical status and perspectives, Phys. Rept. 873, 1 (2020), arXiv: 1907.07583 [hep-ex]
90 Guo F.-K.Liu X.-H.Sakai S., Threshold cusps and triangle singularities in hadronic reactions, Prog. Part. Nucl. Phys. 112, 103757 (2020), arXiv: 1912.07030 [hep-ph]
91 Chen H.-X.Chen W.Liu X.Liu Y.-R.Zhu S.-L., An updated review of the new hadron states, Rep. Prog. Phys. 86, 026201 (2023), arXiv: 2204.02649 [hep-ph]
92 Godfrey S., Isgur N.. Mesons in a relativized quark model with chromodynamics. Phys. Rev. D, 1985, 32 : 189
https://doi.org/10.1103/PhysRevD.32.189
93 Ablikim M.(BESIII) ., et al.., Observation of a near-threshold structure in the K+ recoil-mass spectra in e+e- → K+(DsD*0 + Ds*−D0), Phys. Rev. Lett. 126, 102001 (2021), arXiv: 2011.07855 [hep-ex]
94 Aaij R.(LHCb) ., et al.., Observation of new resonances decaying to J/ψK+ and J/ψϕ, Phys. Rev. Lett. 127, 082001 (2021), arXiv: 2103.01803 [hep-ex]
95 Cleven M.Guo F.-K.Hanhart C.Wang Q.Zhao Q., Employing spin symmetry to disentangle different models for the XYZ states, Phys. Rev. D 92, 014005 (2015), arXiv: 1505.01771 [hep-ph]
96 Wang Q.Hanhart C.Zhao Q., Decoding the riddle of Y(4260) and Zc(3900), Phys. Rev. Lett. 111, 132003 (2013), arXiv: 1303.6355 [hep-ph]
97 Pilloni A.Fernandez-Ramirez C.Jackura A. Mathieu V.Mikhasenko M.Nys J.P. Szczepaniak (JPAC) A., Amplitude analysis and the nature of the Zc(3900), Phys. Lett. B 772, 200 (2017), arXiv: 1612.06490 [hep-ph]
98 Yang Z.Cao X.Guo F.-K.Nieves J.P. Valderrama M., Strange molecular partners of the Zc(3900) and Zc(4020), Phys. Rev. D 103, 074029 (2021), arXiv: 2011.08725 [hep-ph]
99 E. Bondar A.Garmash A.I. Milstein A.Mizuk R.B. Voloshin M., Heavy quark spin structure in Zb resonances, Phys. Rev. D 84, 054010 (2011), arXiv: 1105.4473 [hep-ph]
100 Cao Q.-F.Qi H.-R.Wang Y.-F.Zheng H.-Q., Discussions on the line-shape of the X(4660) resonance, Phys. Rev. D 100, 054040 (2019), arXiv: 1906.00356 [hep-ph]
101 Dong X.-K.Guo F.-K.Zou B.-S., A survey of heavy−antiheavy hadronic molecules, Prog. Phys. 41, 65 (2021), arXiv: 2101.01021 [hep-ph]
102 Chao K.-T.Guo F.-K.Zhang Y.-J., Production of J/ψpp ¯ in electron−positron collisions (2023) (in preparation)
103 Ma Y.-Q.Zhang Y.-J.Chao K.-T., QCD Corrections to e+e− → J/ψ + gg at B factories, Phys. Rev. Lett. 102, 162002 (2009), arXiv: 0812.5106 [hep-ph]
104 Shen C.-W.Guo F.-K.Xie J.-J.Zou B.-S., Disentangling the hadronic molecule nature of the Pc(4380) pentaquark-like structure, Nucl. Phys. A 954, 393 (2016), arXiv: 1603.04672 [hep-ph]
105 Zhang Y.-J.Gao Y.-j.Chao K.-T., Next-to-leading-order QCD correction to e+e− → J/ψ + ηc at s = 10.6 GeV, Phys. Rev. Lett. 96, 092001 (2006), arXiv: hep-ph/0506076
106 Zhang Y.-J.Chao K.-T., Double-charm production e+e− → J/ψ + c c ¯ at B factories with next-to-leading-order QCD corrections, Phys. Rev. Lett. 98, 092003 (2007), arXiv: hep-ph/0611086
107 Chao K.-T.. The (cc)−(c ¯c) (diquark−anti-diquark) states in e+e− annihilation. Z. Phys. C, 1981, 7 : 317
https://doi.org/10.1007/BF01431564
108 Karliner M.Nussinov S.L. Rosner J., QQQQ ¯ states: Masses, production, and decays, Phys. Rev. D 95, 034011 (2017), arXiv: 1611.00348 [hep-ph]
109 R. Debastiani V.Aceti F.Liang W.-H. Oset E., Revising the f1(1420) resonance, Phys. Rev. D 95, 034015 (2017), arXiv: 1611.05383 [hep-ph]
110 Wang G.-J.Meng L.Zhu S.-L., Spectrum of the fully-heavy tetraquark state QQQ′ ¯Q′ ¯, Phys. Rev. D 100, 096013 (2019), arXiv: 1907.05177 [hep-ph]
111 N. Anwar M.Ferretti J.Guo F.-K.Santopinto E.Zou B.-S., Spectroscopy and decays of the fully-heavy tetraquarks, Eur. Phys. J. C 78, 647 (2018), arXiv: 1710.02540 [hep-ph]
112 Aaij R.(LHCb) ., et al.., Observation of structure in the J/ψ-pair mass spectrum, Sci. Bull. 65, 1983 (2020), arXiv: 2006.16957 [hep-ex]
113 Liu L.Moir G.Peardon M.M. Ryan S.E. Thomas C.Vilaseca P.J. Dudek J.G. Edwards R.Joo B.G. Richards (Hadron Spectrum) D., Excited and exotic charmonium spectroscopy from lattice QCD, JHEP 07, 126 (2012), arXiv: 1204.5425 [hep-ph]
114 Zhu S.-L., The Possible interpretations of Y(4260), Phys. Lett. B 625, 212 (2005), arXiv: hep-ph/0507025
115 Bhardwaj V.(Belle) ., et al.., Evidence of a new narrow resonance decaying to χc1γ in Bχc1γK, Phys. Rev. Lett. 111, 032001 (2013), arXiv: 1304.3975 [hep-ex]
116 Ablikim M.(BESIII) ., et al.., Observation of the ψ(13 D2) state in e+e− → π+πγχc1 at BESIII, Phys. Rev. Lett. 115, 011803 (2015), arXiv: 1503.08203 [hep-ex]
117 Yang Y.-B.Chen Y.Gui L.-C.Liu C.Liu Y.-B. Liu Z.Ma J.-P.Zhang (CLQCD) J.-B., Lattice study on ηc2 and X(3872), Phys. Rev. D 87, 014501 (2013), arXiv: 1206.2086 [hep-lat]
118 Li H.-B.Lyu X.-R., Study of the standard model with weak decays of charmed hadrons at BESIII, Natl. Sci. Rev. 8, nwab181 (2021), arXiv: 2103.00908 [hep-ex]
119 Bazavov A., et al.., B- and D-meson leptonic decay constants from four-flavor lattice QCD, Phys. Rev. D 98, 074512 (2018), arXiv: 1712.09262 [hep-lat]
120 Ablikim M.(BESIII) ., et al.., Precision measurements of B(D+ → µ+νµ), the pseudoscalar decay constant fD+, and the quark mixing matrix element |Vcd|, Phys. Rev. D 89, 051104 (2014), arXiv: 1312.0374 [hep-ex]
121 Ablikim M.(BESIII) ., et al.., Observation of the leptonic decay D+ → τ+ντ, Phys. Rev. Lett. 123, 211802 (2019), arXiv: 1908.08877 [hep-ex]
122 Ablikim M.(BESIII Collaboration) ., et al.., Measurement of the absolute branching fractions for purely leptonic Ds+ decays, Phys. Rev. D 104, 052009 (2021), arXiv: 2102.11734 [hep-ex]
123 S. Amhis Y.(Heavy Flavor Averaging Group .HFLAV), et al.., Averages of b-hadron, c-hadron, and τ-lepton properties as of 2021, Phys. Rev. D 107, 052008 (2023), arXiv: 2206.07501 [hep-ex]
124 Ablikim M.(BESIII) ., et al.., Measurement of the absolute branching fraction of Ds+ → τ+ντ via τ+ → e+νeν ¯τ, Phys. Rev. Lett. 127, 171801 (2021), arXiv: 2106.02218 [hep-ex]
125 Ablikim M.(BESIII) ., et al.., Determination of the pseudoscalar decay constant f Ds+ via Ds+ → µ+νµ, Phys. Rev. Lett. 122, 071802 (2019), arXiv: 1811.10890 [hep-ex]
126 Liu J.Shi X.Li H.Zhou X.Zheng B., Prospects of CKM elements |Vcs| and decay constant f Ds + in D s+ → µ+νµ decay at STCF, Eur. Phys. J. C 82, 337 (2022), arXiv: 2109.14969 [hep-ex]
127 Li H.Luo T. Shi X.Zhou X., Feasibility study of D s+ → τ+ντ decay and test of lepton flavor universality with leptonic Ds+ decays at STCF, Eur. Phys. J. C 82, 310 (2022), arXiv: 2110.08864 [hep-ex]
128 Charles J.Hocker A.Lacker H.Laplace S.R. Le Diberder F.Malcles J.Ocariz J.Pivk M. Roos (CKMfitter Group) L., CP violation and the CKM matrix: Assessing the impact of the asymmetric B factories, Eur. Phys. J. C 41, 1 (2005), arXiv: hep-ph/0406184
129 CKMfitter Group, URL: ckmfitter.in2p3.fr/ (2022)
130 Bona M.(UTfit) ., et al.., The 2004 UTfit collaboration report on the status of the unitarity triangle in the standard model, JHEP 07, 028 (2005), arXiv: hep-ph/0501199
131 UTfit Collaboration, URL: utfit.org/UTfit/WebHome (2022)
132 Belanger G., Q. Geng C.. T-violating muon polarization in Kμ3 decays. Phys. Rev. D, 1991, 44 : 2789
https://doi.org/10.1103/PhysRevD.44.2789
133 Grossman Y., Beyond the standard model with B and K physics, Int. J. Mod. Phys. A 19, 907 (2004), arXiv: hep-ph/0310229
134 Wang W.Yu F.-S.Zhao Z.-X., Novel method to reliably determine the photon helicity in BK1γ, Phys. Rev. Lett. 125, 051802 (2020), arXiv: 1909.13083 [hep-ph]
135 Fajfer S.Nisandzic I.Rojec U., Discerning new physics in charm meson leptonic and semileptonic decays, Phys. Rev. D 91, 094009 (2015), arXiv: 1502.07488 [hep-ph]
136 Ablikim M.(BESIII) ., et al.., Measurement of the branching fraction for the semileptonic decay D0(+) → π−(0)µ+νµ and test of lepton flavor universality, Phys. Rev. Lett. 121, 171803 (2018), arXiv: 1802.05492 [hep-ex]
137 Ablikim M.(BESIII) ., et al.., Study of the D0 → Kµ+νµ dynamics and test of lepton flavor universality with D0 → K+νℓ decays, Phys. Rev. Lett. 122, 011804 (2019), arXiv: 1810.03127 [hep-ex]
138 F. Falk A.Grossman Y.Ligeti Z.Nir Y.A. Petrov A., D0−D0 mass difference from a dispersion relation, Phys. Rev. D 69, 114021 (2004), arXiv: hep-ph/0402204
139 T. D’Agnolo R.Grosso G.Pierini M. Wulzer A.Zanetti M., Learning multivariate new physics, Eur. Phys. J. C 81, 89 (2021), arXiv: 1912.12155 [hep-ph]
140 HFLAV Collaboration, URL: hflav.web.cern.ch/ (2022)
141 O’Leary B.(SuperB) ., et al.., SuperB progress reports−Physics, arXiv: 1008.1541 [hep-ex] (2010)
142 Xing Z.-Z.. An overview of D0 anti-D0 mixing and CP violation. Chin. Phys. C, 2008, 32 : 483
https://doi.org/10.1088/1674-1137/32/6/015
143 Xing Z.-Z., D 0−D ¯0 mixing and CP violation in neutral D-meson decays, Phys. Rev. D 55, 196 (1997), arXiv: hep-ph/9606422
144 Xing Z.-Z., Effect of K0−anti-K0 mixing on CP asymmetries in weak decays of D and B mesons, Phys. Lett. B 353, 313 (1995), [Erratum: Phys. Lett. B 363, 266 (1995)], arXiv: hep-ph/9505272
145 Yu F.-S.Wang D.Li H.-N., CP asymmetries in charm decays into neutral kaons, Phys. Rev. Lett. 119, 181802 (2017), arXiv: 1707.09297 [hep-ph]
146 Aaij R.(LHCb) ., et al.., Observation of CP violation in charm decays, Phys. Rev. Lett. 122, 211803 (2019), arXiv: 1903.08726 [hep-ex]
147 Saur M.Yu F.-S., Charm CPV: Observation and prospects, Sci. Bull. 65, 1428 (2020), arXiv: 2002.12088[hep-ex]
148 Cheng H.-Y.Chiang C.-W., Direct CP violation in two-body hadronic charmed meson decays, Phys. Rev. D 85, 034036 (2012) [Erratum: Phys. Rev. D 85, 079903 (2012)], arXiv: 1201.0785 [hep-ph]
149 Li H.-N.Lu C.-D.Yu F.-S., Branching ratios and direct CP asymmetries in DPP decays, Phys. Rev. D 86, 036012 (2012), arXiv: 1203.3120 [hep-ph]
150 Pirtskhalava D.Uttayarat P., CP violation and flavor SU(3) breaking in D-meson decays, Phys. Lett. B 712, 81 (2012), arXiv: 1112.5451 [hep-ph]
151 Gronau M., High order U-spin breaking: A precise amplitude relation in D0 decays, Phys. Lett. B 730, 221 (2014) [Addendum: Phys. Lett. B 735, 282 (2014)], arXiv: 1311.1434 [hep-ph]
152 Buccella F.Lusignoli M.Pugliese A.Santorelli P., CP violation in D meson decays: Would it be a sign of new physics? Phys. Rev. D 88, 074011 (2013), arXiv: 1305.7343[hep-ph]
153 Buccella F.Paul A.Santorelli P., SU(3)F breaking through final state interactions and CP asymmetries in DPP decays, Phys. Rev. D 99, 113001 (2019), arXiv: 1902.05564 [hep-ph]
154 Li H.-N.Lü C.-D.Yu F.-S., Implications on the first observation of charm CPV at LHCb, arXiv: 1903.10638 (2019)
155 Grossman Y.Schacht S., The emergence of the ΔU = 0 rule in charm physics, JHEP 07, 020 (2019), arXiv: 1903.10952 [hep-ph]
156 I. Bigi I.Paul A., On CP asymmetries in two-, three- and four-body D decays, JHEP 03, 021 (2012), arXiv: 1110.2862 [hep-ph]
157 E. Morrissey D.J. Ramsey-Musolf M. Electroweak baryogenesis, New J. Phys. 14, 125003 (2012), arXiv: 1206.2942 [hep-ph]
158 Bondar A.Poluektov A.Vorobiev V., Charm mixing in a model-independent analysis of correlated D 0 D ¯ 0 decays, Phys. Rev. D 82, 034033 (2010), arXiv: 1004.2350 [hep-ph]
159 Atwood D.A. Petrov A., Lifetime differences in heavy mesons with time independent measurements, Phys. Rev. D 71, 054032 (2005), arXiv: hep-ph/0207165
160 Shi Y.Yang J., Time reversal symmetry violation in entangled pseudoscalar neutral charmed mesons, Phys. Rev. D 98, 075019 (2018), arXiv: 1612.07628 [hep-ph]
161 A. Kostelecky V., Formalism for CPT, T, and Lorentz violation in neutral meson oscillations, Phys. Rev. D 64, 076001 (2001), arXiv: hep-ph/0104120
162 (LHCb), Simultaneous determination of the CKM angle γ and parameters related to mixing and CP violation in the charm sector, LHCb-CONF-2022-003, CERN-LHCb-CONF-2022-003, CERN-LHCb-CONF-2022-002 (2022)
163 Gronau M., London D.. How to determine all the angles of the unitarity triangle from B d0 → DKs and B s0 → D0. Phys. Lett. B, 1991, 253 : 483
https://doi.org/10.1016/0370-2693(91)91756-L
164 Gronau M., Wyler D.. On determining a weak phase from CP asymmetries in charged B decays. Phys. Lett. B, 1991, 265 : 172
165 Atwood D.Dunietz I.Soni A., Enhanced CP violation with B → K D0(D ¯0) modes and extraction of the Cabibbo−Kobayashi−Maskawa angle γ, Phys. Rev. Lett. 78, 3257 (1997), arXiv: hep-ph/9612433
166 Atwood D.Dunietz I.Soni A., Improved methods for observing CP violation in B±→ KD and measuring the CKM phase γ, Phys. Rev. D 63, 036005 (2001), arXiv: hep-ph/0008090
167 Giri A.Grossman Y.Soffer A.Zupan J., Determining γ using B±→ DK± with multibody D decays, Phys. Rev. D 68, 054018 (2003), arXiv: hep-ph/0303187
168 Ablikim M.(BESIII) ., et al.., Future physics programme of BESIII, Chin. Phys. C 44, 040001 (2020), arXiv: 1912.05983 [hep-ex]
169 Burdman G.Shipsey I., D 0−D ¯0 mixing and rare charm decays, Ann. Rev. Nucl. Part. Sci. 53, 431 (2003), arXiv: hep-ph/0310076
170 Golowich E.Hewett J.Pakvasa S.A. Petrov A., Relating D 0−D ¯0 mixing and D0 → l+l− with new physics, Phys. Rev. D 79, 114030 (2009), arXiv: 0903.2830 [hep-ph]
171 Ablikim M.(BESIII) ., et al.., Search for the rare decays Dh(h('))e+e−, Phys. Rev. D 97, 072015 (2018), arXiv: 1802.09752 [hep-ex]
172 Ablikim M.(BESIII) ., et al.., Search for the decay D0 → π0νν ¯, Phys. Rev. D 105, L071102 (2022), arXiv: 2112.14236 [hep-ex]
173 Chen H.-X.Chen W.Liu X.Liu Y.-R.Zhu S.-L., A review of the open charm and open bottom systems, Rep. Prog. Phys. 80, 076201 (2017), arXiv: 1609.08928 [hep-ph]
174 Kato Y.Iijima T., Open charm hadron spectroscopy at B-factories, Prog. Part. Nucl. Phys. 105, 61 (2019), arXiv: 1810.03748 [hep-ex]
175 Zupanc A.(Belle) ., et al.., Measurement of the branching fraction B(Λc+ → pK−π+), Phys. Rev. Lett. 113, 042002 (2014), arXiv: 1312.7826 [hep-ex]
176 Ablikim M.(BESIII) ., et al.., Measurements of absolute hadronic branching fractions of the Λc+ baryon, Phys. Rev. Lett. 116, 052001 (2016), arXiv: 1511.08380 [hep-ex]
177 B. Yang S.(Belle) ., et al.., First observation of the doubly Cabibbo-suppressed decay of a charmed baryon: Λc + → pK+π−, Phys. Rev. Lett. 117, 011801 (2016), arXiv: 1512.07366[hep-ex]
178 M. Sirunyan A.(CMS) ., et al.., Measurement of inclusive very forward jet cross sections in proton-lead collisions at sNN = 5.02 TeV, JHEP 05, 043 (2019), arXiv: 1812.01691 [hep-ex]
179 Ablikim M.(BESIII) ., et al.., Partial wave analysis of the charmed baryon hadronic decay Λc + → Λπ+π0, JHEP 12, 033 (2022), arXiv: 2209.08464 [hep-ex]
180 Bishai M.(CLEO) ., et al.., Measurement of the decay asymmetry parameters in Λc + → Λπ+ and Λc + → Σ+π0, Phys. Lett. B 350, 256 (1995), arXiv: hep-ex/9502004
181 Cheng H.-Y.Tseng B., Cabibbo allowed nonleptonic weak decays of charmed baryons, Phys. Rev. D 48, 4188 (1993), arXiv: hep-ph/9304286
182 K. Sharma K.C. Verma R., A study of weak mesonic decays of Λc and Ξc baryons on the basis of HQET results, Eur. Phys. J. C 7, 217 (1999), arXiv: hep-ph/9803302
183 Zenczykowski P., Quark and pole models of nonleptonic decays of charmed baryons, Phys. Rev. D 50, 402 (1994), arXiv: hep-ph/9309265
184 Datta A., Nonleptonic two-body decays of charmed and Lambda(b) baryons, arXiv: hep-ph/9504428 (1995)
185 Ablikim M.(BESIII) ., et al.., Measurements of weak decay asymmetries of Λc + → pKs0, Λπ+, Σ+π0, and Σ0π+, Phys. Rev. D 100, 072004 (2019), arXiv: 1905.04707 [hep-ex]
186 K. Li L.(Belle) ., et al.., Search for CP violation and measurement of branching fractions and decay asymmetry parameters for Λc + → Λh+ and Λc + → Σ0h+ (h = K, π), Sci. Bull. 68, 583 (2023), arXiv: 2208.08695 [hep-ex]
187 B. Li Y.(Belle) ., et al.., First measurements of absolute branching fractions of the Ξc 0 baryon at Belle, Phys. Rev. Lett. 122, 082001 (2019), arXiv: 1811.09738 [hep-ex]
188 B. Li Y.(Belle) ., et al.., First measurements of absolute branching fractions of the Ξc + baryon at Belle, Phys. Rev. D 100, 031101 (2019), arXiv: 1904.12093 [hep-ex]
189 Dhir R.S. Kim C., Axial-vector emitting weak nonleptonic decays of Ωc0 baryon, Phys. Rev. D 91, 114008 (2015), arXiv: 1501.04259 [hep-ph]
190 Cheng H.-Y., Cheung C.-Y., Lin G.-L., C. Lin Y., Yan T.-M., Yu H.-L.. Heavy flavor conserving nonleptonic weak decays of heavy baryons. Phys. Rev. D, 1992, 46 : 5060
191 Aaij R.(LHCb) ., et al.., First branching fraction measurement of the suppressed decay Ξc 0 → π−Λc +, Phys. Rev. D 102, 071101 (2020), arXiv: 2007.12096 [hep-ex]
192 S. Tang S.(Belle) ., et al.., Measurement of the branching fraction of Ξc 0→Λc +π− at Belle, Phys. Rev. D 107, 032005 (2023), arXiv: 2206.08527 [hep-ex]
193 Niu P.-Y.Wang Q.Zhao Q., Study of heavy quark conserving weak decays in the quark model, Phys. Lett. B 826, 136916 (2022), arXiv: 2111.14111 [hep-ph]
194 Cheng H.-Y.Xu F., Heavy-flavor-conserving hadronic weak decays of charmed and bottom baryons, Phys. Rev. D 105, 094011 (2022), arXiv: 2204.03149 [hep-ph]
195 Cheng H.-Y.Liu C.-W.Xu F., Heavy-flavor-conserving hadronic weak decays of charmed and bottom baryons: An update, Phys. Rev. D 106, 093005 (2022), arXiv: 2209.00257 [hep-ph]
196 Perez-Marcial R.Huerta R.Garcia A. Avila-Aoki M., Predictions for semileptonic decays of charm baryons. 2. Nonrelativistic and MIT bag quark models, Phys. Rev. D 40, 2955 (1989) [Erratum: Phys. Rev. D 44, 2203 (1991)]
197 L. Singleton R.. Semileptonic baryon decays with a heavy quark. Phys. Rev. D, 1991, 43 : 2939
https://doi.org/10.1103/PhysRevD.43.2939
198 Cheng H.-Y.Tseng B., 1/M corrections to baryonic form-factors in the quark model, Phys. Rev. D 53, 1457 (1996) [Erratum: Phys. Rev. D 55, 1697 (1997)], arXiv: hep-ph/9502391
199 Pervin M.Roberts W.Capstick S., Semileptonic decays of heavy lambda baryons in a quark model, Phys. Rev. C 72, 035201 (2005), arXiv: nucl-th/0503030
200 A. Ivanov M.E. Lyubovitskij V.G. Korner J.Kroll P., Heavy baryon transitions in a relativistic three quark model, Phys. Rev. D 56, 348 (1997), arXiv: hep-ph/9612463
201 Gutsche T.A. Ivanov M.G. Körner J.E. Lyubovitskij V.Santorelli P., Heavy-to-light semileptonic decays of Λb and Λc baryons in the covariant confined quark model, Phys. Rev. D 90, 114033 (2014) [Erratum: Phys. Rev. D 94, 059902 (2016)], arXiv: 1410.6043 [hep-ph]
202 N. Faustov R.O. Galkin V., Semileptonic decays of Λc baryons in the relativistic quark model, Eur. Phys. J. C 76, 628 (2016), arXiv: 1610.00957 [hep-ph]
203 W. Luo C.. Heavy to light baryon weak form-factors in the light cone constituent quark model. Eur. Phys. J. C, 1998, 1 : 235
204 S. Marques de Carvalho R.S. Navarra F.Nielsen M. Ferreira E.G. Dosch H., Form-factors and decay rates for heavy lambda semileptonic decays from QCD sum rules, Phys. Rev. D 60, 034009 (1999), arXiv: hep-ph/9903326
205 Huang M.-Q.Wang D.-W., Semileptonic decay Λc → Λl+ν from QCD light-cone sum rules, arXiv: hep-ph/0608170 (2006)
206 Azizi K.Sarac Y.Sundu H., Light cone QCD sum rules study of the semileptonic heavy ΞQ and ΞQ' transitions to Ξ and Σ baryons, Eur. Phys. J. A 48, 2 (2012), arXiv: 1107.5925 [hep-ph]
207 Meinel S., Λc → Λl+νl form factors and decay rates from lattice QCD with physical quark masses, Phys. Rev. Lett. 118, 082001 (2017), arXiv: 1611.09696 [hep-lat]
208 Meinel S., ΛcN form factors from lattice QCD and phenomenology of Λcnℓ+νℓ and Λc+µ− decays, Phys. Rev. D 97, 034511 (2018), arXiv: 1712.05783 [hep-lat]
209 Ablikim M.(BESIII) ., et al.., Measurement of the absolute branching fraction for Λc + → Λe+νe, Phys. Rev. Lett. 115, 221805 (2015), arXiv: 1510.02610 [hep-ex]
210 Cheng H.-Y., Remarks on the strong coupling constants in heavy hadron chiral Lagrangians, Phys. Lett. B 399, 281 (1997), arXiv: hep-ph/9701234
211 Cheng H.-Y.Cheung C.-Y.Lin G.-L.C. Lin Y.Yan T.-M. Yu H.-L., Chiral Lagrangians for radiative decays of heavy hadrons, Phys. Rev. D 47, 1030 (1993), arXiv: hep-ph/9209262
212 Jiang N.Chen X.-L.Zhu S.-L., Electromagnetic decays of the charmed and bottom baryons in chiral perturbation theory, Phys. Rev. D 92, 054017 (2015), arXiv: 1505.02999 [hep-ph]
213 Wang G.-J.Meng L.Zhu S.-L., Radiative decays of the singly heavy baryons in chiral perturbation theory, Phys. Rev. D 99, 034021 (2019), arXiv: 1811.06208 [hep-ph]
214 Yelton J.(Belle) ., et al.., Study of electromagnetic decays of orbitally excited Ξc baryons, Phys. Rev. D 102, 071103 (2020), arXiv: 2009.03951 [hep-ex]
215 Li Y.(Belle) ., et al.., First search for the weak radiative decays Λc+→Σ+γ and Ξc0 →Ξ0γ, Phys. Rev. D 107, 032001 (2023), arXiv: 2206.12517 [hep-ex]
216 Ablikim M.(BESIII) ., et al.., Search for the weak radiative decay Λc + → Σ+γ at BESIII, arXiv: 2212.07214 (2022)
217 Bondar A.Grabovsky A.Reznichenko A.Rudenko A.Vorobyev V., Measurement of the weak mixing angle at a super charm-tau factory with data-driven monitoring of the average electron beam polarization, JHEP 03, 076 (2020), arXiv: 1912.09760 [hep-ph]
218 Aaij R.(LHCb) ., et al.., A measurement of the CP asymmetry difference in Λc + → pKK+ and pπ−π+ decays, JHEP 03, 182 (2018), arXiv: 1712.07051[hep-ex]
219 I. Bigi I., Probing CP asymmetries in charm baryons decays, arXiv: 1206.4554 (2012)
220 Shi X.-D.Kang X.-W.Bigi I.Wang W.-P.Peng H.-P., Prospects for CP and P violation in Λc + decays at super tau charm facility, Phys. Rev. D 100, 113002 (2019), arXiv: 1904.12415 [hep-ph]
221 Aubert B.(BaBar) ., et al.., Observation of a charmed baryon decaying to D0p at a mass near 2.94 GeV/c2, Phys. Rev. Lett. 98, 012001 (2007), arXiv: hep-ex/0603052
222 Cheng H.-Y.. Charmed baryons circa 2015. Front. Phys. (Beijing), 2015, 10 : 101406
https://doi.org/10.1007/s11467-015-0483-z
223 Aaij R.(LHCb) ., et al.., Study of the D0p amplitude in Λb0 → D0pπ− decays, JHEP 05, 030 (2017), arXiv: 1701.07873 [hep-ex]
224 Cheng H.-Y.Chiang C.-W., Quantum numbers of Ωc states and other charmed baryons, Phys. Rev. D 95, 094018 (2017), arXiv: 1704.00396 [hep-ph]
225 Luo S.-Q.Chen B.Liu Z.-W.Liu X., Resolving the low mass puzzle of Λc(2940)+, Eur. Phys. J. C 80, 301 (2020), arXiv: 1910.14545[hep-ph]
226 Aaij R.(LHCb) ., et al.., Observation of five new narrow Ωc 0 states decaying to Ξc + K−, Phys. Rev. Lett. 118, 182001 (2017), arXiv: 1703.04639 [hep-ex]
227 Yelton J.(Belle) ., et al.., Observation of excited Ωc charmed baryons in e+e− collisions, Phys. Rev. D 97, 051102 (2018), arXiv: 1711.07927 [hep-ex]
228 (LHCb), Observation of new Ωc0 states decaying to the Ξc+K− final state, arXiv: 2302.04733 (2023)
229 Li W.-D., Mao Y.-J., Wang Y.-F.. The BES-III detector and offline software. Int. J. Mod. Phys. A, 2009, 24S1 : 9
230 d’Enterria D.Shao H.-S., Prospects for ditauonium discovery at colliders, arXiv: 2302.07365 [hep-ph] (2023)
231 Davoudiasl H.J. Marciano W., Tale of two anomalies, Phys. Rev. D 98, 075011 (2018), arXiv: 1806.10252 [hep-ph]
232 Abi B.(Muon g-2) ., et al.., Measurement of the positive muon anomalous magnetic moment to 0.46 ppm, Phys. Rev. Lett. 126, 141801 (2021), arXiv: 2104.03281 [hep-ex]
233 Eidelman S.Passera M., Theory of the tau lepton anomalous magnetic moment, Mod. Phys. Lett. A22, 159 (2007), arXiv: hep-ph/0701260 [hep-ph]
234 Abdallah J.(DELPHI) ., et al.., Study of tau-pair production in photon−photon collisions at LEP and limits on the anomalous electromagnetic moments of the tau lepton, Eur. Phys. J. C 35, 159 (2004), arXiv: hep-ex/0406010
235 Chen X.Wu Y., Search for the electric dipole moment and anomalous magnetic moment of the tau lepton at tau factories, JHEP 10, 089 (2019), arXiv: 1803.00501 [hep-ph]
236 Bernabeu J.A. Gonzalez-Sprinberg G.Papavassiliou J.Vidal J., Tau anomalous magnetic moment form-factor at super B/flavor factories, Nucl. Phys. B 790, 160 (2008), arXiv: 0707.2496[hep-ph]
237 Eidelman S.Epifanov D.Fael M.Mercolli L.Passera M., τ dipole moments via radiative leptonic τ decays, JHEP 03, 140 (2016), arXiv: 1601.07987 [hep-ph]
238 Pich A., Precision Tau Physics, Prog. Part. Nucl. Phys. 75, 41 (2014), arXiv: 1310.7922 [hep-ph]
239 Amhis Y.(HFLAV) ., et al.., Averages of B-hadron, C-hadron, and tau-lepton properties as of early 2012, arXiv: 1207.1158 (2012)
240 B. Arbuzov A.V. Kopylova T., Michel parameters in radiative muon decay, JHEP 09, 109 (2016), arXiv: 1605.06612 [hep-ph]
241 P. Lees J.(BaBar) ., et al.., Measurement of the branching fractions of the radiative leptonic τ decays τ → νν ¯ and τ → µγνν ¯ at BABAR, Phys. Rev. D 91, 051103 (2015), arXiv: 1502.01784 [hep-ex]
242 Shimizu N.(Belle) ., et al.., Measurement of the tau Michel parameters η ¯ and ξκ in the radiative leptonic decay τ− → ντν ¯γ, PTEP 2018, 023C01 (2018), arXiv: 1709.08833 [hep-ex]
243 G. López Castro , P. Roig. A. Flores-Tlalpa, Five-body leptonic decays of muon and tau leptons, JHEP 04, 185 (2016), arXiv: 1508.01822 [hep-ph]
244 Braaten E., Narison S., Pich A.. QCD analysis of the tau hadronic width. Nucl. Phys. B, 1992, 373 : 581
https://doi.org/10.1016/0550-3213(92)90267-F
245 Boito D., Golterman M., Jamin M., Mahdavi A., Maltman K., Osborne J., Peris S.. Updated determination of αs from τ decays. Phys. Rev. D, 2012, 85 : 093015
https://doi.org/10.1103/PhysRevD.85.093015
246 Beneke M.Boito D.Jamin M., Perturbative expansion of τ hadronic spectral function moments and αs extractions, JHEP 01, 125 (2013), arXiv: 1210.8038 [hep-ph]
247 I. Bigi I.I. Sanda A., A “Known” CP asymmetry in tau decays, Phys. Lett. B 625, 47 (2005), arXiv: hep-ph/0506037
248 Grossman Y.Nir Y., CP violation in τ±→ π±KS ν and D±→ π±KS: The importance of KSKL interference, JHEP 04, 002 (2012), arXiv: 1110.3790 [hep-ph]
249 Bischofberger M.(Belle) ., et al.., Search for CP violation in τ → Ks0 πντ decays at Belle, Phys. Rev. Lett. 107, 131801 (2011), arXiv: 1101.0349 [hep-ex]
250 Sang H.Shi X.Zhou X.Kang X.Liu J., Feasibility study of CP violation in τ → KS πντ decays at the Super Tau Charm Facility, Chin. Phys. C 45, 053003 (2021), arXiv: 2012.06241 [hep-ex]
251 Chen F.-Z.Li X.-Q.Yang Y.-D., CP asymmetry in the angular distribution of τ → KS πντ decays, JHEP 05, 151 (2020), arXiv: 2003.05735 [hep-ph]
252 Bernreuther W.Nachtmann O., CP violating correlations in electron positron annihilation into τ leptons, Phys. Rev. Lett. 63, 2787 (1989) [Erratum: Phys. Rev. Lett. 64, 1072 (1990)]
253 E. Ralph S., Capasso F., J. Malik R.. New photorefractive effect in graded-gap superlattices. Phys. Rev. Lett., 1990, 64 : 1072
https://doi.org/10.1103/PhysRevLett.64.1072
254 Inami K.(Belle) ., et al.., Search for the electric dipole moment of the tau lepton, Phys. Lett. B 551, 16 (2003), arXiv: hep-ex/0210066
255 Bernabeu J.A. Gonzalez-Sprinberg G.Vidal J., CP violation and electric-dipole-moment at low energy tau production with polarized electrons, Nucl. Phys. B 763, 283 (2007), arXiv: hep-ph/0610135
256 S. Tsai Y., Production of polarized tau pairs and tests of CP violation using polarized e+− colliders near threshold, Phys. Rev. D 51, 3172 (1995), arXiv: hep-ph/9410265
257 R. Zhou X., Tau LFV decays: Super Tau Charm Factory, URL: indico.fnal.gov/event/44457/ (2020)
258 V. Bobrov A.E. Bondar A., Search for τ → µ + γ decay at Super c−τ factory, Nucl. Phys. B Proc. Suppl. 225–227, 195 (2012), arXiv: 1206.1909 [hep-ex]
259 Xiang T.Shi X.-D.Wang D.-Y.Zhou X.-R., Sensitivity study of the charged lepton flavor violating process τ → γµ at STCF, (2023), arXiv: 2305.00483 [hep-ex]
260 Z. Bai (BES) J.. Measurement of the total cross section for hadronic production by e+e− annihilation at energies between 2.6–5 GeV. Phys. Rev. Lett., 2000, 84 : 594
261 Z. Bai J.(BES) ., et al.., Measurements of the cross-section for e+e− → hadrons at center-of-mass energies from 2-GeV to 5-GeV, Phys. Rev. Lett. 88, 101802 (2002), arXiv: hep-ex/0102003
262 V. Anashin V.(KEDR) ., et al.., Precise measurement of Ruds and R between 1.84 and 3.72 GeV at the KEDR detector, Phys. Lett. B 788, 42 (2019), arXiv: 1805.06235 [hep-ex]
263 Baak M.Kogler R., in: 48th Rencontres de Moriond on Electroweak Interactions and Unified Theories (2013), pp 349–358, arXiv: 1306.0571 [hep-ph]
264 Abi B.(Muon g-2) ., et al.., Measurement of the positive muon anomalous magnetic moment to 0.46 ppm, Phys. Rev. Lett. 126, 141801 (2021), arXiv: 2104.03281 [hep-ex]
265 Sterman G., Smith J., C. Collins J., Whitmore J., Brock R., Huston J., Pumplin J., Tung W.-K., Weerts H., Yuan C.-P., Kuhlmann S., Mishra S., G. Morfín J., Olness F., Owens J., Qiu J., E. Soper D.. Handbook of perturbative QCD. Rev. Mod. Phys., 1995, 67 : 157
266 C. Collins J.E. Soper D., Back-to-back jets in QCD, Nucl. Phys. B 193, 381 (1981) [Erratum: Nucl. Phys. B 213, 545 (1983)]
267 Pitonyak D., Schlegel M., Metz A.. Polarized hadron pair production from electron−positron annihilation. Phys. Rev. D, 2014, 89 : 054032
https://doi.org/10.1103/PhysRevD.89.054032
268 Collins J.. Fragmentation of transversely polarized quarks probed in transverse momentum distributions. Nucl. Phys. B, 1993, 396 : 161
269 Seidl R.(Belle) ., et al.., Measurement of azimuthal asymmetries in inclusive production of hadron pairs in e+e− annihilation at s = 10.58-GeV, Phys. Rev. D 78, 032011 (2008) [Erratum: Phys. Rev. D 86, 039905 (2012)], arXiv: 0805.2975[hep-ex]
270 Sun P., Yuan F.. Energy evolution for the Sivers asymmetries in hard processes. Phys. Rev. D, 2013, 88 : 034016
https://doi.org/10.1103/PhysRevD.88.034016
271 Collaboration B.Z. Bai J.Ban Y. G. Bian J., Observation of a near-threshold enhancement in th pp ¯ mass spectrum from radiative J/ψ-γpp ¯ p ¯ decays, Phys. Rev. Lett. 91, 022001 (2003), arXiv: hep-ex/0303006 [hep-ex]
272 E. A. Aubert (BABAR) B., Study of e+e− → ΛΛ ¯, ΛΣ ¯0 Σ0 Σ ¯ 0 using initial state radiation with BABAR, Phys. Rev. D 76, 092006 (2007).
273 E. A. Pakhlov (Belle) P.. Measurement of the e+e− → J/ψc c ¯ cross section at s ≈ 10.6 GeV. Phys. Rev. D, 2009, 79 : 071101
274 Ma Y.-Q.Zhang Y.-J.Chao K.-T., QCD corrections to e+e− → J/ψgg at B factories, Phys. Rev. Lett. 102, 162002 (2008), arXiv: 0812.5106 [hep-ph]
275 Zhang Y.-J., Ma Y.-Q., Wang K., Chao K.-T.. QCD radiative correction to color-octet J/ψ inclusive production at B factories. Phys. Rev. D, 2010, 81 : 034015
https://doi.org/10.1103/PhysRevD.81.034015
276 Gong B.Wang J.-X., Next-to-leading-order QCD corrections to e+e− → J/ψ gg at the B factories, Phys. Rev. Lett. 102, 162003 (2009), arXiv: 0901.0117 [hep-ph]
277 Gong B., Wang J.-X.. Next-to-leading-order QCD corrections to e+e− → J/ψcc ¯ at the B factories. Phys. Rev. D, 2009, 80 : 054015
278 Brambilla N., et al.., Heavy quarkonium: progress, puzzles, and opportunities, Euro. Phys. J. C 71, 1534 (2011)
279 B. Collaboration T.Abe K., Observation of double cc ¯ Production in e+e− annihilation at s = 10.6 GeV, Phys. Rev. Lett. 89, 142001 (2002), arXiv: hep-ex/0205104 [hep-ex]
280 Feng F.Jia Y.Mo Z.Sang W.-L.Zhang J.-Y., Next-to-next-to-leading-order QCD corrections to e+e− → J/ψ + ηc at B factories, arXiv: 1901.08447 (2019)
281 Zhang Y.-J.Gao Y.-J.Chao K.-T., Next-to-leading order QCD correction to e+e− → J/ψ + ηc at s = 10.6-GeV, Phys. Rev. Lett. 96, 092001 (2006), arXiv: hep-ph/0506076
282 Zhang Y.-J., Chao K.-T.. Double-charm production e+e− → J/ψ + cc ¯ at B factories with next-to-leading-order QCD corrections. Phys. Rev. Lett., 2007, 98 : 092003
283 Brambilla N., et al.., QCD and strongly coupled gauge theories: Challenges and perspectives, Eur. Phys. J. C 74, 2981 (2014), arXiv: 1404.3723 [hep-ph]
284 A. Meyer C., Van Haarlem Y.. Status of exotic-quantum-number mesons. Phys. Rev. C, 2010, 82 : 025208
285 Crede V.A. Meyer C., The Experimental Status of Glueballs, Prog. Part. Nucl. Phys. 63, 74 (2008), arXiv: 0812.0600 [hep-ex]
286 Klempt E., Zaitsev A.. Glueballs, hybrids, multiquarks: Experimental facts versus QCD inspired concepts. Phys. Rep., 2007, 454 : 1
287 Amsler C., A. Törnqvist N.. Mesons beyond the naive quark model. Phys. Rep., 2004, 389 : 61
288 Godfrey S., Napolitano J.. Light-meson spectroscopy. Rev. Mod. Phys., 1999, 71 : 1411
289 Lee W.-J.Weingarten D., Scalar quarkonium masses and mixing with the lightest scalar glueball, Phys. Rev. D 61, 014015 (2000), arXiv: hep-lat/9910008
290 S. Bali G.Schilling K.Hulsebos A.C. Irving A.Michael C. W. Stephenson (UKQCD) P., A comprehensive lattice study of SU(3) glueballs, Phys. Lett. B 309, 378 (1993), arXiv: hep-lat/9304012
291 J. Morningstar C.J. Peardon M., Efficient glueball simulations on anisotropic lattices, Phys. Rev. D 56, 4043 (1997), arXiv: hep-lat/9704011
292 Chen Y., et al.., Glueball spectrum and matrix elements on anisotropic lattices, Phys. Rev. D 73, 014516 (2006), arXiv: hep-lat/0510074
293 Lacock P.Michael C.Boyle P.Rowland (UKQCD) P., Hybrid mesons from quenched QCD, Phys. Lett. B 401, 308 (1997), arXiv: hep-lat/9611011
294 W. Bernard C.(MILC) ., et al.., Exotic mesons in quenched lattice QCD, Phys. Rev. D 56, 7039 (1997), arXiv: hep-lat/9707008
295 J. Dudek J.G. Edwards R.Joo B.J. Peardon M.G. Richards D.E. Thomas C., Isoscalar meson spectroscopy from lattice QCD, Phys. Rev. D 83, 111502 (2011), arXiv: 1102.4299 [hep-lat]
296 J. Dudek J.G. Edwards R.Guo P.E. Thomas (Hadron Spectrum) C., Toward the excited isoscalar meson spectrum from lattice QCD, Phys. Rev. D 88, 094505 (2013), arXiv: 1309.2608[hep-lat]
297 P. Druzhinin V.I. Eidelman S.I. Serednyakov S.P. Solodov E., Hadron production via e+e− collisions with initial state radiation, Rev. Mod. Phys. 83, 1545 (2011), arXiv: 1105.4975 [hep-ex]
298 T. Chao K., F. Wang Y.. Front matter. International J. Mod. Phys. A, 2009, 24 : supp01
https://doi.org/10.1142/S0217751X09046400
299 Battaglieri M., et al.., Analysis tools for next-generation hadron spectroscopy experiments, Acta Phys. Polon. B 46, 257 (2015), arXiv: 1412.6393 [hep-ph]
300 Berger N., Beijiang L., Jike W.. Partial wave analysis using graphics processing units. J. Phys.: Conf. Ser., 2010, 219 : 042031
https://doi.org/10.1088/1742-6596/219/4/042031
301 Gasser J., Leutwyler H.. Chiral perturbation theory to one loop. Ann. Phys., 1984, 158 : 142
302 Kaiser R., Leutwyler H.. Large Nc in chiral perturbation theory. Euro. Phys. J. C, 2000, 17 : 623
https://doi.org/10.1007/s100520000499
303 Wess J.Zumino B., Consequences of anomalous ward identities, Phys. Lett. B 37, 95 (1971)
304 Witten E.. Global aspects of current algebra. Nucl. Phys. B, 1983, 223 : 422
305 Bijnens J.Bramon A.Cornet F., English Chiral perturbation theory for anomalous processes, Eur. Phys. J. C 46, 599 (1990)
306 Sakurai J.. Theory of strong interactions. Ann. Phys., 1960, 11 : 1
307 Landsberg L.. Electromagnetic decays of light mesons. Phys. Rep., 1985, 128 : 301
308 Nambu Y.Jona-Lasinio G., Dynamical model of elementary particles based on an analogy with superconductivity (1), Phys. Rev. 122, 345 (1961)
309 Nambu Y.Jona-Lasinio G., Dynamical model of elementary particles based on an analogy with superconductivity (II), Phys. Rev. 124, 246 (1961)
310 Aoyama. T., et al.. The anomalous magnetic moment of the muon in the Standard Model, Phys. Rep. 887, 1 (2020), the anomalous magnetic moment of the muon in the Standard Model
311 Gan L.Kubis B.Passemar E.Tulin S., Precision tests of fundamental physics with η and η' mesons, Phys. Rep. 945, 1 (2022), precision tests of fundamental physics with η and η' mesons
312 Jarlskog C., Shabalin E.. On searches for CP, T, CPT and C violation in flavour-changing and flavour-conserving interactions. Phys. Scr., 2002, 2002 : 23
313 Jarlskog C., Shabalin E.. ϵ' and the decay ηππ in a theory with both explicit and spontaneous CP violation. Phys. Rev. D, 1995, 52 : 6327
https://doi.org/10.1103/PhysRevD.52.6327
314 Escribano R.Royo E., A theoretical analysis of the semileptonic decays η(') → π0l+l- and η'ηl+l-, Eur. Phys. J. C 80, 1190 (2020), arXiv: 2007.12467 [hep-ph]
315 Niecknig F.Kubis B.P. Schneider S., Dispersive analysis of ω → 3π and ϕ → 3π decays, Eur. Phys. J. C 72, 2014 (2012), arXiv: 1203.2501 [hep-ph]
316 V. Danilkin I., Fernández-Ramírez C., Guo P., Mathieu V., Schott D., Shi M., P. Szczepa- niak A.. Dispersive analysis of ω/ϕ → 3π, πγ*. Phys. Rev. D, 2015, 91 : 094029
https://doi.org/10.1103/PhysRevD.91.094029
317 Wu J.-J., Liu X.-H., Zhao Q., Zou B.-S.. Puzzle of anomalously large isospin violations in η(1405/1475) → 3π. Phys. Rev. Lett., 2012, 108 : 081803
https://doi.org/10.1103/PhysRevLett.108.081803
318 H. Christenson J., W. Cronin J., L. Fitch V., Turlay R.. Evidence for the 2π decay of the K20 meson. Phys. Rev. Lett., 1964, 13 : 138
https://doi.org/10.1103/PhysRevLett.13.138
319 E. A. Aubert (BABAR) B.. Observation of CP violation in the B0 meson system. Phys. Rev. Lett., 2001, 87 : 091801
https://doi.org/10.1103/PhysRevLett.87.091801
320 Abe K.(Belle) ., et al.., Observation of large CP violation in the neutral B meson system, Phys. Rev. Lett. 87, 091802 (2001), arXiv: hep-ex/0107061
321 F. Donoghue J., Pakvasa S.. Signals of CP nonconservation in hyperon decay. Phys. Rev. Lett., 1985, 55 : 162
https://doi.org/10.1103/PhysRevLett.55.162
322 Holmstrom T.. et al.. Search for CP violation in charged-Ξ and Λ hyperon decays. Phys. Rev. Lett., 2004, 93 : 262001
https://doi.org/10.1103/PhysRevLett.93.262001
323 Tandean J., Valencia G.. CP violation in hyperon nonleptonic decays within the standard model. Phys. Rev. D, 2003, 67 : 056001
https://doi.org/10.1103/PhysRevD.67.056001
324 Materniak (HyperCP) C.. Search for CP violation in Ξ and Λ hyperon decays with the HyperCP spectrometer at Fermilab. Nucl. Phys. B Suppl., 2009, 187 : 208
https://doi.org/10.1016/j.nuclphysbps.2009.01.030
325 Ablikim M.(BESIII) ., et al.. Study of J/ψ and ψ(3686) decay to ΛΛ ¯ and Σ 0 Σ ¯0 final states, Phys. Rev. D 95, 052003 (2017)
326 Ablikim M., et al.., Study of J/ψ and ψ (3686) → Σ(1385)0 Σ ¯ (1385)0 and Ξ0 Ξ ¯0, Physics Letters B 770, 217 (2017), arXiv: 1612.08664 [hep-ex]
327 Ablikim M.(BESIII) ., et al.., Study of ψ decays to the Ξ− Ξ ¯+ and Σ(1385)∓Σ ¯(1385 )± final states, Phys. Rev. D 93, 072003 (2016)
328 Fäldt G.Kupsc A., Hadronic structure functions in the e+e− → Λ ¯Λ reaction, Phys. Lett. B 772, 16 (2017), arXiv: 1702.07288 [hep-ph]
329 Perotti E., Fäldt G., Kupsc A., Leupold S., J. Song J.. Polarization observables in e+e− annihilation to a baryon−antibaryon pair. Phys. Rev. D, 2019, 99 : 056008
https://doi.org/10.1103/PhysRevD.99.056008
330 Huang M., (HyperCP) .. et al.. New measurement of Ξ− → Λπ− decay parameters. Phys. Rev. Lett., 2004, 93 : 011802
https://doi.org/10.1103/PhysRevLett.93.011802
331 Dutta B.Mimura Y.N. Mohapatra R., Observable neutron antineutron oscillation in high scale seesaw models, Phys. Rev. Lett. 96, 061801 (2005), arXiv: hep-ph/0510291 [hep-ph]
332 Baldo-Ceolin M., Benetti P., Bitter T., Bobisut F., Calligarich E., Dolfini R., Dubbers D., El-Muzeini P., Genoni M., Gibin D., Berzolari A., Gobrecht K., Guglielmi A., Last J., Laveder M., Lippert W., Mattioli F., Mauri F., Mezzetto M., Visentin L.. A new experimental limit on neutron−antineutron oscillations. Zeitsch. für Phys. C, 1994, 63 : 409
https://doi.org/10.1007/BF01580321
333 Kang X.-W., Li H.-B., Lu G.-R.. Study of Λ− Λ ¯ oscillation in quantum coherent ΛΛ ¯ by using J/ψ → ΛΛ ¯ decay. Phys. Rev. D, 2010, 81 : 051901
https://doi.org/10.1103/PhysRevD.81.051901
334 H. Dalitz R., Rajasekharan G.. The spins and lifetimes of the light hypernuclei. Phys. Lett., 1962, 1 : 58
335 I. Abelev B.(STAR) ., et al.., Observation of an antimatter hypernucleus, Science 328, 58 (2010), arXiv: 1003.2030 [nucl-ex]
336 Rappold C.. et al.. On the measured lifetime of light hypernuclei Λ 3H and Λ4 H. Phys. Lett. B, 2014, 728 : 543
https://doi.org/10.1016/j.physletb.2013.12.037
337 S. Schwinger J., The Theory of quantized fields (1), Phys. Rev. 82, 914 (1951)
338 Chekanov S.(ZEUS) ., et al.., Search for contact interactions, large extra dimensions and finite quark radius in ep collisions at HERA, Phys. Lett. B 591, 23 (2004), arXiv: hep-ex/0401009
339 A. Bethe H.. The electromagnetic shift of energy levels. Phys. Rev., 1947, 72 : 339
https://doi.org/10.1103/PhysRev.72.339
340 J. Dyson F.. The radiation theories of Tomonaga, Schwinger, and Feynman. Phys. Rev., 1949, 75 : 486
https://doi.org/10.1103/PhysRev.75.486
341 G. Wilson K., B. Kogut J.. The renormalization group and the epsilon expansion. Phys. Rep., 1974, 12 : 75
342 Weinberg S., Witten E.. Limits on massless particles. Phys. Lett. B, 1980, 96 : 59
343 R. Schubert K., T violation and CPT tests in neutral-meson systems, Prog. Part. Nucl. Phys. 81, 1 (2015), arXiv: 1409.5998 [hep-ex]
344 S. Bell J.Steinberger J., in: Proceedings of the Oxford Int. Conf. on Elementary Particles (1965), pp 195–222
345 Aubert B.(BaBar) ., et al.., Search for T, CP and CPT violation in B0− B ¯0 mixing with inclusive dilepton events, Phys. Rev. Lett. 96, 251802 (2006), arXiv: hep-ex/0603053
346 Higuchi T., et al.., Search for time-dependent CPT violation in hadronic and semileptonic B decays, Phys. Rev. D 85, 071105 (2012), arXiv: 1203.0930 [hep-ex]
347 Apostolakis A.. et al.. A Determination of the CP violation parameter η+− from the decay of strangeness tagged neutral kaons. Phys. Lett. B, 1999, 458 : 545
https://doi.org/10.1016/S0370-2693(99)00596-1
348 Schwingenheuer B.. et al.. CPT tests in the neutral kaon system. Phys. Rev. Lett., 1995, 74 : 4376
https://doi.org/10.1103/PhysRevLett.74.4376
349 Essig R., et al.., in: Community Summer Study 2013: Snowmass on the Mississippi (2013), arXiv: 1311.0029 [hep-ph]
350 Adriani O.(PAMELA) ., et al.. An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV, Nature 458, 607 (2009), arXiv: 0810.4995 [astro-ph]
351 Chang J.. et al.. An excess of cosmic ray electrons at energies of 300−800 GeV. Nature, 2008, 456 : 362
352 A. Abdo A.(Fermi-LAT) ., et al.., Measurement of the cosmic ray e+ plus e− spectrum from 20 GeV to 1 TeV with the Fermi Large Area Telescope, Phys. Rev. Lett. 102, 181101 (2009), arXiv: 0905.0025 [astro-ph.HE]
353 Aguilar M.. et al.. First result from the alpha magnetic spectrometer on the international space station: Precision measurement of the positron fraction in primary cosmic rays of 0.5–350 GeV. Phys. Rev. Lett., 2013, 110 : 141102
https://doi.org/10.1103/PhysRevLett.110.141102
354 Arkani-Hamed N.P. Finkbeiner D.R. Slatyer T.Weiner N., A theory of dark matter, Phys. Rev. D 79, 015014 (2009), arXiv: 0810.0713 [hep-ph]
355 Pospelov M.Ritz A., Astrophysical signatures of secluded dark matter, Phys. Lett. B 671, 391 (2009), arXiv: 0810.1502 [hep-ph]
356 Arkani-Hamed N.Weiner N., LHC signals for a superunified theory of dark matter, JHEP 12, 104 (2008), arXiv: 0810.0714 [hep-ph]
357 Cheung C.T. Ruderman J.Wang L.-T.Yavin I., Kinetic mixing as the origin of light dark scales, Phys. Rev. D 80, 035008 (2009), arXiv: 0902.3246 [hep-ph]
358 Zhu S.-h., U-boson at BESIII, Phys. Rev. D75, 115004 (2007), arXiv: hep-ph/0701001
359 Fayet P., U-boson production in e+e− annihilations, ψ and Υ decays, and light dark matter, Phys. Rev. D 75, 115017 (2007), arXiv: hep-ph/0702176
360 Reece M.Wang L.-T., Searching for the light dark gauge boson in GeV-scale experiments, JHEP 07, 051 (2009), arXiv: 0904.1743 [hep-ph]
361 Essig R.Schuster P.Toro N., Probing dark forces and light hidden sectors at low-energy e+e− colliders, Phys. Rev. D 80, 015003 (2009), arXiv: 0903.3941 [hep-ph]
362 Yin P.-F.Liu J.Zhu S.-H., Detecting light leptophilic gauge boson at BESIII detector, Phys. Lett. B 679, 362 (2009), arXiv: 0904.4644 [hep-ph]
363 Aubert B.(BaBar) ., et al.., Search for dimuon decays of a light scalar boson in radiative transitions Υ → γA0, Phys. Rev. Lett. 103, 081803 (2009), arXiv: 0905.4539 [hep-ex]
364 D. Bjorken J.Essig R.Schuster P. Toro N., New fixed-target experiments to search for dark gauge forces, Phys. Rev. D 80, 075018 (2009), arXiv: 0906.0580 [hep-ph]
365 Jia S.(Belle) ., et al.., Search for a light Higgs boson in single-photon decays of Υ(1S) using Υ(2S) → π+π−Υ(1S) tagging method, Phys. Rev. Lett. 128, 081804 (2022), arXiv: 2112.11852 [hep-ex]
366 O’Leary B.(SuperB) ., et al.., SuperB progress reports − Physics, arXiv: 1008.1541 (2010)
367 Altmannshofer W.(Belle-II) ., et al.., The Belle II physics book, PTEP 2019, 123C01 (2019) [Erratum: PTEP 2020, 029201 (2020)], arXiv: 1808.10567 [hep-ex]
368 Li H.-B.Luo T., Probing dark force at BES-III/BEPCII, Phys. Lett. B 686, 249 (2010), arXiv: 0911.2067 [hep-ph]
369 Baumgart M.Cheung C.T. Ruderman J.Wang L.-T.Yavin I., Non-Abelian dark sectors and their collider signatures, JHEP 04, 014 (2009), arXiv: 0901.0283 [hep-ph]
370 Batell B.Pospelov M.Ritz A., Probing a secluded U(1) at B-factories, Phys. Rev. D 79, 115008 (2009), arXiv: 0903.0363 [hep-ph]
371 Adachi I.(Belle-II) ., et al.., Search for an invisibly decaying Z' boson at Belle II in e+e− → µ+µ−(e± μ∓) plus missing energy final states, Phys. Rev. Lett. 124, 141801 (2020), arXiv: 1912.11276 [hep-ex]
372 Abudinén F.(Belle-II) ., et al.., Search for axionlike particles produced in e+e− collisions at Belle II, Phys. Rev. Lett. 125, 161806 (2020), arXiv: 2007.13071 [hep-ex]
373 Holdom B.. Two U(1)’s and epsilon charge shifts. Phys. Lett. B, 1986, 166 : 196
https://doi.org/10.1016/0370-2693(86)91377-8
374 Holdom B.. Searching for ϵ charges and a new U(1). Phys. Lett. B, 1986, 178 : 65
https://doi.org/10.1016/0370-2693(86)90470-3
375 Foot R., He X.-G.. Comment on zz-prime mixing in extended gauge theories. Phys. Lett. B, 1991, 267 : 509
376 Kors B.Nath P., A Stueckelberg extension of the standard model, Phys. Lett. B 586, 366 (2004), arXiv: hep-ph/0402047
377 Cheung K.Yuan T.-C., Hidden fermion as milli-charged dark matter in Stueckelberg Z-prime model, JHEP 03, 120 (2007), arXiv: hep-ph/0701107
378 Feldman D.Liu Z.Nath P., Stueckelberg Z' extension with kinetic mixing and millicharged dark matter from the hidden sector, Phys. Rev. D 75, 115001 (2007), arXiv: hep-ph/0702123
379 Jaeckel J.Ringwald A., The low-energy frontier of particle physics, Ann. Rev. Nucl. Part. Sci. 60, 405 (2010), arXiv: 1002.0329[hep-ph]
380 Liu Z.Zhang Y., Probing millicharge at BESIII via monophoton searches, Phys. Rev. D 99, 015004 (2019), arXiv: 1808.00983 [hep-ph]
381 Liang J.Liu Z.Ma Y.Zhang Y., Millicharged particles at electron colliders, Phys. Rev. D 102, 015002 (2020), arXiv: 1909.06847 [hep-ph]
382 Davidson S., Campbell B., C. Bailey D.. Limits on particles of small electric charge. Phys. Rev. D, 1991, 43 : 2314
https://doi.org/10.1103/PhysRevD.43.2314
383 A. Prinz A., et al.., Search for millicharged particles at SLAC, Phys. Rev. Lett. 81, 1175 (1998), arXiv: hep-ex/9804008
384 Magill G.Plestid R.Pospelov M.Tsai Y.-D., Millicharged particles in neutrino experiments, Phys. Rev. Lett. 122, 071801 (2019), arXiv: 1806.03310[hep-ph]
385 D. Bowman J.E. E. Rogers A.A. Monsalve R.J. Mozdzen T.Mahesh N., An absorption profile centred at 78 megahertz in the sky-averaged spectrum, Nature 555, 67 (2018), arXiv: 1810.05912 [astro-ph.CO]
386 B. Muñoz J.Loeb A., A small amount of mini-charged dark matter could cool the baryons in the early universe, Nature 557, 684 (2018), arXiv: 1802.10094 [astro-ph.CO]
387 Berlin A.Hooper D.Krnjaic G.D. McDermott S., Severely constraining dark matter interpretations of the 21-cm anomaly, Phys. Rev. Lett. 121, 011102 (2018), arXiv: 1803.02804 [hep-ph]
388 Barkana R.J. Outmezguine N.Redigolo D. Volansky T., Strong constraints on light dark matter interpretation of the EDGES signal, Phys. Rev. D 98, 103005 (2018), arXiv: 1803.03091 [hep-ph]
389 H.Brück Circular particle accelerators, PUF, Paris (1966).
390 (2022)
391 Battaglia M.Da Via C.Bortoletto D.Brenner R.Campbell M. Collins P.Dalla Betta G.Demarteau M.Denes P.Graafsma H., et al.., R&d paths of pixel detectors for vertex tracking and radiation imaging, Nucl. Instrum. Methods Phys. Res. A 716, 29 (2013)
392 Contin G., Anderssen E., Greiner L., Schambach J., Silber J., Stezelberger T., Sun X., Szelezniak M., Vu C., Wieman H.. et al.. The maps based PXL vertex detector for the star experiment. J. Instrum., 2015, 10 : C03026
393 Lacasta C., in: Proceedings of the 22nd International Workshop on Vertex Detectors (Vertex2013), 15−20 September (2013), page 5
394 e. a. Abe T., Belle II technical design report, (2010)
395 Balla A.Bencivenni G.Cerioni S.Ciambrone P.De Lucia E. Domenici D.Dong J.Felici G.Gatta M.Jacewicz M., et al.., in: 2011 IEEE Nuclear Science Symposium Conference Record (IEEE, 2011) pp 1002–1005
396 Bencivenni G., Branchini P., Ciambrone P., Czerwinski E., De Lucia E., Di Cicco A., Domenici D., Felici G., Kang X., Morello G.. The cylindrical-gem inner tracker detector of the kloe-2 experiment. Nucl. Instrum. Meth. Phys. Res. A, 2020, 958 : 162366
397 Amoroso A., Baldini R., Bertani M., Bettoni D., Bianchi F., Calcaterra A., Carassiti V., Cerioni S., Chai J., Cibinetto G.. et al.. A cylindrical gem detector with analog readout for the be- siii experiment. Nucl. Instrum. Meth. Phys. Res. A, 2016, 824 : 515
398 P. Lener M., Bencivenni G., de Olivera R., Felici G., Franchino S., Gatta M., Maggi M., Morello G., Sharma A.. The μ-RWELL: A compact, spark protected, single amplification-stage mpgd. Nucl. Instrum. Meth. Phys. Res. A, 2016, 824 : 565
399 Bencivenni G., De Oliveira R., Felici G., Gatta M., Morello G., Ochi A., P. Lener M., Tskhadadze E.. Performance of μ-RWELL detector vs resistivity of the resistive stage. Nucl. Instrum. Meth. Phys. Res. A, 2018, 886 : 36
400 Bencivenni G., Benussi L., Borgonovi L., De Oliveira R., De Simone P., Felici G., Gatta M., Giacomelli P., Morello G., Ochi A.. et al.. The μ-RWELL detector. J. Instrum., 2017, 12 : C06027
401 Bachmann S., Bressan A., Ropelewski L., Sauli F., Sharma A., Mörmann D.. Charge amplification and transfer processes in the gas electron multiplier. Nucl. Instru. Meth. Phys. Res. A, 1999, 438 : 376
402 Agostinelli S., Allison J., A. Amako K., Apostolakis J., Araujo H., Arce P., Asai M., Axen D., Banerjee S., Barrand G.. et al.. GEANT4 — a simulation toolkit. Nucl. Instrum. Meth. Phys. Res. A, 2003, 506 : 250
403 Bencivenni G.Felici G.Gatta M. Giovannetti M.Morello G.P. Lener M. de Oliveira R.Ochi A.Tskhadadze E., in: Journal of Physics: Conference Series, Vol. 1498 (IOP Publishing, 2020), page 012003
404 Wang H., Wang Y., Yao Y.-Z., Hu J., Yang J., Hao W., Luo Y.-Q.. Aramid paper’s structure and performance and their effect on the mechanical properties of aramid paper honey-comb. J. Funct. Mater., 2013, 44 : 2184
405 Arezoo S., Tagarielli V., Siviour C., Petrinic N.. Compressive deformation of rohacell foams: Effects of strain rate and temperature. Inter. J. Impact Eng., 2013, 51 : 50
406 Contin G., Anderssen E., Greiner L., Schambach J., Silber J., Stezelberger T., Sun X., Szelezniak M., Vu C., Wieman H.. et al.. The maps based pxl vertex detector for the star experiment. J. Instrum., 2015, 10 : C03026
407 Valin I., Hu-Guo C., Baudot J., Bertolone G., Besson A., Colledani C., Claus G., Dorokhov A., Doziere G., Dulinski W.. et al.. A reticle size cmos pixel sensor dedicated to the star hft. J. Instrum., 2012, 7 : C01102
408 Abelev B., Adam J., Adamová D., Aggarwal M., A. Rinella G., Agnello M., Agostinelli A., Agrawal N., Ahammed Z., Ahmad N.. et al.. Technical design report for the upgrade of the alice inner tracking system. J. Phys. G, 2014, 41 : 087002
409 A. Rinella G.. et al.. The alpide pixel sensor chip for the upgrade of the alice inner tracking system. Nucl. Instrum. Meth. Phys. Res. A, 2017, 845 : 583
410 Chen L., et al.., Characterization of the prototype cmos pixel sensor Jadepix-1 for the CEPC vertex detector, (2019)
411 S. Group C., et al.., CEPC conceptual design report: Volume 2 − physics & detector, arXiv: 1811.10545 (2018)
412 Arndt K., Augustin H., Baesso P., Berger N., Berg F., Betancourt C., Bortoletto D., Bravar A., Briggl K., vom Bruch D.. et al.. Technical design of the phase I MU3E experiment. Nucl. Instrum. Meth. Phys. Res. A, 2021, 1014 : 165679
413 Prathapan M.Schimassek R.Benoit M.Casanova R.Ehrler F. Meneses A.Pangaud P.Sultan D.Vilella E.L. Weber A., et al.., in: Proceedings of Topical Workshop on Electronics for Particle Physics-PoS (TWEPP2019) (Sissa Medialab, 2020)
414 Spannagel S.. Silicon technologies for the clic vertex detector. J. Instrum., 2017, 12 : C06006
415 Schöning A.Anders J.Augustin H. Benoit M.Berger N.Dittmeier S.Ehrler F.Fehr A. Golling T.G. Sevilla S., et al.., Mupix and atlaspix-architectures and results, arXiv: 2002.07253 (2020)
416 Snoeys W.. et al.. A process modification for CMOS monolithic active pixel sensors for enhanced depletion, timing performance and radiation tolerance. Nucl. Instrum. Meth. A, 2017, 871 : 90
417 Gustavino G., et al.., in: 23rd International Workshop on Radiation Imaging Detectors (2022), arXiv: 2209.14676 [physics.ins-det]
418 Paladino A.. Beam background evaluation at superkekb and Belle II. J. Instrum., 2020, 15 : C07023
419 Mager M., collaboration A.. et al.. Alpide, the monolithic active pixel sensor for the alice its upgrade. Nucl. Instrum. Meth. A, 2016, 824 : 434
420 Titov M., in: Innovative Detectors for Supercolliders, World Scientific, 2004, pp 199–226
421 Ablikim M., An Z., Bai J., Berger N., Bian J., Cai X., Cao G., Cao X., Chang J., Chen C.. et al.. Design and construction of the besiii detector. Nucl. Instrum. Meth. A, 2010, 614 : 345
422 Abe T.Adachi I.Adamczyk K.Ahn S.Aihara H. Akai K.Aloi M.Andricek L.Aoki K.Arai Y., et al.., Belle II technical design report, arXiv: 1011.0352 (2010)
423 Adhikari S., Akondi C., Al Ghoul H., Ali A., Amaryan M., Anassontzis E., Austregesilo A., Barbosa F., Barlow J., Barnes A.. et al.. The gluex beamline and detector. Nucl. Instrum. Meth. A, 2021, 987 : 164807
424 Baldini A., Baracchini E., Bemporad C., Berg F., Biasotti M., Boca G., Cattaneo P., Cavoto G., Cei F., Chiappini M.. et al.. The design of the meg ii experiment. Eur. Phys. J. C, 2018, 78 : 1
425 Tassielli G.Collaboration I., et al.., in: 40th International Conference on High Energy physics (2021), p. 877
426 B. Smirnov I.. Modeling of ionization produced by fast charged particles in gases. Nucl. Instrum. Meth. A, 2005, 554 : 474
427 Cao X.-X., Li W.-D., Liu C.-L., Mao Z.-P., Chen S.-J., Deng Z.-Y., He K.-L., Huang X.-T., Huang B., Huang Y.-P.. et al.. Studies of dE/dx measurements with the besiii. Chin. Phys. C, 2010, 34 : 1852
428 Bachmann S., Bressan A., Ropelewski L., Sauli F., Sharma A., Mörmann D.. Charge ampli fication and transfer processes in the gas electron multiplier. Nucl. Instrum. Meth. A, 1999, 438 : 376
429 Tessarotto F.. et al.. Long term experience and performance of COMPASS RICH-1. JINST, 2014, 9 :
https://doi.org/10.1088/1748-0221/9/09/C09011
430 Di Mauro A.. et al.. Performance of large area CsI RICH prototypes for ALICE at LHC. Nucl. Instrum. Meth. A, 1999, 433 : 190
431 Boutigny D.Goy C.Karyotakis Y.Lees J.L. Rosier S.Palano A.Chen G.Wang Y. Wen O.Lan Y., et al.., Babar technical design report, Stanford Linear Accelerator Center, Stanford, CA94309 (1995)
432 Singh B., Erni W., Krusche B., Steinacher M., Walford N., Liu B., Liu H., Liu Z., Shen X., Wang C.. et al.. Technical design report for the barrel dirc detector. J. Phys. G, 2019, 46 : 045001
433 Kalicy G., Allison L., Cao T., Dzhygadlo R., Hartlove T., Horn T., Hyde C., Ilieva Y., Nadel-Turonski P., Park K.. et al.. High-performance dirc detector for the future electron ion collider experiment. J. Instrum., 2018, 13 : C04018
434 J. Charles M.Forty (LHCb) R., TORCH: Time of flight identification with Cherenkov radiation, Nucl. Instrum. Meth. A 639, 173 (2011), arXiv: 1009.3793 [physics.ins-det]
435 Wu B., Wang Y., Cao Q., Li Z., Li X., Zhou X., Hu Y., Wang Z., Shao M., Liu J.. et al.. Design of time-to-digital converters for time-over-threshold measurement in picosecond timing detectors. IEEE Trans. Nucl. Sci., 2021, 68 : 470
436 Hu Y., Wang Y., Kuang J., Wu B.. A clock distribution and synchronization scheme over optical links for large-scale physics experiments. IEEE Trans. Nucl. Sci., 2021, 68 : 1351
437 Ablikim M., An Z., Bai J., Berger N., Bian J., Cai X., Cao G., Cao X., Chang J., Chen C.. et al.. Design and construction of the besiii detector. Nucl. Instrum. Meth. Phys. Res. A, 2010, 614 : 345
438 Miyabayashi K.. Belle electromagnetic calorimeter. Nucl. Instrum. Meth. Phys. Res. A, 2002, 494 : 298
439 Yamamoto A., Kichimi H., Kimura N., Inoue H., Yamaoka H., Haruyama T., Mito T., Araoka O., Tadano M., Suzuki S.. et al.. Performance of the topaz thin superconducting solenoid wound with internal winding method. Japan. J. Appl. Phys., 1986, 25 : L440
440 M. Sirunyan A.(CMS) ., et al.., Reconstruction of signal amplitudes in the CMS electromagnetic calorimeter in the presence of overlapping proton−proton interactions, JINST 15, P10002 (2020), arXiv: 2006.14359 [physics.ins-det]
441 S. Huang G., The 15th International Workshop on Tau Lepton Physics, talk on “The Super Tau Charm Factory Plan in China” (2018)
442 B. Liu J., Joint Workshop on Future Tau-Charm Factories, talk on “Detector Concepts for the Super Tau-Charm Facility in China” (2018)
443 Abe T.Adachi I.Adamczyk K.Ahn S.Aihara H. Akai K.Aloi M.Andricek L.Aoki K.Arai Y., et al.., Belle II technical design report, arXiv: 1011.0352 (2010)
444 Abe K.Hoshi Y.Nagamine T.Neichi K.Onodera K. Takahashi T.Yamaguchi A.Yuta H., in: 2002 IEEE Nuclear Science Symposium Conference Record, Vol. 1 (IEEE, 2002), pp 171–175
445 Hoshi Y., Kikuchi N., Nagamine T., Neichi K., Yamaguchi A.. Performance of the endcap RPC in the Belle detector under high luminosity operation of the KEKB accelerator. Nucl. Phys. B, 2006, 158 : 190
446 Kanazawa K., Ohnishi Y., Nakayama Y., Kiesling C., Koblitz S.. et al.. Beam background simulation for superKEKB/Belle-II. Proceed. IPAC, 2011, 1109094 : 3700
447 Gouzevitch M.Lagarde F.Laktineh I. Buridon V.Chen X.Combaret C.Eynard A.Germani L. Grenier G.Mathez H., et al.., High rate, fast timing glass rpc for the high ηcms muon detectors, arXiv: 1606.00993 (2016)
448 Collaboration A., et al.., Atlas muon spectrometer: Technical design report (1997)
449 Aubert B., Bazan A., Boucham A., Boutigny D., De Bonis I., Favier J., Gaillard J.-M., Jeremie A., Karyotakis Y., Le Flour T.. et al.. The babar detector. Nucl. Instrum. Meth. Phys. Res. A, 2002, 479 : 1
450 Belle-BaBar Workshop, talk on “RPC and Muon Detection at BELLE” (2002)
451 Ackermann K., Adams N., Adler C., Ahammed Z., Ahmad S., Allgower C., Amonett J., Amsbaugh J., Anderson B., Anderson M.. et al.. Star detector overview. Nucl. Instrum. Meth. Phys. Res. A, 2003, 499 : 624
452 Xie Y.. et al.. Performance study of rpc prototypes for the BESIII muon detector. Chin. Phys. C, 2007, 31 :
453 An F., Bai J., Balantekin A., Band H., Beavis D., Beriguete W., Bishai M., Blyth S., Brown R., Butorov I.. et al.. The detector system of the daya bay reactor neutrino experiment. Nucl. Instrum. Meth. Phys. Res. A, 2016, 811 : 133
454 Aushev T., Besson D., Chilikin K., Chistov R., Danilov M., Katrenko P., Mizuk R., Pakhlova G., Pakhlov P., Rusinov V.. et al.. A scintillator based endcap KL and muon detector for the Belle II experiment. Nucl. Instrum. Meth. Phys. Res. A, 2015, 789 : 134
455 Agostinelli S., Allison J., a. Amako K., Apostolakis J., Araujo H., Arce P., Asai M., Axen D., Banerjee S., Barrand G.. et al.. GEANT4 — a simulation toolkit. Nucl. Instrum. Meth. Phys. Res. A, 2003, 506 : 250
456 Fang Z., Liu Y., Shi H., Liu J., Shao M.. A hybrid muon detector design with rpc and plastic scintillator for the experiment at the super tau-charm facility. J. Instrum., 2021, 16 : P09022
457 M. Hamada M., R. Rela P., E. da Costa F., H. de Mesquita C.. Radiation damage studies on the optical and mechanical properties of plastic scintillators. Nucl. Instrum. Meth. Phys. Res. A, 1999, 422 : 148
458 Vasil’Chenko V., Lapshin V., Peresypkin A., Konstantinchenko A., Pyshchev A., Shershukov V., Semenov B., Solov’ev A.. New results on radiation damage studies of plastic scintillators. Nucl. Instrum. Meth. A, 1996, 369 : 55
459 Yamamoto A., Mito T., Kimura N., Haruyama T., Yamaoka H., Araoka O., Tadano M., Suzuki S., Kondo Y., Kawai M.. et al.. Quench characteristics and operational stability of the topaz thin superconducting solenoid. Japan. J. Appl. Phys., 1986, 25 : L443
460 Acquistapace G.Collaboration C., et al.., Cms, the magnet project: Technical design report, Technical Design Report CMS (1997)
461 Ma X., et al.., Determination of event start time at BESIII, Chin. Phys. C 32, 744 (2008)
462 H. Zou J., T. Huang X., D. Li W., Lin T., Li T., Zhang K., Y. Deng Z., F. Cao G.. SNiPER: An offline software framework for non-collider physics experiments. J. Phys. Conf. Ser., 2015, 664 : 072053
https://doi.org/10.1088/1742-6596/664/7/072053
463 Li T.Xia X. Huang X.Zou J.Li W.lin T.Zhang K. Deng Z., Design and Development of JUNO Event Data Model, Chin. Phys. C 41, 066201 (2017), arXiv: 1702.04100
464 Gaede F., Hegner B., A. Stewart G.. PODIO: recent developments in the Plain Old Data EDM toolkit. EPJ Web Conf., 2020, 245 : 05024
https://doi.org/10.1051/epjconf/202024505024
465 Li H., Huang W., Liu D., Song Y., Shao M., Huang X.. Detector geometry management system designed for super tau charm facility offline software. J. Instrum., 2021, 16 : T04004
https://doi.org/10.1088/1748-0221/16/04/T04004
466 Frank M., Gaede F., Grefe C., Mato P.. DD4hep: A detector description toolkit for high energy physics experiments. J. Phys. Conf. Ser., 2014, 513 : 022010
https://doi.org/10.1088/1742-6596/513/2/022010
467 Extensible Markup Language (XML) web page, URL: www.w3.org/XML/ (2022)
468 Agostinelli S.. et al.. GEANT4 – a simulation toolkit. Nucl. Instrum. Meth. A, 2003, 506 : 250
469 Li H., H. Huang W., Liu D., Song Y., Shao M., T. Huang X.. Detector geometry management system designed for Super Tau Charm Facility offline software. JINST, 2021, 16 : T04004
https://doi.org/10.1088/1748-0221/16/04/T04004
470 Ablikim M.(BESIII) ., et al.., Measurement of azimuthal asymmetries in inclusive charged dip- ion production in e+e− annihilations at s = 3.65 GeV, Phys. Rev. Lett. 116, 042001 (2016), arXiv: 1507.06824 [hep-ex]
471 L. Wang B., R. Lü X., H. Zheng Y.. Collins effect at super tau-charm facility. J. Univ. Chin. Acad. Sci., 2021, 38 : 433
https://doi.org/10.7523/j.issn.2095-6134.2021.04.001
472 Ablikim M.(BESIII) ., et al.., Observation of the leptonic decay D+ → τ+ντ, Phys. Rev. Lett. 123, 211802 (2019), arXiv: 1908.08877 [hep-ex]
473 Ablikim M.(BESIII) ., et al.., Determination of the pseudoscalar decay constant f Ds+ via Ds+ → µ+νµ, Phys. Rev. Lett. 122, 071802 (2019), arXiv: 1811.10890 [hep-ex]
474 Cheng H.-Y.Lyu X.-R.Xing Z.-Z., in: 2022 Snowmass Summer Study (2022), arXiv: 2203.03211 [hep-ph]
475 Ablikim M.(BESIII) ., et al.., Precision measurement of the mass of the τ lepton, Phys. Rev. D 90, 012001 (2014), arXiv: 1405.1076 [hep-ex]
476 Airapetian A.(HERMES) ., et al.., Single-spin asymmetries in semi-inclusive deep-inelastic scattering on a transversely polarized hydrogen target, Phys. Rev. Lett. 94, 012002 (2005), arXiv: hep-ex/0408013
477 Airapetian A.(HERMES) ., et al.., Effects of transversity in deep-inelastic scattering by polarized protons, Phys. Lett. B 693, 11 (2010), arXiv: 1006.4221[hep-ex]
478 Adolph C.(COMPASS) ., et al.., Experimental investigation of transverse spin asymmetries in muon-p SIDIS processes: Collins asymmetries, Phys. Lett. B 717, 376 (2012), arXiv: 1205.5121 [hep-ex]
479 Qian X.(Jefferson Lab Hall A) ., et al.., Single spin asymmetries in charged pion production from semi-inclusive deep inelastic scattering on a transversely polarized 3He target, Phys. Rev. Lett. 107, 072003 (2011), arXiv: 1106.0363 [nucl-ex]
480 Abe K.(Belle) ., et al.., Measurement of azimuthal asymmetries in inclusive production of hadron pairs in e+e− annihilation at Belle, Phys. Rev. Lett. 96, 232002 (2006), arXiv: hep-ex/0507063
481 Seidl R.(Belle) ., et al.., Measurement of azimuthal asymmetries in inclusive production of hadron pairs in e+e− annihilation at s = 10.58-GeV, Phys. Rev. D 78, 032011 (2008) [Erratum: Phys. Rev. D 86, 039905 (2012)], arXiv: 0805.2975 [hep-ex]
482 P. Lees J.(BaBar) ., et al.., Measurement of Collins asymmetries in inclusive production of charged pion pairs in e+e− annihilation at BABAR, Phys. Rev. D 90, 052003 (2014), arXiv: 1309.5278 [hep-ex]
483 L. Wang B., Lyu X.-R., H. Zheng Y.. Collins effect at super tau-charm facility. J. Univ. Chin. Acad. Sci., 2021, 38 : 433
https://doi.org/10.7523/j.issn.2095-6134.2021.04.001
484 I. Bigi I.I. Sanda A., A “known” CP asymmetry in tau decays, Phys. Lett. B 625, 47 (2005), arXiv: hep-ph/0506037
485 Grossman Y.Nir Y., CP violation in τ±→ π±KSν and D±→ π±KS: The importance of KSKL interference, JHEP 04, 002 (2012), arXiv: 1110.3790 [hep-ph]
486 P. Lees J.(BaBar) ., et al.., Search for CP violation in the decay τ− → π− KS0 (≥ 0)ντ, Phys. Rev. D 85, 031102 (2012) [Erratum: Phys. Rev. D 85, 099904 (2012)], arXiv: 1109.1527 [hep-ex]
487 Bonvicini G.(CLEO) ., et al.., Search for CP violation in τKπντ decays, Phys. Rev. Lett. 88, 111803 (2002), arXiv: hep-ex/0111095
488 Bischofberger M.(Belle) ., et al.., Search for CP violation in τ → KS0πντ decays at Belle, Phys. Rev. Lett. 107, 131801 (2011), arXiv: 1101.0349 [hep-ex]
489 H. Kuhn J.Mirkes E., Structure functions in tau decays, Z. Phys. C 56, 661 (1992) [Erratum: Z. Phys. C 67, 364 (1995)]
490 Jadach S.F. L. Ward B.Was Z., The precision Monte Carlo event generator KK for two fermion final states in e+e− collisions, Comput. Phys. Commun. 130, 260 (2000), arXiv: hep-ph/9912214
491 F. Donoghue J., He X.-G., Pakvasa S.. Hyperon decays and CP nonconservation. Phys. Rev. D, 1986, 34 : 833
https://doi.org/10.1103/PhysRevD.34.833
492 Salone N.Adlarson P.Batozskaya V.Kupsc A.Leupold S. Tandean J., Study of CP violation in hyperon decays at super-charm-τ factories with a polarized electron beam, Phys. Rev. D 105, 116022 (2022), arXiv: 2203.03035 [hep-ph]
493 Cronin-Hennessy D.(CLEO) ., et al.., Measurement of Charm Production Cross Sections in e+e− Annihilation at Energies between 3.97 and 4.26-GeV, Phys. Rev. D 80, 072001 (2009), arXiv: 0801.3418 [hep-ex]
494 S. Babu K.Kolda C., Higgs mediated τ → 3μ in the supersymmetric seesaw model, Phys. Rev. Lett. 89, 241802 (2002), arXiv: hep-ph/0206310
495 R. Ellis J.Hisano J.Raidal M.Shimizu Y., A New parametrization of the seesaw mechanism and applications in supersymmetric models, Phys. Rev. D 66, 115013 (2002), arXiv: hep-ph/0206110
496 Borzumati F., Masiero A.. Large muon and electron number violations in supergravity the-ories. Phys. Rev. Lett., 1986, 57 : 961
https://doi.org/10.1103/PhysRevLett.57.961
497 Ma E., Neutrino, lepton, and quark masses in supersymmetry, Phys. Rev. D 64, 097302 (2001), arXiv: hep-ph/0107177
498 Yue C.-X.Zhang Y.-M.Liu L.-J., Nonuniversal gauge bosons Z-prime and lepton flavor violation tau decays, Phys. Lett. B 547, 252 (2002), arXiv: hep-ph/0209291
499 E. Kim J., Ko P., Lee D.-G.. More on r-parity- and lepton-family-number-violating couplings from muon(ium) conversion, and τ and π0 decays. Phys. Rev. D, 1997, 56 : 100
https://doi.org/10.1103/PhysRevD.56.100
500 Aubert B.(BaBar) ., et al.., Searches for lepton flavor violation in the decays τ± → e±γ and τ± → μ±γ, Phys. Rev. Lett. 104, 021802 (2010), arXiv: 0908.2381 [hep-ex]
501 Hayasaka K.(Belle) ., et al.., New search for τμγ and τ decays at Belle, Phys. Lett. B 666, 16 (2008), arXiv: 0705.0650 [hep-ex]
502 Balossini G.M. Carloni Calame C.Montagna G. Nicrosini O.Piccinini F., Matching perturbative and parton shower corrections to Bhabha process at flavour factories, Nucl. Phys. B 758, 227 (2006), arXiv: hep-ph/0607181
503 Balossini G.Bignamini C.M. C. Calame C.Montagna G.Nicrosini O.Piccinini F., Photon pair production at flavour factories with per mille accuracy, Phys. Lett. B 663, 209 (2008), arXiv: 0801.3360 [hep-ph]
504 Rodrigo G.Czyz H.H. Kuhn J.Szopa M., Radiative return at NLO and the measurement of the hadronic cross-section in electron positron annihilation, Eur. Phys. J. C 24, 71 (2002), arXiv: hep-ph/0112184
505 Actis S.(Working Group on Radiative Corrections .Carlo generators for low energies) Monte, et al.., Quest for precision in hadronic cross sections at low energy: Monte Carlo tools vs. experimental data, Eur. Phys. J. C 66, 585 (2010), arXiv: 0912.0749 [hep-ph]
506 Sturm C., Leptonic contributions to the effective electromagnetic coupling at four-loop order in QED, Nucl. Phys. B 874, 698 (2013), arXiv: 1305.0581 [hep-ph]
507 Jegerlehner F., The Running fine structure constant alpha(E) via the Adler function, Nucl. Phys. B Suppl. 181–182, 135 (2008), arXiv: 0807.4206 [hep-ph]
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed