|
|
STCF conceptual design report (Volume 1): Physics & detector |
M. Achasov3, X. C. Ai82, L. P. An54, R. Aliberti38, Q. An63,72, X. Z. Bai63,72, Y. Bai62, O. Bakina39, A. Barnyakov3,50, V. Blinov3,50,51, V. Bobrovnikov3,51, D. Bodrov23,60, A. Bogomyagkov3, A. Bondar3, I. Boyko39, Z. H. Bu73, F. M. Cai20, H. Cai77, J. J. Cao20, Q. H. Cao54, X. Cao33, Z. Cao63,72, Q. Chang20, K. T. Chao54, D. Y. Chen62, H. Chen81, H. X. Chen62, J. F. Chen58, K. Chen6, L. L. Chen20, P. Chen78, S. L. Chen6, S. M. Chen66, S. Chen69, S. P. Chen69, W. Chen64, X. Chen74, X. F. Chen58, X. R. Chen33, Y. Chen32, Y. Q. Chen36, H. Y. Cheng34, J. Cheng48, S. Cheng28, T. G. Cheng2, J. P. Dai80, L. Y. Dai28, X. C. Dai54, D. Dedovich39, A. Denig19,38, I. Denisenko39, J. M. Dias4, D. Z. Ding58, L. Y. Dong32, W. H. Dong63,72, V. Druzhinin3, D. S. Du63,72, Y. J. Du77, Z. G. Du41, L. M. Duan33, D. Epifanov3, Y. L. Fan77, S. S. Fang32, Z. J. Fang63,72, G. Fedotovich3, C. Q. Feng63,72, X. Feng54, Y. T. Feng63,72, J. L. Fu69, J. Gao59, Y. N. Gao54, P. S. Ge73, C. Q. Geng15, L. S. Geng2, A. Gilman71, L. Gong43, T. Gong21, B. Gou33, W. Gradl38, J. L. Gu63,72, A. Guevara4, L. C. Gui26, A. Q. Guo33, F. K. Guo4,69,2, J. C. Guo63,72, J. Guo59, Y. P. Guo11, Z. H. Guo16, A. Guskov39, K. L. Han69, L. Han63,72, M. Han63,72, X. Q. Hao20, J. B. He69, S. Q. He63,72, X. G. He59, Y. L. He20, Z. B. He33, Z. X. Heng20, B. L. Hou63,72, T. J. Hou74, Y. R. Hou69, C. Y. Hu74, H. M. Hu32, K. Hu57, R. J. Hu33, W. H. Hu54, X. H. Hu9, Y. C. Hu49, J. Hua61, G. S. Huang63,72, J. S. Huang47, M. Huang69, Q. Y. Huang69, W. Q. Huang69, X. T. Huang57, X. J. Huang33, Y. B. Huang14, Y. S. Huang64, N. Hüsken38, V. Ivanov3, Q. P. Ji20, J. J. Jia77, S. Jia62, Z. K. Jia63,72, H. B. Jiang77, J. Jiang57, S. Z. Jiang14, J. B. Jiao57, Z. Jiao24, H. J. Jing69, X. L. Kang8, X. S. Kang43, B. C. Ke82, M. Kenzie5, A. Khoukaz76, I. Koop3,50,51, E. Kravchenko3,51, A. Kuzmin3, Y. Lei60, E. Levichev3, C. H. Li42, C. Li55, D. Y. Li33, F. Li63,72, G. Li55, G. Li15, H. B. Li32,69, H. Li63,72, H. N. Li61, H. J. Li20, H. L. Li27, J. M. Li63,72, J. Li32, L. Li56, L. Li59, L. Y. Li63,72, N. Li64, P. R. Li41, R. H. Li30, S. Li59, T. Li57, W. J. Li20, X. Li33, X. H. Li74, X. Q. Li6, X. H. Li63,72, Y. Li79, Y. Y. Li72, Z. J. Li33, H. Liang63,72, J. H. Liang61, Y. T. Liang33, G. R. Liao13, L. Z. Liao25, Y. Liao61, C. X. Lin69, D. X. Lin33, X. S. Lin63,72, B. J. Liu32, C. W. Liu15, D. Liu63,72, F. Liu6, G. M. Liu61, H. B. Liu14, J. Liu54, J. J. Liu74, J. B. Liu63,72, K. Liu41, K. Y. Liu43, K. Liu59, L. Liu63,72, Q. Liu69, S. B. Liu63,72, T. Liu11, X. Liu41, Y. W. Liu63,72, Y. Liu82, Y. L. Liu63,72, Z. Q. Liu57, Z. Y. Liu41, Z. W. Liu45, I. Logashenko3, Y. Long63,72, C. G. Lu33, J. X. Lu2, N. Lu63,72, Q. F. Lü26, Y. Lu7, Y. Lu69, Z. Lu62, P. Lukin3, F. J. Luo74, T. Luo11, X. F. Luo6, Y. H. Luo54, H. J. Lyu24, X. R. Lyu69, J. P. Ma35, P. Ma33, Y. Ma15, Y. M. Ma33, F. Maas19,38, S. Malde71, D. Matvienko3, Z. X. Meng70, R. Mitchell29, A. Nefediev40, Y. Nefedov39, S. L. Olsen22,53, Q. Ouyang32,63, P. Pakhlov23, G. Pakhlova23,52, X. Pan60, Y. Pan62, E. Passemar29,65,67, Y. P. Pei63,72, H. P. Peng63,72, L. Peng27, X. Y. Peng8, X. J. Peng41, K. Peters12, S. Pivovarov3, E. Pyata3, B. B. Qi63,72, Y. Q. Qi63,72, W. B. Qian69, Y. Qian33, C. F. Qiao69, J. J. Qin74, J. J. Qin63,72, L. Q. Qin13, X. S. Qin57, T. L. Qiu33, J. Rademacker68, C. F. Redmer38, H. Y. Sang63,72, M. Saur54, W. Shan26, X. Y. Shan63,72, L. L. Shang20, M. Shao63,72, L. Shekhtman3, C. P. Shen11, J. M. Shen28, Z. T. Shen63,72, H. C. Shi63,72, X. D. Shi63,72, B. Shwartz3, A. Sokolov3, J. J. Song20, W. M. Song36, Y. Song63,72, Y. X. Song10, A. Sukharev3,51, J. F. Sun20, L. Sun77, X. M. Sun6, Y. J. Sun63,72, Z. P. Sun33, J. Tang64, S. S. Tang63,72, Z. B. Tang63,72, C. H. Tian63,72, J. S. Tian78, Y. Tian33, Y. Tikhonov3, K. Todyshev3,51, T. Uglov52, V. Vorobyev3, B. D. Wan15, B. L. Wang69, B. Wang63,72, D. Y. Wang54, G. Y. Wang21, G. L. Wang17, H. L. Wang61, J. Wang49, J. H. Wang63,72, J. C. Wang63,72, M. L. Wang32, R. Wang63,72, R. Wang33, S. B. Wang59, W. Wang59, W. P. Wang63,72, X. C. Wang20, X. D. Wang74, X. L. Wang63,72, X. L. Wang20, X. P. Wang2, X. F. Wang41, Y. D. Wang48, Y. P. Wang6, Y. Q. Wang17, Y. L. Wang20, Y. G. Wang63,72, Z. Y. Wang63,72, Z. Y. Wang73, Z. L. Wang69, Z. G. Wang48, D. H. Wei13, X. L. Wei33, X. M. Wei49, Q. G. Wen1, X. J. Wen33, G. Wilkinson71, B. Wu63,72, J. J. Wu69, L. Wu44, P. Wu62, T. W. Wu15, Y. S. Wu63,72, L. Xia63,72, T. Xiang54, C. W. Xiao7,13, D. Xiao41, M. Xiao74, K. P. Xie2, Y. H. Xie6, Y. Xing9, Z. Z. Xing32, X. N. Xiong7, F. R. Xu37, J. Xu82, L. L. Xu63,72, Q. N. Xu30, X. C. Xu63,72, X. P. Xu60, Y. C. Xu79, Y. P. Xu48, Y. Xu43, Z. Z. Xu63,72, D. W. Xuan63,72, F. F. Xue49, L. Yan11, M. J. Yan4, W. B. Yan63,72, W. C. Yan82, X. S. Yan20, B. F. Yang20, C. Yang57, H. J. Yang59, H. R. Yang33, H. T. Yang63,72, J. F. Yang63,72, S. L. Yang69, Y. D. Yang20, Y. H. Yang69, Y. S. Yang33, Y. L. Yang20, Z. W. Yang54, Z. Y. Yang63,72, D. L. Yao28, H. Yin6, X. H. Yin33, N. Yokozaki81, S. Y. You41, Z. Y. You64, C. X. Yu46, F. S. Yu41, G. L. Yu48, H. L. Yu63,72, J. S. Yu28, J. Q. Yu28, L. Yuan2, X. B. Yuan6, Z. Y. Yuan54, Y. F. Yue20, M. Zeng66, S. Zeng74, A. L. Zhang63,72, B. W. Zhang6, G. Y. Zhang20, G. Q. Zhang31, H. J. Zhang63,72, H. B. Zhang69, J. Y. Zhang69, J. L. Zhang21, J. Zhang64, L. Zhang57, L. M. Zhang66, Q. A. Zhang2, R. Zhang75, S. L. Zhang28, T. Zhang59, X. Zhang4, Y. Zhang63,72, Y. J. Zhang2, Y. X. Zhang54, Y. T. Zhang82, Y. F. Zhang63,72, Y. C. Zhang62, Y. Zhang18, Y. Zhang74, Y. M. Zhang64, Y. L. Zhang63,72, Z. H. Zhang74, Z. Y. Zhang77, Z. Y. Zhang63,72, H. Y. Zhao33, J. Zhao21, L. Zhao63,72, M. G. Zhao46, Q. Zhao32, R. G. Zhao49, R. P. Zhao69, Y. X. Zhao33, Z. G. Zhao63,72, Z. X. Zhao30, A. Zhemchugov39, B. Zheng74, L. Zheng8, Q. B. Zheng73, R. Zheng49, Y. H. Zheng69, X. H. Zhong26, H. J. Zhou20, H. Q. Zhou62, H. Zhou63,72, S. H. Zhou30, X. Zhou77, X. K. Zhou6, X. P. Zhou2, X. R. Zhou63,72, Y. L. Zhou15, Y. Zhou63,72, Y. X. Zhou69, Z. Y. Zhou62, J. Y. Zhu21, K. Zhu32, R. D. Zhu60, R. L. Zhu44, S. H. Zhu54, Y. C. Zhu63,72, Z. A. Zhu63,72, V. Zhukova40, V. Zhulanov3, B. S. Zou4,69,33, Y. B. Zuo42 |
1. Anhui University, Hefei 230039, China 2. Beihang University, Beijing 100191, China 3. Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia 4. CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China 5. Cavendish Laboratory, University of Cambridge, JJ Thomson Ave, Cambridge CB3 0HE, United Kingdom 6. Central China Normal University, Wuhan 430079, China 7. Central South University, Changsha 410083, China 8. China University of Geosciences, Wuhan 430074, China 9. China University of Mining and Technology, Xuzhou 221116, China 10. École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland 11. Fudan University, Shanghai 200433, China 12. Goethe University Frankfurt, D-60325 Frankfurt am Main, Germany 13. Guangxi Normal University, Guilin 541004, China 14. Guangxi Uninversity, Nanning 530004, China 15. Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China 16. Hebei Normal University, Shijiazhuang 050024, China 17. Hebei University, Baoding 071002, China 18. Hefei University of Technology, Hefei 230601, China 19. Helmholtz Institute Mainz, Staudinger Weg 18, D-55099 Mainz, Germany 20. Henan Normal University, Xinxiang 453007, China 21. Henan University, Kaifeng 475004, China 22. High Energy Physics Center, Chung-Ang University, Seoul 06974, Korea 23. Higher School of Economy 11 Pokrovsky Bulvar, Moscow 109028, Russia 24. Huangshan University, Huangshan 245000, China 25. Hubei University of Automotive Technology, Shiyan 442002, China 26. Hunan Normal University, Changsha 410081, China 27. Hunan University of Science and Technology, Xiangtan 411201, China 28. Hunan University, Changsha 410082, China 29. Indiana University, Bloomington, Indiana 47405, USA 30. Inner Mongolia University, Hohhot 010021, China 31. Institute of Advanced Science Facilities, Shenzhen 518107, China 32. Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China 33. Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China 34. Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, China 35. Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China 36. Jilin University, Changchun 130012, China 37. Jinan University, Guangzhou 510632, China 38. Johannes Gutenberg University of Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany 39. Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia 40. Josef Stefan Institute, 1000 Ljubljana, Slovenia 41. Lanzhou University, Lanzhou 730000, China 42. Liaoning Normal University, Dalian 116029, China 43. Liaoning University, Shenyang 110036, China 44. Nanjing Normal University, Nanjing 210023, China 45. Nanjing University, Nanjing 210023, China 46. Nankai University, Tianjin 300071, China 47. Nanyang Normal University, Nanyang 473061, China 48. North China Electric Power University, Beijing 102206, China 49. Northwestern Polytechnical University, Xi'an 710072, China 50. Novosibirsk State Technical University, Novosibirsk 630073, Russia 51. Novosibirsk State University, Novosibirsk 630090, Russia 52. P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991, Russia 53. Particle and Nuclear Physics Institute, Institute for Basic Science, Daejeon 34126, Korea 54. Peking University, Beijing 100871, China 55. Qufu Normal University, Qufu 273165, China 56. Renmin University of China, Beijing 100872, China 57. Shandong University, Jinan 250100, China 58. Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China 59. Shanghai Jiao Tong University, Shanghai 200240, China 60. Soochow University, Suzhou 215006, China 61. South China Normal University, Guangzhou 510006, China 62. Southeast University, Nanjing 211189, China 63. State Key Laboratory of Particle Detection and Electronics, Beijing 100049, Hefei 230026, China 64. Sun Yat-Sen University, Guangzhou 510275, China 65. Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, USA 66. Tsinghua University, Beijing 100084, China 67. Universitat de València, E-46071 València, Spain 68. University of Bristol, Bristol BS8 1TL, United Kingdom 69. University of Chinese Academy of Sciences, Beijing 100049, China 70. University of Jinan, Jinan 250022, China 71. University of Oxford, Keble Road, Oxford OX13RH, United Kingdom 72. University of Science and Technology of China, Hefei 230026, China 73. University of Shanghai for Science and Technology, Shanghai 200093, China 74. University of South China, Hengyang 421001, China 75. University of Wisconsin-Madison, Wisconsin-Madison 53706, USA 76. University Münster, Wilhelm-Klemm-Str.9, 48149 Münster, Germany 77. Wuhan University, Wuhan 430072, China 78. Xi’an Institute of Optics and Precision Mechanics of Chinese Academy of Sciences, Xi’an 710119, China 79. Yantai University, Yantai 264005, China 80. Yunnan University, Kunming 650500, China 81. Zhejiang University, Hangzhou 310027, China 82. Zhengzhou University, Zhengzhou 450001, China |
|
|
Abstract The super τ-charm facility (STCF) is an electron−positron collider proposed by the Chinese particle physics community. It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of 0.5 × 1035 cm−2·s−1 or higher. The STCF will produce a data sample about a factor of 100 larger than that of the present τ-charm factory — the BEPCII, providing a unique platform for exploring the asymmetry of matter-antimatter (charge-parity violation), in-depth studies of the internal structure of hadrons and the nature of non-perturbative strong interactions, as well as searching for exotic hadrons and physics beyond the Standard Model. The STCF project in China is under development with an extensive R&D program. This document presents the physics opportunities at the STCF, describes conceptual designs of the STCF detector system, and discusses future plans for detector R&D and physics case studies.
|
Keywords
electron−positron collider
tau-charm region
high luminosity
STCF detector
conceptual design
|
Issue Date: 26 September 2023
|
|
1 |
H. Hoddeson L.Brown L.Riordan M. Dresden (Eds.) M., The Rise of the standard model: Particle physics in the 1960s and 1970s, Proceedings, Conference, Stanford, USA, June 24–27, 1992 (1997)
|
2 |
S. Abrams G.. et al.. The mark-II detector for the SLC. Nucl. Instrum. Meth. A, 1989, 281 : 55
https://doi.org/10.1016/0168-9002(89)91217-5
|
3 |
Bernstein D.. et al.. The mark-III spectrometer. Nucl. Instrum. Meth. A, 1984, 226 : 301
https://doi.org/10.1016/0168-9002(84)90043-3
|
4 |
E. Augustin J.. et al.. Dm2: A magnetic detector for the Orsay storage ring DCI. Phys. Scripta, 1981, 23 : 623
https://doi.org/10.1088/0031-8949/23/4B/004
|
5 |
Asner (CLEO) D., The CLEO-c research program, AIP Conf. Proc. 722, 82 (2004), arXiv: hep-ex/0312034
|
6 |
Z. Bai J.. et al.. The BES detector. Nucl. Instrum. Meth. A, 1994, 344 : 319
https://doi.org/10.1016/0168-9002(94)90081-7
|
7 |
Z. Bai J.. et al.. Measurement of the mass of the tau lepton. Phys. Rev. Lett., 1992, 69 : 3021
https://doi.org/10.1103/PhysRevLett.69.3021
|
8 |
Ablikim M.(BESIII) ., et al.., Precision measurement of the mass of the τ lepton, Phys. Rev. D 90, 012001 (2014), arXiv: 1405.1076
|
9 |
Z. Bai J.(BES) ., et al.., Measurements of the cross section for e+e− → Hadrons at center-of-mass energies from 2 to 5 GeV, Phys. Rev. Lett. 88, 101802 (2002), arXiv: hep-ex/0102003
|
10 |
Z. Bai J.. et al.. Evidence for the leptonic decay D → μνμ. Phys. Lett. B, 1998, 429 : 188
https://doi.org/10.1103/PhysRevLett.88.101802
|
11 |
Z. Bai J.(BES) ., et al.., Observation of a near-threshold enhancement in the p p ¯ mass spectrum from radiative J/ψ → γ pp ¯ decays, Phys. Rev. Lett. 91, 022001 (2003), arXiv: hep-ex/0303006
|
12 |
Ablikim M.(BES) ., et al.., Observation of a resonance X(1835) in J/ψ → γπ+π−η', Phys. Rev. Lett. 95, 262001 (2005), arXiv: hep-ex/0508025
|
13 |
Ablikim M.(BESIII) ., et al.., Spin-parity analysis of pp ¯ mass threshold structure in J/ψ and ψ(3686) radiative decays, Phys. Rev. Lett. 108, 112003 (2012), arXiv: 1112.0942
|
14 |
Ablikim M.(BESIII) ., et al.., Observation of an anomalous line shape of the η' π+π− mass spectrum near the p p ¯ mass threshold in J/ψ → γη' π+π−, Phys. Rev. Lett. 117, 042002 (2016), arXiv: 1603.09653
|
15 |
Ablikim M.(BES) ., et al.., The sigma pole in J/ψ → ωπ+π−, Phys. Lett. B 598, 149 (2004), arXiv: hep-ex/0406038
|
16 |
Ablikim M.(BES) ., et al.., Observation of charged κ in J/ψ → K*(892)∓ Ksπ±, K*(892)∓ → Ksπ∓ at BESII, Phys. Lett. B 698, 183 (2011), arXiv: 1008.4489
|
17 |
Zhang C.-A., in: 32nd International Conference on High Energy Physics (2004), pp 993–997
|
18 |
Ablikim M.(BESIII) ., et al.., Design and construction of the BESIII detector, Nucl. Instrum. Meth. A 614, 345 (2010), arXiv: 0911.4960
|
19 |
Ablikim M.(BESIII) ., et al.., Observation of an isoscalar resonance with exotic JPC = 1−+ quantum numbers in J/ψ→γηη', Phys. Rev. Lett. 129, 192002 (2022), arXiv: 2202.00621 [hep-ex]
|
20 |
Ablikim M.(BESIII) ., et al.., Partial wave analysis of J/ψ→γηη', Phys. Rev. D 106, 072012 (2022), arXiv: 2202.00623 [hep-ex]
|
21 |
Horn D., Mandula J.. A model of mesons with constituent gluons. Phys. Rev. D, 1978, 17 : 898
https://doi.org/10.1103/PhysRevD.17.898
|
22 |
Ablikim M.(BESIII Collaboration) ., et al.., Observation of a state X(2600) in the π+π−η' system in the process J/ψ → γπ+π−η', Phys. Rev. Lett. 129, 042001 (2022), arXiv: 2201.10796 [hep-ex]
|
23 |
Ablikim M.(BESIII) ., et al.., First observation of η(1405) decays into f0(980)π0, Phys. Rev. Lett. 108, 182001 (2012), arXiv: 1201.2737
|
24 |
Ablikim M.(BESIII) ., et al.., Observation of a00(980)-f0(980) mixing, Phys. Rev. Lett. 121, 022001 (2018), arXiv: 1802.00583
|
25 |
N. Achasov N., A. Devyanin S., N. Shestakov G.. s*−δ0 mixing as the threshold phenomenon. Phys. Lett. B, 1979, 88 : 367
https://doi.org/10.1016/0370-2693(79)90488-X
|
26 |
Ablikim M.(BESIII) ., et al.., Polarization and entanglement in baryon−antibaryon pair production in electron-positron annihilation, Nature Phys. 15, 631 (2019), arXiv: 1808.08917 [hep-ex]
|
27 |
Ablikim M.(BESIII) ., et al.., Precise measurements of decay parameters and CP asymmetry with entangled Λ−Λ ¯ pairs, Phys. Rev. Lett. 129, 131801 (2022), arXiv: 2204.11058 [hep-ex]
|
28 |
Ablikim M.(BESIII) ., et al.., Probing CP symmetry and weak phases with entangled double- strange baryons, Nature 606, 64 (2022), arXiv: 2105.11155[hep-ex]
|
29 |
Ablikim M.(BESIII) ., et al.., Analysis of D+ → K ¯0 e+νe and D+ → π0e+νe semileptonic decays, Phys. Rev. D 96, 012002 (2017), arXiv: 1703.09084
|
30 |
Ablikim M.(BESIII) ., et al.., Study of dynamics of D0 → K−e+νe and D0 → π−e+νe decays, Phys. Rev. D 92, 072012 (2015), arXiv: 1508.07560
|
31 |
Ablikim M.(BESIII) ., et al.., Determination of the pseudoscalar decay constant fDs+ via Ds+ → µ+νµ, Phys. Rev. Lett. 122, 071802 (2019), arXiv: 1811.10890
|
32 |
Ablikim M.(BESIII) ., et al.., Measurement of the Ds+ → ℓ+νℓ branching fractions and the decay constant fD+, Phys. Rev. D 94, 072004 (2016), arXiv: 1608.06732
|
33 |
Ablikim M.(BESIII) ., et al.., Measurements of absolute hadronic branching fractions of the Λ+ baryon, Phys. Rev. Lett. 116, 052001 (2016), arXiv: 1511.08380
|
34 |
L. Workman R., (Particle Data Group) .. et al.. Review of Particle Physics. PTEP, 2022, 2022 : 083C01
https://doi.org/10.1093/ptep/ptac097
|
35 |
Ablikim M.(BESIII) ., et al.., Measurement of the D → K−π+ strong phase difference in ψ(3770) → D 0 D ¯ 0, Phys. Lett. B 734, 227 (2014), arXiv: 1404.4691
|
36 |
Ablikim M.(BESIII) ., et al.., Model-independent determination of the relative strong-phase difference between D 0 and D ¯0 → KS,L0π+π− and its impact on the measurement of the ckm angle γ/ϕ3, Phys. Rev. D 101, 112002 (2020), arXiv: 2003.00091
|
37 |
Ablikim M.(BESIII) ., et al.., Improved model-independent determination of the strong-phase difference between D 0 and D ¯0 → KS,L0K+K− decays, Phys. Rev. D 102, 052008 (2020), arXiv: 2007.07959
|
38 |
Ablikim M.(BESIII) ., et al.., Measurement of the Cross Section for e+e− →Hadrons at energies from 2.2324 to 3.6710 GeV, Phys. Rev. Lett. 128, 062004 (2022), arXiv: 2112.11728 [hep-ex]
|
39 |
Davier M.Hoecker A.Malaescu B.Zhang Z., Reevaluation of the hadronic vacuum polarisation contributions to the standard model predictions of the muon g-2 and α(mz2) using newest hadronic cross-section data, Eur. Phys. J. C 77, 827 (2017), arXiv: 1706.09436
|
40 |
Ablikim M.(BESIII) ., et al.., Measurement of the ππ cross section between 600 and 900 mev using initial state radiation, Phys. Lett. B 753, 629 (2016) [Erratum: Phys. Lett. B 812, 135982 (2021)], arXiv: 1507.08188
|
41 |
Grange J.(Muon g-2) ., et al.., Muon (g-2) technical design report, FERMILAB-FN-0992-E, FERMILAB-DESIGN-2014–02 (2015–01), arXiv: 1501.06858
|
42 |
Abi B.(Muon g-2) ., et al.., Measurement of the positive muon anomalous magnetic moment to 0.46 ppm, Phys. Rev. Lett. 126, 141801 (2021), arXiv: 2104.03281[hep-ex]
|
43 |
Mibe (J-PARC g-2) T.. New g-2 experiment at J-PARC. Chin. Phys. C, 2010, 34 : 745
https://doi.org/10.1088/1674-1137/34/6/022
|
44 |
Ablikim M.(BESIII) ., et al.., Measurement of proton electromagnetic form factors in e+e− → pp ¯ in the energy region 2.00–3.08 GeV, Phys. Rev. Lett. 124, 042001 (2020), arXiv: 1905.09001
|
45 |
Ablikim M.(BESIII) ., et al.., Oscillating features in the electromagnetic structure of the neutron, Nature Phys. 17, 1200 (2021), arXiv: 2103.12486 [hep-ex]
|
46 |
Ablikim M.(BESIII) ., et al.., Observation of a cross-section enhancement near mass threshold in e+e− → ΛΛ ¯, Phys. Rev. D 97, 032013 (2018), arXiv: 1709.10236
|
47 |
Ablikim M.(BESIII) ., et al.., Complete measurement of the Λ electromagnetic form factors, Phys. Rev. Lett. 123, 122003 (2019), arXiv: 1903.09421
|
48 |
Ablikim M.(BESIII) ., et al.., Measurements of Σ+ and Σ− time-like electromagnetic form factors for center-of-mass energies from 2.3864 to 3.0200 GeV, Phys. Lett. B 814, 136110 (2021), arXiv: 2009.01404
|
49 |
Ablikim M.(BESIII) ., et al.., Measurement of cross section for e+e− → Ξ− Ξ ¯+ near threshold at BESIII, Phys. Rev. D 103, 012005 (2021), arXiv: 2010.08320
|
50 |
Ablikim M.(BESIII) ., et al.., Observation of a resonant structure in e+e− → K+ K−π0π0, Phys. Rev. Lett. 124, 112001 (2020), arXiv: 2001.04131
|
51 |
Ablikim M.(BESIII) ., et al.., Observation of a structure in e+e− → ϕη' at s from 2.05 to 3.08 GeV, Phys. Rev. D 102, 012008 (2020), arXiv: 2003.13064
|
52 |
Ablikim M.(BESIII) ., et al.., Measurement of e+e− → K+K− cross section at s = 2.00 ~ −3.08 GeV, Phys. Rev. D 99, 032001 (2019), arXiv: 1811.08742
|
53 |
Ablikim M.(BESIII) ., et al.., Cross section measurements of e+e− → K+K−K+K− and ϕK+K− at center-of-mass energies from 2.10 to 3.08 GeV, Phys. Rev. D 100, 032009 (2019), arXiv: 1907.06015
|
54 |
Ablikim M.(BESIII) ., et al.., Observation of a charged charmoniumlike structure in e+e− → π+π− J/ψ at s = 4.26 GeV, Phys. Rev. Lett. 110, 252001 (2013), arXiv: 1303.5949
|
55 |
Ablikim M.(BESIII) ., et al.., Observation of a charged charmoniumlike structure Zc(4020) and search for the Zc(3900) in e+e− → π+π−hc, Phys. Rev. Lett. 111, 242001 (2013), arXiv: 1309.1896
|
56 |
Ablikim M.(BESIII) ., et al.., Observation of a near-threshold structure in the K+ recoil-mass spectra in e+e− → K+(Ds−D*0 + Ds*−D0), Phys. Rev. Lett. 126, 102001 (2021), arXiv: 2011.07855
|
57 |
Ablikim M.(BESIII) ., et al.., Precise measurement of the e+e− → π+π− J/ψ cross section at center- of-mass energies from 3.77 to 4.60 GeV, Phys. Rev. Lett. 118, 092001 (2017), arXiv: 1611.01317
|
58 |
Ablikim M.(BESIII) ., et al.., Observation of e+e− → γX(3872) at BESIII, Phys. Rev. Lett. 112, 092001 (2014), arXiv: 1310.4101
|
59 |
J. Marciano W.. The tau decay puzzle. Phys. Rev. D, 1992, 45 : 721
https://doi.org/10.1103/PhysRevD.45.R721
|
60 |
Aaij R.(LHCb) ., et al.., Observation of the doubly charmed baryon Ξ cc ++, Phys. Rev. Lett. 119, 112001 (2017), arXiv: 1707.01621
|
61 |
P. Peng H., et al.. Physics Potential of a Super tau-Charm Facility, Snowmass2021-Letter of Interest (2021)
|
62 |
Luo Q., in: 8th International Particle Accelerator Conference (2017)
|
63 |
Biagini M., Super τ/charm project in Italy (2014)
|
64 |
Adachi I., E. Browder T., Križan P., Tanaka S., Ushiroda (Belle-II) Y.. Detectors for extreme luminosity: Belle II. Nucl. Instrum. Meth. A, 2018, 907 : 46
https://doi.org/10.1016/j.nima.2018.03.068
|
65 |
A. Alves A.. et al.. The LHCB detector at the LHC. JINST, 2008, 3 : S08005
https://doi.org/10.1088/1748-0221/3/08/S08005
|
66 |
Altmannshofer W.(Belle II) ., et al.., The Belle II Physics Book, PTEP 2019, 123C01 (2019) [Erratum: PTEP 2020, 029201 (2020)], arXiv: 1808.10567 [hep-ex]
|
67 |
Aaij R.(LHCb) ., et al.., Physics case for an LHCB upgrade II − opportunities in flavour physics, and beyond, in the HL-LHC era, LHCB-PUB-2018-009, CERN-LHCC-2018–027 (2018), arXiv: 1808.08865 [hep-ex]
|
68 |
Aad G.(ATLAS) ., et al.., Observation of a new particle in the search for the standard model Higgs boson with the atlas detector at the LHC, Phys. Lett. B 716, 1 (2012), arXiv: 1207.7214
|
69 |
Chatrchyan S.(CMS) ., et al.., Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716, 30 (2012), arXiv: 1207.7235
|
70 |
M. Asner D., et al.., Physics at BES-III, Int. J. Mod. Phys. A 24, S1 (2009), arXiv: 0809.1869 [hep-ex]
|
71 |
Ablikim M.(BESIII) ., et al.., Future physics programme of BESIII, Chin. Phys. C 44, 040001 (2020), arXiv: 1912.05983
|
72 |
Grossman Y.Passemar E.Schacht S., On the statistical treatment of the Cabibbo angle anomaly, JHEP 07, 068 (2020), arXiv: 1911.07821 [hep-ph]
|
73 |
P. Lees J.(BaBar) ., et al.., Search for CP violation in the decay τ− → π−Ks0(≥0π0)ντ, Phys. Rev. D 85, 031102 (2012) [Erratum: Phys. Rev. D 85, 099904 (2012)], arXiv: 1109.1527 [hep-ex]
|
74 |
S. Tsai Y.. Production of polarized τ pairs and tests of CP violation using polarized e± colliders near threshold. Phys. Rev. D, 1995, 51 : 3172
https://doi.org/10.1103/PhysRevD.51.3172
|
75 |
Adlarson P.Kupsc A., CP symmetry tests in the cascade−anticascade decay of charmonium, Phys. Rev. D 100, 114005 (2019), arXiv: 1908.03102 [hep-ph]
|
76 |
S. Swanson E., The new heavy mesons: A status report, Phys. Rept. 429, 243 (2006), arXiv: hep-ph/0601110
|
77 |
B. Voloshin M., Charmonium, Prog. Part. Nucl. Phys. 61, 455 (2008), arXiv: 0711.4556 [hep-ph]
|
78 |
Chen H.-X.Chen W.Liu X.Zhu S.-L., The hidden-charm pentaquark and tetraquark states, Phys. Rep. 639, 1 (2016), arXiv: 1601.02092 [hep-ph]
|
79 |
Hosaka A.Iijima T.Miyabayashi K.Sakai Y.Yasui S., Exotic hadrons with heavy flavors: X, Y, Z, and related states, PTEP 2016, 062C01 (2016), arXiv: 1603.09229 [hep-ph]
|
80 |
F. Lebed R.E. Mitchell R.S. Swanson E., Heavy-quark QCD exotica, Prog. Part. Nucl. Phys. 93, 143 (2017), arXiv: 1610.04528 [hep-ph]
|
81 |
Esposito A.Pilloni A.D. Polosa A., Multiquark Resonances, Phys. Rep. 668, 1 (2017), arXiv: 1611.07920 [hep-ph]
|
82 |
Guo F.-K.Hanhart C.Meißner U.-G.Wang Q.Zhao Q. Zou B.-S., Hadronic molecules, Rev. Mod. Phys. 90, 015004 (2018) [Erratum: Rev. Mod. Phys. 94, 029901 (2022)], arXiv: 1705.00141 [hep-ph]
|
83 |
Ali A.S. Lange J.Stone S., Exotics: Heavy pentaquarks and tetraquarks, Prog. Part. Nucl. Phys. 97, 123 (2017), arXiv: 1706.00610 [hep-ph]
|
84 |
L. Olsen S.Skwarnicki T.Zieminska D., Nonstandard heavy mesons and baryons: Experimental evidence, Rev. Mod. Phys. 90, 015003 (2018), arXiv: 1708.04012 [hep-ph]
|
85 |
Karliner M.L. Rosner J.Skwarnicki T., Multiquark states, Ann. Rev. Nucl. Part. Sci. 68, 17 (2018), arXiv: 1711.10626 [hep-ph]
|
86 |
Yuan C.-Z., The XYZ states revisited, Int. J. Mod. Phys. A 33, 1830018 (2018), arXiv: 1808.01570 [hep-ex]
|
87 |
Cerri A., et al.., Report from Working Group 4: Opportunities in flavour physics at the HL-LHC and HE-LHC, CERN Yellow Rep. Monogr. 7, 867 (2019), arXiv: 1812.07638 [hep-ph]
|
88 |
Liu Y.-R.Chen H.-X.Chen W.Liu X.Zhu S.-L., Pentaquark and tetraquark states, Prog. Part. Nucl. Phys. 107, 237 (2019), arXiv: 1903.11976 [hep-ph]
|
89 |
Brambilla N.Eidelman S.Hanhart C.Nefediev A.Shen C.-P. E. Thomas C.Vairo A.Yuan C.-Z., The XYZ states: Experimental and theoretical status and perspectives, Phys. Rept. 873, 1 (2020), arXiv: 1907.07583 [hep-ex]
|
90 |
Guo F.-K.Liu X.-H.Sakai S., Threshold cusps and triangle singularities in hadronic reactions, Prog. Part. Nucl. Phys. 112, 103757 (2020), arXiv: 1912.07030 [hep-ph]
|
91 |
Chen H.-X.Chen W.Liu X.Liu Y.-R.Zhu S.-L., An updated review of the new hadron states, Rep. Prog. Phys. 86, 026201 (2023), arXiv: 2204.02649 [hep-ph]
|
92 |
Godfrey S., Isgur N.. Mesons in a relativized quark model with chromodynamics. Phys. Rev. D, 1985, 32 : 189
https://doi.org/10.1103/PhysRevD.32.189
|
93 |
Ablikim M.(BESIII) ., et al.., Observation of a near-threshold structure in the K+ recoil-mass spectra in e+e- → K+(Ds−D*0 + Ds*−D0), Phys. Rev. Lett. 126, 102001 (2021), arXiv: 2011.07855 [hep-ex]
|
94 |
Aaij R.(LHCb) ., et al.., Observation of new resonances decaying to J/ψK+ and J/ψϕ, Phys. Rev. Lett. 127, 082001 (2021), arXiv: 2103.01803 [hep-ex]
|
95 |
Cleven M.Guo F.-K.Hanhart C.Wang Q.Zhao Q., Employing spin symmetry to disentangle different models for the XYZ states, Phys. Rev. D 92, 014005 (2015), arXiv: 1505.01771 [hep-ph]
|
96 |
Wang Q.Hanhart C.Zhao Q., Decoding the riddle of Y(4260) and Zc(3900), Phys. Rev. Lett. 111, 132003 (2013), arXiv: 1303.6355 [hep-ph]
|
97 |
Pilloni A.Fernandez-Ramirez C.Jackura A. Mathieu V.Mikhasenko M.Nys J.P. Szczepaniak (JPAC) A., Amplitude analysis and the nature of the Zc(3900), Phys. Lett. B 772, 200 (2017), arXiv: 1612.06490 [hep-ph]
|
98 |
Yang Z.Cao X.Guo F.-K.Nieves J.P. Valderrama M., Strange molecular partners of the Zc(3900) and Zc(4020), Phys. Rev. D 103, 074029 (2021), arXiv: 2011.08725 [hep-ph]
|
99 |
E. Bondar A.Garmash A.I. Milstein A.Mizuk R.B. Voloshin M., Heavy quark spin structure in Zb resonances, Phys. Rev. D 84, 054010 (2011), arXiv: 1105.4473 [hep-ph]
|
100 |
Cao Q.-F.Qi H.-R.Wang Y.-F.Zheng H.-Q., Discussions on the line-shape of the X(4660) resonance, Phys. Rev. D 100, 054040 (2019), arXiv: 1906.00356 [hep-ph]
|
101 |
Dong X.-K.Guo F.-K.Zou B.-S., A survey of heavy−antiheavy hadronic molecules, Prog. Phys. 41, 65 (2021), arXiv: 2101.01021 [hep-ph]
|
102 |
Chao K.-T.Guo F.-K.Zhang Y.-J., Production of J/ψpp ¯ in electron−positron collisions (2023) (in preparation)
|
103 |
Ma Y.-Q.Zhang Y.-J.Chao K.-T., QCD Corrections to e+e− → J/ψ + gg at B factories, Phys. Rev. Lett. 102, 162002 (2009), arXiv: 0812.5106 [hep-ph]
|
104 |
Shen C.-W.Guo F.-K.Xie J.-J.Zou B.-S., Disentangling the hadronic molecule nature of the Pc(4380) pentaquark-like structure, Nucl. Phys. A 954, 393 (2016), arXiv: 1603.04672 [hep-ph]
|
105 |
Zhang Y.-J.Gao Y.-j.Chao K.-T., Next-to-leading-order QCD correction to e+e− → J/ψ + ηc at s = 10.6 GeV, Phys. Rev. Lett. 96, 092001 (2006), arXiv: hep-ph/0506076
|
106 |
Zhang Y.-J.Chao K.-T., Double-charm production e+e− → J/ψ + c c ¯ at B factories with next-to-leading-order QCD corrections, Phys. Rev. Lett. 98, 092003 (2007), arXiv: hep-ph/0611086
|
107 |
Chao K.-T.. The (cc)−(c ¯c) (diquark−anti-diquark) states in e+e− annihilation. Z. Phys. C, 1981, 7 : 317
https://doi.org/10.1007/BF01431564
|
108 |
Karliner M.Nussinov S.L. Rosner J., QQQQ ¯ states: Masses, production, and decays, Phys. Rev. D 95, 034011 (2017), arXiv: 1611.00348 [hep-ph]
|
109 |
R. Debastiani V.Aceti F.Liang W.-H. Oset E., Revising the f1(1420) resonance, Phys. Rev. D 95, 034015 (2017), arXiv: 1611.05383 [hep-ph]
|
110 |
Wang G.-J.Meng L.Zhu S.-L., Spectrum of the fully-heavy tetraquark state QQQ′ ¯Q′ ¯, Phys. Rev. D 100, 096013 (2019), arXiv: 1907.05177 [hep-ph]
|
111 |
N. Anwar M.Ferretti J.Guo F.-K.Santopinto E.Zou B.-S., Spectroscopy and decays of the fully-heavy tetraquarks, Eur. Phys. J. C 78, 647 (2018), arXiv: 1710.02540 [hep-ph]
|
112 |
Aaij R.(LHCb) ., et al.., Observation of structure in the J/ψ-pair mass spectrum, Sci. Bull. 65, 1983 (2020), arXiv: 2006.16957 [hep-ex]
|
113 |
Liu L.Moir G.Peardon M.M. Ryan S.E. Thomas C.Vilaseca P.J. Dudek J.G. Edwards R.Joo B.G. Richards (Hadron Spectrum) D., Excited and exotic charmonium spectroscopy from lattice QCD, JHEP 07, 126 (2012), arXiv: 1204.5425 [hep-ph]
|
114 |
Zhu S.-L., The Possible interpretations of Y(4260), Phys. Lett. B 625, 212 (2005), arXiv: hep-ph/0507025
|
115 |
Bhardwaj V.(Belle) ., et al.., Evidence of a new narrow resonance decaying to χc1γ in B → χc1γK, Phys. Rev. Lett. 111, 032001 (2013), arXiv: 1304.3975 [hep-ex]
|
116 |
Ablikim M.(BESIII) ., et al.., Observation of the ψ(13 D2) state in e+e− → π+π−γχc1 at BESIII, Phys. Rev. Lett. 115, 011803 (2015), arXiv: 1503.08203 [hep-ex]
|
117 |
Yang Y.-B.Chen Y.Gui L.-C.Liu C.Liu Y.-B. Liu Z.Ma J.-P.Zhang (CLQCD) J.-B., Lattice study on ηc2 and X(3872), Phys. Rev. D 87, 014501 (2013), arXiv: 1206.2086 [hep-lat]
|
118 |
Li H.-B.Lyu X.-R., Study of the standard model with weak decays of charmed hadrons at BESIII, Natl. Sci. Rev. 8, nwab181 (2021), arXiv: 2103.00908 [hep-ex]
|
119 |
Bazavov A., et al.., B- and D-meson leptonic decay constants from four-flavor lattice QCD, Phys. Rev. D 98, 074512 (2018), arXiv: 1712.09262 [hep-lat]
|
120 |
Ablikim M.(BESIII) ., et al.., Precision measurements of B(D+ → µ+νµ), the pseudoscalar decay constant fD+, and the quark mixing matrix element |Vcd|, Phys. Rev. D 89, 051104 (2014), arXiv: 1312.0374 [hep-ex]
|
121 |
Ablikim M.(BESIII) ., et al.., Observation of the leptonic decay D+ → τ+ντ, Phys. Rev. Lett. 123, 211802 (2019), arXiv: 1908.08877 [hep-ex]
|
122 |
Ablikim M.(BESIII Collaboration) ., et al.., Measurement of the absolute branching fractions for purely leptonic Ds+ decays, Phys. Rev. D 104, 052009 (2021), arXiv: 2102.11734 [hep-ex]
|
123 |
S. Amhis Y.(Heavy Flavor Averaging Group .HFLAV), et al.., Averages of b-hadron, c-hadron, and τ-lepton properties as of 2021, Phys. Rev. D 107, 052008 (2023), arXiv: 2206.07501 [hep-ex]
|
124 |
Ablikim M.(BESIII) ., et al.., Measurement of the absolute branching fraction of Ds+ → τ+ντ via τ+ → e+νeν ¯τ, Phys. Rev. Lett. 127, 171801 (2021), arXiv: 2106.02218 [hep-ex]
|
125 |
Ablikim M.(BESIII) ., et al.., Determination of the pseudoscalar decay constant f Ds+ via Ds+ → µ+νµ, Phys. Rev. Lett. 122, 071802 (2019), arXiv: 1811.10890 [hep-ex]
|
126 |
Liu J.Shi X.Li H.Zhou X.Zheng B., Prospects of CKM elements |Vcs| and decay constant f Ds + in D s+ → µ+νµ decay at STCF, Eur. Phys. J. C 82, 337 (2022), arXiv: 2109.14969 [hep-ex]
|
127 |
Li H.Luo T. Shi X.Zhou X., Feasibility study of D s+ → τ+ντ decay and test of lepton flavor universality with leptonic Ds+ decays at STCF, Eur. Phys. J. C 82, 310 (2022), arXiv: 2110.08864 [hep-ex]
|
128 |
Charles J.Hocker A.Lacker H.Laplace S.R. Le Diberder F.Malcles J.Ocariz J.Pivk M. Roos (CKMfitter Group) L., CP violation and the CKM matrix: Assessing the impact of the asymmetric B factories, Eur. Phys. J. C 41, 1 (2005), arXiv: hep-ph/0406184
|
129 |
CKMfitter Group, URL: ckmfitter.in2p3.fr/ (2022)
|
130 |
Bona M.(UTfit) ., et al.., The 2004 UTfit collaboration report on the status of the unitarity triangle in the standard model, JHEP 07, 028 (2005), arXiv: hep-ph/0501199
|
131 |
UTfit Collaboration, URL: utfit.org/UTfit/WebHome (2022)
|
132 |
Belanger G., Q. Geng C.. T-violating muon polarization in Kμ3 decays. Phys. Rev. D, 1991, 44 : 2789
https://doi.org/10.1103/PhysRevD.44.2789
|
133 |
Grossman Y., Beyond the standard model with B and K physics, Int. J. Mod. Phys. A 19, 907 (2004), arXiv: hep-ph/0310229
|
134 |
Wang W.Yu F.-S.Zhao Z.-X., Novel method to reliably determine the photon helicity in B → K1γ, Phys. Rev. Lett. 125, 051802 (2020), arXiv: 1909.13083 [hep-ph]
|
135 |
Fajfer S.Nisandzic I.Rojec U., Discerning new physics in charm meson leptonic and semileptonic decays, Phys. Rev. D 91, 094009 (2015), arXiv: 1502.07488 [hep-ph]
|
136 |
Ablikim M.(BESIII) ., et al.., Measurement of the branching fraction for the semileptonic decay D0(+) → π−(0)µ+νµ and test of lepton flavor universality, Phys. Rev. Lett. 121, 171803 (2018), arXiv: 1802.05492 [hep-ex]
|
137 |
Ablikim M.(BESIII) ., et al.., Study of the D0 → K−µ+νµ dynamics and test of lepton flavor universality with D0 → K−ℓ+νℓ decays, Phys. Rev. Lett. 122, 011804 (2019), arXiv: 1810.03127 [hep-ex]
|
138 |
F. Falk A.Grossman Y.Ligeti Z.Nir Y.A. Petrov A., D0−D0 mass difference from a dispersion relation, Phys. Rev. D 69, 114021 (2004), arXiv: hep-ph/0402204
|
139 |
T. D’Agnolo R.Grosso G.Pierini M. Wulzer A.Zanetti M., Learning multivariate new physics, Eur. Phys. J. C 81, 89 (2021), arXiv: 1912.12155 [hep-ph]
|
140 |
HFLAV Collaboration, URL: hflav.web.cern.ch/ (2022)
|
141 |
O’Leary B.(SuperB) ., et al.., SuperB progress reports−Physics, arXiv: 1008.1541 [hep-ex] (2010)
|
142 |
Xing Z.-Z.. An overview of D0 anti-D0 mixing and CP violation. Chin. Phys. C, 2008, 32 : 483
https://doi.org/10.1088/1674-1137/32/6/015
|
143 |
Xing Z.-Z., D 0−D ¯0 mixing and CP violation in neutral D-meson decays, Phys. Rev. D 55, 196 (1997), arXiv: hep-ph/9606422
|
144 |
Xing Z.-Z., Effect of K0−anti-K0 mixing on CP asymmetries in weak decays of D and B mesons, Phys. Lett. B 353, 313 (1995), [Erratum: Phys. Lett. B 363, 266 (1995)], arXiv: hep-ph/9505272
|
145 |
Yu F.-S.Wang D.Li H.-N., CP asymmetries in charm decays into neutral kaons, Phys. Rev. Lett. 119, 181802 (2017), arXiv: 1707.09297 [hep-ph]
|
146 |
Aaij R.(LHCb) ., et al.., Observation of CP violation in charm decays, Phys. Rev. Lett. 122, 211803 (2019), arXiv: 1903.08726 [hep-ex]
|
147 |
Saur M.Yu F.-S., Charm CPV: Observation and prospects, Sci. Bull. 65, 1428 (2020), arXiv: 2002.12088[hep-ex]
|
148 |
Cheng H.-Y.Chiang C.-W., Direct CP violation in two-body hadronic charmed meson decays, Phys. Rev. D 85, 034036 (2012) [Erratum: Phys. Rev. D 85, 079903 (2012)], arXiv: 1201.0785 [hep-ph]
|
149 |
Li H.-N.Lu C.-D.Yu F.-S., Branching ratios and direct CP asymmetries in D → PP decays, Phys. Rev. D 86, 036012 (2012), arXiv: 1203.3120 [hep-ph]
|
150 |
Pirtskhalava D.Uttayarat P., CP violation and flavor SU(3) breaking in D-meson decays, Phys. Lett. B 712, 81 (2012), arXiv: 1112.5451 [hep-ph]
|
151 |
Gronau M., High order U-spin breaking: A precise amplitude relation in D0 decays, Phys. Lett. B 730, 221 (2014) [Addendum: Phys. Lett. B 735, 282 (2014)], arXiv: 1311.1434 [hep-ph]
|
152 |
Buccella F.Lusignoli M.Pugliese A.Santorelli P., CP violation in D meson decays: Would it be a sign of new physics? Phys. Rev. D 88, 074011 (2013), arXiv: 1305.7343[hep-ph]
|
153 |
Buccella F.Paul A.Santorelli P., SU(3)F breaking through final state interactions and CP asymmetries in D → PP decays, Phys. Rev. D 99, 113001 (2019), arXiv: 1902.05564 [hep-ph]
|
154 |
Li H.-N.Lü C.-D.Yu F.-S., Implications on the first observation of charm CPV at LHCb, arXiv: 1903.10638 (2019)
|
155 |
Grossman Y.Schacht S., The emergence of the ΔU = 0 rule in charm physics, JHEP 07, 020 (2019), arXiv: 1903.10952 [hep-ph]
|
156 |
I. Bigi I.Paul A., On CP asymmetries in two-, three- and four-body D decays, JHEP 03, 021 (2012), arXiv: 1110.2862 [hep-ph]
|
157 |
E. Morrissey D.J. Ramsey-Musolf M. Electroweak baryogenesis, New J. Phys. 14, 125003 (2012), arXiv: 1206.2942 [hep-ph]
|
158 |
Bondar A.Poluektov A.Vorobiev V., Charm mixing in a model-independent analysis of correlated D 0 D ¯ 0 decays, Phys. Rev. D 82, 034033 (2010), arXiv: 1004.2350 [hep-ph]
|
159 |
Atwood D.A. Petrov A., Lifetime differences in heavy mesons with time independent measurements, Phys. Rev. D 71, 054032 (2005), arXiv: hep-ph/0207165
|
160 |
Shi Y.Yang J., Time reversal symmetry violation in entangled pseudoscalar neutral charmed mesons, Phys. Rev. D 98, 075019 (2018), arXiv: 1612.07628 [hep-ph]
|
161 |
A. Kostelecky V., Formalism for CPT, T, and Lorentz violation in neutral meson oscillations, Phys. Rev. D 64, 076001 (2001), arXiv: hep-ph/0104120
|
162 |
(LHCb), Simultaneous determination of the CKM angle γ and parameters related to mixing and CP violation in the charm sector, LHCb-CONF-2022-003, CERN-LHCb-CONF-2022-003, CERN-LHCb-CONF-2022-002 (2022)
|
163 |
Gronau M., London D.. How to determine all the angles of the unitarity triangle from B d0 → DKs and B s0 → D0. Phys. Lett. B, 1991, 253 : 483
https://doi.org/10.1016/0370-2693(91)91756-L
|
164 |
Gronau M., Wyler D.. On determining a weak phase from CP asymmetries in charged B decays. Phys. Lett. B, 1991, 265 : 172
|
165 |
Atwood D.Dunietz I.Soni A., Enhanced CP violation with B → K D0(D ¯0) modes and extraction of the Cabibbo−Kobayashi−Maskawa angle γ, Phys. Rev. Lett. 78, 3257 (1997), arXiv: hep-ph/9612433
|
166 |
Atwood D.Dunietz I.Soni A., Improved methods for observing CP violation in B±→ KD and measuring the CKM phase γ, Phys. Rev. D 63, 036005 (2001), arXiv: hep-ph/0008090
|
167 |
Giri A.Grossman Y.Soffer A.Zupan J., Determining γ using B±→ DK± with multibody D decays, Phys. Rev. D 68, 054018 (2003), arXiv: hep-ph/0303187
|
168 |
Ablikim M.(BESIII) ., et al.., Future physics programme of BESIII, Chin. Phys. C 44, 040001 (2020), arXiv: 1912.05983 [hep-ex]
|
169 |
Burdman G.Shipsey I., D 0−D ¯0 mixing and rare charm decays, Ann. Rev. Nucl. Part. Sci. 53, 431 (2003), arXiv: hep-ph/0310076
|
170 |
Golowich E.Hewett J.Pakvasa S.A. Petrov A., Relating D 0−D ¯0 mixing and D0 → l+l− with new physics, Phys. Rev. D 79, 114030 (2009), arXiv: 0903.2830 [hep-ph]
|
171 |
Ablikim M.(BESIII) ., et al.., Search for the rare decays D → h(h('))e+e−, Phys. Rev. D 97, 072015 (2018), arXiv: 1802.09752 [hep-ex]
|
172 |
Ablikim M.(BESIII) ., et al.., Search for the decay D0 → π0νν ¯, Phys. Rev. D 105, L071102 (2022), arXiv: 2112.14236 [hep-ex]
|
173 |
Chen H.-X.Chen W.Liu X.Liu Y.-R.Zhu S.-L., A review of the open charm and open bottom systems, Rep. Prog. Phys. 80, 076201 (2017), arXiv: 1609.08928 [hep-ph]
|
174 |
Kato Y.Iijima T., Open charm hadron spectroscopy at B-factories, Prog. Part. Nucl. Phys. 105, 61 (2019), arXiv: 1810.03748 [hep-ex]
|
175 |
Zupanc A.(Belle) ., et al.., Measurement of the branching fraction B(Λc+ → pK−π+), Phys. Rev. Lett. 113, 042002 (2014), arXiv: 1312.7826 [hep-ex]
|
176 |
Ablikim M.(BESIII) ., et al.., Measurements of absolute hadronic branching fractions of the Λc+ baryon, Phys. Rev. Lett. 116, 052001 (2016), arXiv: 1511.08380 [hep-ex]
|
177 |
B. Yang S.(Belle) ., et al.., First observation of the doubly Cabibbo-suppressed decay of a charmed baryon: Λc + → pK+π−, Phys. Rev. Lett. 117, 011801 (2016), arXiv: 1512.07366[hep-ex]
|
178 |
M. Sirunyan A.(CMS) ., et al.., Measurement of inclusive very forward jet cross sections in proton-lead collisions at sNN = 5.02 TeV, JHEP 05, 043 (2019), arXiv: 1812.01691 [hep-ex]
|
179 |
Ablikim M.(BESIII) ., et al.., Partial wave analysis of the charmed baryon hadronic decay Λc + → Λπ+π0, JHEP 12, 033 (2022), arXiv: 2209.08464 [hep-ex]
|
180 |
Bishai M.(CLEO) ., et al.., Measurement of the decay asymmetry parameters in Λc + → Λπ+ and Λc + → Σ+π0, Phys. Lett. B 350, 256 (1995), arXiv: hep-ex/9502004
|
181 |
Cheng H.-Y.Tseng B., Cabibbo allowed nonleptonic weak decays of charmed baryons, Phys. Rev. D 48, 4188 (1993), arXiv: hep-ph/9304286
|
182 |
K. Sharma K.C. Verma R., A study of weak mesonic decays of Λc and Ξc baryons on the basis of HQET results, Eur. Phys. J. C 7, 217 (1999), arXiv: hep-ph/9803302
|
183 |
Zenczykowski P., Quark and pole models of nonleptonic decays of charmed baryons, Phys. Rev. D 50, 402 (1994), arXiv: hep-ph/9309265
|
184 |
Datta A., Nonleptonic two-body decays of charmed and Lambda(b) baryons, arXiv: hep-ph/9504428 (1995)
|
185 |
Ablikim M.(BESIII) ., et al.., Measurements of weak decay asymmetries of Λc + → pKs0, Λπ+, Σ+π0, and Σ0π+, Phys. Rev. D 100, 072004 (2019), arXiv: 1905.04707 [hep-ex]
|
186 |
K. Li L.(Belle) ., et al.., Search for CP violation and measurement of branching fractions and decay asymmetry parameters for Λc + → Λh+ and Λc + → Σ0h+ (h = K, π), Sci. Bull. 68, 583 (2023), arXiv: 2208.08695 [hep-ex]
|
187 |
B. Li Y.(Belle) ., et al.., First measurements of absolute branching fractions of the Ξc 0 baryon at Belle, Phys. Rev. Lett. 122, 082001 (2019), arXiv: 1811.09738 [hep-ex]
|
188 |
B. Li Y.(Belle) ., et al.., First measurements of absolute branching fractions of the Ξc + baryon at Belle, Phys. Rev. D 100, 031101 (2019), arXiv: 1904.12093 [hep-ex]
|
189 |
Dhir R.S. Kim C., Axial-vector emitting weak nonleptonic decays of Ωc0 baryon, Phys. Rev. D 91, 114008 (2015), arXiv: 1501.04259 [hep-ph]
|
190 |
Cheng H.-Y., Cheung C.-Y., Lin G.-L., C. Lin Y., Yan T.-M., Yu H.-L.. Heavy flavor conserving nonleptonic weak decays of heavy baryons. Phys. Rev. D, 1992, 46 : 5060
|
191 |
Aaij R.(LHCb) ., et al.., First branching fraction measurement of the suppressed decay Ξc 0 → π−Λc +, Phys. Rev. D 102, 071101 (2020), arXiv: 2007.12096 [hep-ex]
|
192 |
S. Tang S.(Belle) ., et al.., Measurement of the branching fraction of Ξc 0→Λc +π− at Belle, Phys. Rev. D 107, 032005 (2023), arXiv: 2206.08527 [hep-ex]
|
193 |
Niu P.-Y.Wang Q.Zhao Q., Study of heavy quark conserving weak decays in the quark model, Phys. Lett. B 826, 136916 (2022), arXiv: 2111.14111 [hep-ph]
|
194 |
Cheng H.-Y.Xu F., Heavy-flavor-conserving hadronic weak decays of charmed and bottom baryons, Phys. Rev. D 105, 094011 (2022), arXiv: 2204.03149 [hep-ph]
|
195 |
Cheng H.-Y.Liu C.-W.Xu F., Heavy-flavor-conserving hadronic weak decays of charmed and bottom baryons: An update, Phys. Rev. D 106, 093005 (2022), arXiv: 2209.00257 [hep-ph]
|
196 |
Perez-Marcial R.Huerta R.Garcia A. Avila-Aoki M., Predictions for semileptonic decays of charm baryons. 2. Nonrelativistic and MIT bag quark models, Phys. Rev. D 40, 2955 (1989) [Erratum: Phys. Rev. D 44, 2203 (1991)]
|
197 |
L. Singleton R.. Semileptonic baryon decays with a heavy quark. Phys. Rev. D, 1991, 43 : 2939
https://doi.org/10.1103/PhysRevD.43.2939
|
198 |
Cheng H.-Y.Tseng B., 1/M corrections to baryonic form-factors in the quark model, Phys. Rev. D 53, 1457 (1996) [Erratum: Phys. Rev. D 55, 1697 (1997)], arXiv: hep-ph/9502391
|
199 |
Pervin M.Roberts W.Capstick S., Semileptonic decays of heavy lambda baryons in a quark model, Phys. Rev. C 72, 035201 (2005), arXiv: nucl-th/0503030
|
200 |
A. Ivanov M.E. Lyubovitskij V.G. Korner J.Kroll P., Heavy baryon transitions in a relativistic three quark model, Phys. Rev. D 56, 348 (1997), arXiv: hep-ph/9612463
|
201 |
Gutsche T.A. Ivanov M.G. Körner J.E. Lyubovitskij V.Santorelli P., Heavy-to-light semileptonic decays of Λb and Λc baryons in the covariant confined quark model, Phys. Rev. D 90, 114033 (2014) [Erratum: Phys. Rev. D 94, 059902 (2016)], arXiv: 1410.6043 [hep-ph]
|
202 |
N. Faustov R.O. Galkin V., Semileptonic decays of Λc baryons in the relativistic quark model, Eur. Phys. J. C 76, 628 (2016), arXiv: 1610.00957 [hep-ph]
|
203 |
W. Luo C.. Heavy to light baryon weak form-factors in the light cone constituent quark model. Eur. Phys. J. C, 1998, 1 : 235
|
204 |
S. Marques de Carvalho R.S. Navarra F.Nielsen M. Ferreira E.G. Dosch H., Form-factors and decay rates for heavy lambda semileptonic decays from QCD sum rules, Phys. Rev. D 60, 034009 (1999), arXiv: hep-ph/9903326
|
205 |
Huang M.-Q.Wang D.-W., Semileptonic decay Λc → Λl+ν from QCD light-cone sum rules, arXiv: hep-ph/0608170 (2006)
|
206 |
Azizi K.Sarac Y.Sundu H., Light cone QCD sum rules study of the semileptonic heavy ΞQ and ΞQ' transitions to Ξ and Σ baryons, Eur. Phys. J. A 48, 2 (2012), arXiv: 1107.5925 [hep-ph]
|
207 |
Meinel S., Λc → Λl+νl form factors and decay rates from lattice QCD with physical quark masses, Phys. Rev. Lett. 118, 082001 (2017), arXiv: 1611.09696 [hep-lat]
|
208 |
Meinel S., Λc → N form factors from lattice QCD and phenomenology of Λc → nℓ+νℓ and Λc → pµ+µ− decays, Phys. Rev. D 97, 034511 (2018), arXiv: 1712.05783 [hep-lat]
|
209 |
Ablikim M.(BESIII) ., et al.., Measurement of the absolute branching fraction for Λc + → Λe+νe, Phys. Rev. Lett. 115, 221805 (2015), arXiv: 1510.02610 [hep-ex]
|
210 |
Cheng H.-Y., Remarks on the strong coupling constants in heavy hadron chiral Lagrangians, Phys. Lett. B 399, 281 (1997), arXiv: hep-ph/9701234
|
211 |
Cheng H.-Y.Cheung C.-Y.Lin G.-L.C. Lin Y.Yan T.-M. Yu H.-L., Chiral Lagrangians for radiative decays of heavy hadrons, Phys. Rev. D 47, 1030 (1993), arXiv: hep-ph/9209262
|
212 |
Jiang N.Chen X.-L.Zhu S.-L., Electromagnetic decays of the charmed and bottom baryons in chiral perturbation theory, Phys. Rev. D 92, 054017 (2015), arXiv: 1505.02999 [hep-ph]
|
213 |
Wang G.-J.Meng L.Zhu S.-L., Radiative decays of the singly heavy baryons in chiral perturbation theory, Phys. Rev. D 99, 034021 (2019), arXiv: 1811.06208 [hep-ph]
|
214 |
Yelton J.(Belle) ., et al.., Study of electromagnetic decays of orbitally excited Ξc baryons, Phys. Rev. D 102, 071103 (2020), arXiv: 2009.03951 [hep-ex]
|
215 |
Li Y.(Belle) ., et al.., First search for the weak radiative decays Λc+→Σ+γ and Ξc0 →Ξ0γ, Phys. Rev. D 107, 032001 (2023), arXiv: 2206.12517 [hep-ex]
|
216 |
Ablikim M.(BESIII) ., et al.., Search for the weak radiative decay Λc + → Σ+γ at BESIII, arXiv: 2212.07214 (2022)
|
217 |
Bondar A.Grabovsky A.Reznichenko A.Rudenko A.Vorobyev V., Measurement of the weak mixing angle at a super charm-tau factory with data-driven monitoring of the average electron beam polarization, JHEP 03, 076 (2020), arXiv: 1912.09760 [hep-ph]
|
218 |
Aaij R.(LHCb) ., et al.., A measurement of the CP asymmetry difference in Λc + → pK−K+ and pπ−π+ decays, JHEP 03, 182 (2018), arXiv: 1712.07051[hep-ex]
|
219 |
I. Bigi I., Probing CP asymmetries in charm baryons decays, arXiv: 1206.4554 (2012)
|
220 |
Shi X.-D.Kang X.-W.Bigi I.Wang W.-P.Peng H.-P., Prospects for CP and P violation in Λc + decays at super tau charm facility, Phys. Rev. D 100, 113002 (2019), arXiv: 1904.12415 [hep-ph]
|
221 |
Aubert B.(BaBar) ., et al.., Observation of a charmed baryon decaying to D0p at a mass near 2.94 GeV/c2, Phys. Rev. Lett. 98, 012001 (2007), arXiv: hep-ex/0603052
|
222 |
Cheng H.-Y.. Charmed baryons circa 2015. Front. Phys. (Beijing), 2015, 10 : 101406
https://doi.org/10.1007/s11467-015-0483-z
|
223 |
Aaij R.(LHCb) ., et al.., Study of the D0p amplitude in Λb0 → D0pπ− decays, JHEP 05, 030 (2017), arXiv: 1701.07873 [hep-ex]
|
224 |
Cheng H.-Y.Chiang C.-W., Quantum numbers of Ωc states and other charmed baryons, Phys. Rev. D 95, 094018 (2017), arXiv: 1704.00396 [hep-ph]
|
225 |
Luo S.-Q.Chen B.Liu Z.-W.Liu X., Resolving the low mass puzzle of Λc(2940)+, Eur. Phys. J. C 80, 301 (2020), arXiv: 1910.14545[hep-ph]
|
226 |
Aaij R.(LHCb) ., et al.., Observation of five new narrow Ωc 0 states decaying to Ξc + K−, Phys. Rev. Lett. 118, 182001 (2017), arXiv: 1703.04639 [hep-ex]
|
227 |
Yelton J.(Belle) ., et al.., Observation of excited Ωc charmed baryons in e+e− collisions, Phys. Rev. D 97, 051102 (2018), arXiv: 1711.07927 [hep-ex]
|
228 |
(LHCb), Observation of new Ωc0 states decaying to the Ξc+K− final state, arXiv: 2302.04733 (2023)
|
229 |
Li W.-D., Mao Y.-J., Wang Y.-F.. The BES-III detector and offline software. Int. J. Mod. Phys. A, 2009, 24S1 : 9
|
230 |
d’Enterria D.Shao H.-S., Prospects for ditauonium discovery at colliders, arXiv: 2302.07365 [hep-ph] (2023)
|
231 |
Davoudiasl H.J. Marciano W., Tale of two anomalies, Phys. Rev. D 98, 075011 (2018), arXiv: 1806.10252 [hep-ph]
|
232 |
Abi B.(Muon g-2) ., et al.., Measurement of the positive muon anomalous magnetic moment to 0.46 ppm, Phys. Rev. Lett. 126, 141801 (2021), arXiv: 2104.03281 [hep-ex]
|
233 |
Eidelman S.Passera M., Theory of the tau lepton anomalous magnetic moment, Mod. Phys. Lett. A22, 159 (2007), arXiv: hep-ph/0701260 [hep-ph]
|
234 |
Abdallah J.(DELPHI) ., et al.., Study of tau-pair production in photon−photon collisions at LEP and limits on the anomalous electromagnetic moments of the tau lepton, Eur. Phys. J. C 35, 159 (2004), arXiv: hep-ex/0406010
|
235 |
Chen X.Wu Y., Search for the electric dipole moment and anomalous magnetic moment of the tau lepton at tau factories, JHEP 10, 089 (2019), arXiv: 1803.00501 [hep-ph]
|
236 |
Bernabeu J.A. Gonzalez-Sprinberg G.Papavassiliou J.Vidal J., Tau anomalous magnetic moment form-factor at super B/flavor factories, Nucl. Phys. B 790, 160 (2008), arXiv: 0707.2496[hep-ph]
|
237 |
Eidelman S.Epifanov D.Fael M.Mercolli L.Passera M., τ dipole moments via radiative leptonic τ decays, JHEP 03, 140 (2016), arXiv: 1601.07987 [hep-ph]
|
238 |
Pich A., Precision Tau Physics, Prog. Part. Nucl. Phys. 75, 41 (2014), arXiv: 1310.7922 [hep-ph]
|
239 |
Amhis Y.(HFLAV) ., et al.., Averages of B-hadron, C-hadron, and tau-lepton properties as of early 2012, arXiv: 1207.1158 (2012)
|
240 |
B. Arbuzov A.V. Kopylova T., Michel parameters in radiative muon decay, JHEP 09, 109 (2016), arXiv: 1605.06612 [hep-ph]
|
241 |
P. Lees J.(BaBar) ., et al.., Measurement of the branching fractions of the radiative leptonic τ decays τ → eγνν ¯ and τ → µγνν ¯ at BABAR, Phys. Rev. D 91, 051103 (2015), arXiv: 1502.01784 [hep-ex]
|
242 |
Shimizu N.(Belle) ., et al.., Measurement of the tau Michel parameters η ¯ and ξκ in the radiative leptonic decay τ− → ℓ−ντν ¯ℓγ, PTEP 2018, 023C01 (2018), arXiv: 1709.08833 [hep-ex]
|
243 |
G. López Castro , P. Roig. A. Flores-Tlalpa, Five-body leptonic decays of muon and tau leptons, JHEP 04, 185 (2016), arXiv: 1508.01822 [hep-ph]
|
244 |
Braaten E., Narison S., Pich A.. QCD analysis of the tau hadronic width. Nucl. Phys. B, 1992, 373 : 581
https://doi.org/10.1016/0550-3213(92)90267-F
|
245 |
Boito D., Golterman M., Jamin M., Mahdavi A., Maltman K., Osborne J., Peris S.. Updated determination of αs from τ decays. Phys. Rev. D, 2012, 85 : 093015
https://doi.org/10.1103/PhysRevD.85.093015
|
246 |
Beneke M.Boito D.Jamin M., Perturbative expansion of τ hadronic spectral function moments and αs extractions, JHEP 01, 125 (2013), arXiv: 1210.8038 [hep-ph]
|
247 |
I. Bigi I.I. Sanda A., A “Known” CP asymmetry in tau decays, Phys. Lett. B 625, 47 (2005), arXiv: hep-ph/0506037
|
248 |
Grossman Y.Nir Y., CP violation in τ±→ π±KS ν and D±→ π±KS: The importance of KS−KL interference, JHEP 04, 002 (2012), arXiv: 1110.3790 [hep-ph]
|
249 |
Bischofberger M.(Belle) ., et al.., Search for CP violation in τ → Ks0 πντ decays at Belle, Phys. Rev. Lett. 107, 131801 (2011), arXiv: 1101.0349 [hep-ex]
|
250 |
Sang H.Shi X.Zhou X.Kang X.Liu J., Feasibility study of CP violation in τ → KS πντ decays at the Super Tau Charm Facility, Chin. Phys. C 45, 053003 (2021), arXiv: 2012.06241 [hep-ex]
|
251 |
Chen F.-Z.Li X.-Q.Yang Y.-D., CP asymmetry in the angular distribution of τ → KS πντ decays, JHEP 05, 151 (2020), arXiv: 2003.05735 [hep-ph]
|
252 |
Bernreuther W.Nachtmann O., CP violating correlations in electron positron annihilation into τ leptons, Phys. Rev. Lett. 63, 2787 (1989) [Erratum: Phys. Rev. Lett. 64, 1072 (1990)]
|
253 |
E. Ralph S., Capasso F., J. Malik R.. New photorefractive effect in graded-gap superlattices. Phys. Rev. Lett., 1990, 64 : 1072
https://doi.org/10.1103/PhysRevLett.64.1072
|
254 |
Inami K.(Belle) ., et al.., Search for the electric dipole moment of the tau lepton, Phys. Lett. B 551, 16 (2003), arXiv: hep-ex/0210066
|
255 |
Bernabeu J.A. Gonzalez-Sprinberg G.Vidal J., CP violation and electric-dipole-moment at low energy tau production with polarized electrons, Nucl. Phys. B 763, 283 (2007), arXiv: hep-ph/0610135
|
256 |
S. Tsai Y., Production of polarized tau pairs and tests of CP violation using polarized e+− colliders near threshold, Phys. Rev. D 51, 3172 (1995), arXiv: hep-ph/9410265
|
257 |
R. Zhou X., Tau LFV decays: Super Tau Charm Factory, URL: indico.fnal.gov/event/44457/ (2020)
|
258 |
V. Bobrov A.E. Bondar A., Search for τ → µ + γ decay at Super c−τ factory, Nucl. Phys. B Proc. Suppl. 225–227, 195 (2012), arXiv: 1206.1909 [hep-ex]
|
259 |
Xiang T.Shi X.-D.Wang D.-Y.Zhou X.-R., Sensitivity study of the charged lepton flavor violating process τ → γµ at STCF, (2023), arXiv: 2305.00483 [hep-ex]
|
260 |
Z. Bai (BES) J.. Measurement of the total cross section for hadronic production by e+e− annihilation at energies between 2.6–5 GeV. Phys. Rev. Lett., 2000, 84 : 594
|
261 |
Z. Bai J.(BES) ., et al.., Measurements of the cross-section for e+e− → hadrons at center-of-mass energies from 2-GeV to 5-GeV, Phys. Rev. Lett. 88, 101802 (2002), arXiv: hep-ex/0102003
|
262 |
V. Anashin V.(KEDR) ., et al.., Precise measurement of Ruds and R between 1.84 and 3.72 GeV at the KEDR detector, Phys. Lett. B 788, 42 (2019), arXiv: 1805.06235 [hep-ex]
|
263 |
Baak M.Kogler R., in: 48th Rencontres de Moriond on Electroweak Interactions and Unified Theories (2013), pp 349–358, arXiv: 1306.0571 [hep-ph]
|
264 |
Abi B.(Muon g-2) ., et al.., Measurement of the positive muon anomalous magnetic moment to 0.46 ppm, Phys. Rev. Lett. 126, 141801 (2021), arXiv: 2104.03281 [hep-ex]
|
265 |
Sterman G., Smith J., C. Collins J., Whitmore J., Brock R., Huston J., Pumplin J., Tung W.-K., Weerts H., Yuan C.-P., Kuhlmann S., Mishra S., G. Morfín J., Olness F., Owens J., Qiu J., E. Soper D.. Handbook of perturbative QCD. Rev. Mod. Phys., 1995, 67 : 157
|
266 |
C. Collins J.E. Soper D., Back-to-back jets in QCD, Nucl. Phys. B 193, 381 (1981) [Erratum: Nucl. Phys. B 213, 545 (1983)]
|
267 |
Pitonyak D., Schlegel M., Metz A.. Polarized hadron pair production from electron−positron annihilation. Phys. Rev. D, 2014, 89 : 054032
https://doi.org/10.1103/PhysRevD.89.054032
|
268 |
Collins J.. Fragmentation of transversely polarized quarks probed in transverse momentum distributions. Nucl. Phys. B, 1993, 396 : 161
|
269 |
Seidl R.(Belle) ., et al.., Measurement of azimuthal asymmetries in inclusive production of hadron pairs in e+e− annihilation at s = 10.58-GeV, Phys. Rev. D 78, 032011 (2008) [Erratum: Phys. Rev. D 86, 039905 (2012)], arXiv: 0805.2975[hep-ex]
|
270 |
Sun P., Yuan F.. Energy evolution for the Sivers asymmetries in hard processes. Phys. Rev. D, 2013, 88 : 034016
https://doi.org/10.1103/PhysRevD.88.034016
|
271 |
Collaboration B.Z. Bai J.Ban Y. G. Bian J., Observation of a near-threshold enhancement in th pp ¯ mass spectrum from radiative J/ψ-γpp ¯ p ¯ decays, Phys. Rev. Lett. 91, 022001 (2003), arXiv: hep-ex/0303006 [hep-ex]
|
272 |
E. A. Aubert (BABAR) B., Study of e+e− → ΛΛ ¯, ΛΣ ¯0 Σ0 Σ ¯ 0 using initial state radiation with BABAR, Phys. Rev. D 76, 092006 (2007).
|
273 |
E. A. Pakhlov (Belle) P.. Measurement of the e+e− → J/ψc c ¯ cross section at s ≈ 10.6 GeV. Phys. Rev. D, 2009, 79 : 071101
|
274 |
Ma Y.-Q.Zhang Y.-J.Chao K.-T., QCD corrections to e+e− → J/ψgg at B factories, Phys. Rev. Lett. 102, 162002 (2008), arXiv: 0812.5106 [hep-ph]
|
275 |
Zhang Y.-J., Ma Y.-Q., Wang K., Chao K.-T.. QCD radiative correction to color-octet J/ψ inclusive production at B factories. Phys. Rev. D, 2010, 81 : 034015
https://doi.org/10.1103/PhysRevD.81.034015
|
276 |
Gong B.Wang J.-X., Next-to-leading-order QCD corrections to e+e− → J/ψ gg at the B factories, Phys. Rev. Lett. 102, 162003 (2009), arXiv: 0901.0117 [hep-ph]
|
277 |
Gong B., Wang J.-X.. Next-to-leading-order QCD corrections to e+e− → J/ψcc ¯ at the B factories. Phys. Rev. D, 2009, 80 : 054015
|
278 |
Brambilla N., et al.., Heavy quarkonium: progress, puzzles, and opportunities, Euro. Phys. J. C 71, 1534 (2011)
|
279 |
B. Collaboration T.Abe K., Observation of double cc ¯ Production in e+e− annihilation at s = 10.6 GeV, Phys. Rev. Lett. 89, 142001 (2002), arXiv: hep-ex/0205104 [hep-ex]
|
280 |
Feng F.Jia Y.Mo Z.Sang W.-L.Zhang J.-Y., Next-to-next-to-leading-order QCD corrections to e+e− → J/ψ + ηc at B factories, arXiv: 1901.08447 (2019)
|
281 |
Zhang Y.-J.Gao Y.-J.Chao K.-T., Next-to-leading order QCD correction to e+e− → J/ψ + ηc at s = 10.6-GeV, Phys. Rev. Lett. 96, 092001 (2006), arXiv: hep-ph/0506076
|
282 |
Zhang Y.-J., Chao K.-T.. Double-charm production e+e− → J/ψ + cc ¯ at B factories with next-to-leading-order QCD corrections. Phys. Rev. Lett., 2007, 98 : 092003
|
283 |
Brambilla N., et al.., QCD and strongly coupled gauge theories: Challenges and perspectives, Eur. Phys. J. C 74, 2981 (2014), arXiv: 1404.3723 [hep-ph]
|
284 |
A. Meyer C., Van Haarlem Y.. Status of exotic-quantum-number mesons. Phys. Rev. C, 2010, 82 : 025208
|
285 |
Crede V.A. Meyer C., The Experimental Status of Glueballs, Prog. Part. Nucl. Phys. 63, 74 (2008), arXiv: 0812.0600 [hep-ex]
|
286 |
Klempt E., Zaitsev A.. Glueballs, hybrids, multiquarks: Experimental facts versus QCD inspired concepts. Phys. Rep., 2007, 454 : 1
|
287 |
Amsler C., A. Törnqvist N.. Mesons beyond the naive quark model. Phys. Rep., 2004, 389 : 61
|
288 |
Godfrey S., Napolitano J.. Light-meson spectroscopy. Rev. Mod. Phys., 1999, 71 : 1411
|
289 |
Lee W.-J.Weingarten D., Scalar quarkonium masses and mixing with the lightest scalar glueball, Phys. Rev. D 61, 014015 (2000), arXiv: hep-lat/9910008
|
290 |
S. Bali G.Schilling K.Hulsebos A.C. Irving A.Michael C. W. Stephenson (UKQCD) P., A comprehensive lattice study of SU(3) glueballs, Phys. Lett. B 309, 378 (1993), arXiv: hep-lat/9304012
|
291 |
J. Morningstar C.J. Peardon M., Efficient glueball simulations on anisotropic lattices, Phys. Rev. D 56, 4043 (1997), arXiv: hep-lat/9704011
|
292 |
Chen Y., et al.., Glueball spectrum and matrix elements on anisotropic lattices, Phys. Rev. D 73, 014516 (2006), arXiv: hep-lat/0510074
|
293 |
Lacock P.Michael C.Boyle P.Rowland (UKQCD) P., Hybrid mesons from quenched QCD, Phys. Lett. B 401, 308 (1997), arXiv: hep-lat/9611011
|
294 |
W. Bernard C.(MILC) ., et al.., Exotic mesons in quenched lattice QCD, Phys. Rev. D 56, 7039 (1997), arXiv: hep-lat/9707008
|
295 |
J. Dudek J.G. Edwards R.Joo B.J. Peardon M.G. Richards D.E. Thomas C., Isoscalar meson spectroscopy from lattice QCD, Phys. Rev. D 83, 111502 (2011), arXiv: 1102.4299 [hep-lat]
|
296 |
J. Dudek J.G. Edwards R.Guo P.E. Thomas (Hadron Spectrum) C., Toward the excited isoscalar meson spectrum from lattice QCD, Phys. Rev. D 88, 094505 (2013), arXiv: 1309.2608[hep-lat]
|
297 |
P. Druzhinin V.I. Eidelman S.I. Serednyakov S.P. Solodov E., Hadron production via e+e− collisions with initial state radiation, Rev. Mod. Phys. 83, 1545 (2011), arXiv: 1105.4975 [hep-ex]
|
298 |
T. Chao K., F. Wang Y.. Front matter. International J. Mod. Phys. A, 2009, 24 : supp01
https://doi.org/10.1142/S0217751X09046400
|
299 |
Battaglieri M., et al.., Analysis tools for next-generation hadron spectroscopy experiments, Acta Phys. Polon. B 46, 257 (2015), arXiv: 1412.6393 [hep-ph]
|
300 |
Berger N., Beijiang L., Jike W.. Partial wave analysis using graphics processing units. J. Phys.: Conf. Ser., 2010, 219 : 042031
https://doi.org/10.1088/1742-6596/219/4/042031
|
301 |
Gasser J., Leutwyler H.. Chiral perturbation theory to one loop. Ann. Phys., 1984, 158 : 142
|
302 |
Kaiser R., Leutwyler H.. Large Nc in chiral perturbation theory. Euro. Phys. J. C, 2000, 17 : 623
https://doi.org/10.1007/s100520000499
|
303 |
Wess J.Zumino B., Consequences of anomalous ward identities, Phys. Lett. B 37, 95 (1971)
|
304 |
Witten E.. Global aspects of current algebra. Nucl. Phys. B, 1983, 223 : 422
|
305 |
Bijnens J.Bramon A.Cornet F., English Chiral perturbation theory for anomalous processes, Eur. Phys. J. C 46, 599 (1990)
|
306 |
Sakurai J.. Theory of strong interactions. Ann. Phys., 1960, 11 : 1
|
307 |
Landsberg L.. Electromagnetic decays of light mesons. Phys. Rep., 1985, 128 : 301
|
308 |
Nambu Y.Jona-Lasinio G., Dynamical model of elementary particles based on an analogy with superconductivity (1), Phys. Rev. 122, 345 (1961)
|
309 |
Nambu Y.Jona-Lasinio G., Dynamical model of elementary particles based on an analogy with superconductivity (II), Phys. Rev. 124, 246 (1961)
|
310 |
Aoyama. T., et al.. The anomalous magnetic moment of the muon in the Standard Model, Phys. Rep. 887, 1 (2020), the anomalous magnetic moment of the muon in the Standard Model
|
311 |
Gan L.Kubis B.Passemar E.Tulin S., Precision tests of fundamental physics with η and η' mesons, Phys. Rep. 945, 1 (2022), precision tests of fundamental physics with η and η' mesons
|
312 |
Jarlskog C., Shabalin E.. On searches for CP, T, CPT and C violation in flavour-changing and flavour-conserving interactions. Phys. Scr., 2002, 2002 : 23
|
313 |
Jarlskog C., Shabalin E.. ϵ' and the decay η→ππ in a theory with both explicit and spontaneous CP violation. Phys. Rev. D, 1995, 52 : 6327
https://doi.org/10.1103/PhysRevD.52.6327
|
314 |
Escribano R.Royo E., A theoretical analysis of the semileptonic decays η(') → π0l+l- and η' → ηl+l-, Eur. Phys. J. C 80, 1190 (2020), arXiv: 2007.12467 [hep-ph]
|
315 |
Niecknig F.Kubis B.P. Schneider S., Dispersive analysis of ω → 3π and ϕ → 3π decays, Eur. Phys. J. C 72, 2014 (2012), arXiv: 1203.2501 [hep-ph]
|
316 |
V. Danilkin I., Fernández-Ramírez C., Guo P., Mathieu V., Schott D., Shi M., P. Szczepa- niak A.. Dispersive analysis of ω/ϕ → 3π, πγ*. Phys. Rev. D, 2015, 91 : 094029
https://doi.org/10.1103/PhysRevD.91.094029
|
317 |
Wu J.-J., Liu X.-H., Zhao Q., Zou B.-S.. Puzzle of anomalously large isospin violations in η(1405/1475) → 3π. Phys. Rev. Lett., 2012, 108 : 081803
https://doi.org/10.1103/PhysRevLett.108.081803
|
318 |
H. Christenson J., W. Cronin J., L. Fitch V., Turlay R.. Evidence for the 2π decay of the K20 meson. Phys. Rev. Lett., 1964, 13 : 138
https://doi.org/10.1103/PhysRevLett.13.138
|
319 |
E. A. Aubert (BABAR) B.. Observation of CP violation in the B0 meson system. Phys. Rev. Lett., 2001, 87 : 091801
https://doi.org/10.1103/PhysRevLett.87.091801
|
320 |
Abe K.(Belle) ., et al.., Observation of large CP violation in the neutral B meson system, Phys. Rev. Lett. 87, 091802 (2001), arXiv: hep-ex/0107061
|
321 |
F. Donoghue J., Pakvasa S.. Signals of CP nonconservation in hyperon decay. Phys. Rev. Lett., 1985, 55 : 162
https://doi.org/10.1103/PhysRevLett.55.162
|
322 |
Holmstrom T.. et al.. Search for CP violation in charged-Ξ and Λ hyperon decays. Phys. Rev. Lett., 2004, 93 : 262001
https://doi.org/10.1103/PhysRevLett.93.262001
|
323 |
Tandean J., Valencia G.. CP violation in hyperon nonleptonic decays within the standard model. Phys. Rev. D, 2003, 67 : 056001
https://doi.org/10.1103/PhysRevD.67.056001
|
324 |
Materniak (HyperCP) C.. Search for CP violation in Ξ and Λ hyperon decays with the HyperCP spectrometer at Fermilab. Nucl. Phys. B Suppl., 2009, 187 : 208
https://doi.org/10.1016/j.nuclphysbps.2009.01.030
|
325 |
Ablikim M.(BESIII) ., et al.. Study of J/ψ and ψ(3686) decay to ΛΛ ¯ and Σ 0 Σ ¯0 final states, Phys. Rev. D 95, 052003 (2017)
|
326 |
Ablikim M., et al.., Study of J/ψ and ψ (3686) → Σ(1385)0 Σ ¯ (1385)0 and Ξ0 Ξ ¯0, Physics Letters B 770, 217 (2017), arXiv: 1612.08664 [hep-ex]
|
327 |
Ablikim M.(BESIII) ., et al.., Study of ψ decays to the Ξ− Ξ ¯+ and Σ(1385)∓Σ ¯(1385 )± final states, Phys. Rev. D 93, 072003 (2016)
|
328 |
Fäldt G.Kupsc A., Hadronic structure functions in the e+e− → Λ ¯Λ reaction, Phys. Lett. B 772, 16 (2017), arXiv: 1702.07288 [hep-ph]
|
329 |
Perotti E., Fäldt G., Kupsc A., Leupold S., J. Song J.. Polarization observables in e+e− annihilation to a baryon−antibaryon pair. Phys. Rev. D, 2019, 99 : 056008
https://doi.org/10.1103/PhysRevD.99.056008
|
330 |
Huang M., (HyperCP) .. et al.. New measurement of Ξ− → Λπ− decay parameters. Phys. Rev. Lett., 2004, 93 : 011802
https://doi.org/10.1103/PhysRevLett.93.011802
|
331 |
Dutta B.Mimura Y.N. Mohapatra R., Observable neutron antineutron oscillation in high scale seesaw models, Phys. Rev. Lett. 96, 061801 (2005), arXiv: hep-ph/0510291 [hep-ph]
|
332 |
Baldo-Ceolin M., Benetti P., Bitter T., Bobisut F., Calligarich E., Dolfini R., Dubbers D., El-Muzeini P., Genoni M., Gibin D., Berzolari A., Gobrecht K., Guglielmi A., Last J., Laveder M., Lippert W., Mattioli F., Mauri F., Mezzetto M., Visentin L.. A new experimental limit on neutron−antineutron oscillations. Zeitsch. für Phys. C, 1994, 63 : 409
https://doi.org/10.1007/BF01580321
|
333 |
Kang X.-W., Li H.-B., Lu G.-R.. Study of Λ− Λ ¯ oscillation in quantum coherent ΛΛ ¯ by using J/ψ → ΛΛ ¯ decay. Phys. Rev. D, 2010, 81 : 051901
https://doi.org/10.1103/PhysRevD.81.051901
|
334 |
H. Dalitz R., Rajasekharan G.. The spins and lifetimes of the light hypernuclei. Phys. Lett., 1962, 1 : 58
|
335 |
I. Abelev B.(STAR) ., et al.., Observation of an antimatter hypernucleus, Science 328, 58 (2010), arXiv: 1003.2030 [nucl-ex]
|
336 |
Rappold C.. et al.. On the measured lifetime of light hypernuclei Λ 3H and Λ4 H. Phys. Lett. B, 2014, 728 : 543
https://doi.org/10.1016/j.physletb.2013.12.037
|
337 |
S. Schwinger J., The Theory of quantized fields (1), Phys. Rev. 82, 914 (1951)
|
338 |
Chekanov S.(ZEUS) ., et al.., Search for contact interactions, large extra dimensions and finite quark radius in ep collisions at HERA, Phys. Lett. B 591, 23 (2004), arXiv: hep-ex/0401009
|
339 |
A. Bethe H.. The electromagnetic shift of energy levels. Phys. Rev., 1947, 72 : 339
https://doi.org/10.1103/PhysRev.72.339
|
340 |
J. Dyson F.. The radiation theories of Tomonaga, Schwinger, and Feynman. Phys. Rev., 1949, 75 : 486
https://doi.org/10.1103/PhysRev.75.486
|
341 |
G. Wilson K., B. Kogut J.. The renormalization group and the epsilon expansion. Phys. Rep., 1974, 12 : 75
|
342 |
Weinberg S., Witten E.. Limits on massless particles. Phys. Lett. B, 1980, 96 : 59
|
343 |
R. Schubert K., T violation and CPT tests in neutral-meson systems, Prog. Part. Nucl. Phys. 81, 1 (2015), arXiv: 1409.5998 [hep-ex]
|
344 |
S. Bell J.Steinberger J., in: Proceedings of the Oxford Int. Conf. on Elementary Particles (1965), pp 195–222
|
345 |
Aubert B.(BaBar) ., et al.., Search for T, CP and CPT violation in B0− B ¯0 mixing with inclusive dilepton events, Phys. Rev. Lett. 96, 251802 (2006), arXiv: hep-ex/0603053
|
346 |
Higuchi T., et al.., Search for time-dependent CPT violation in hadronic and semileptonic B decays, Phys. Rev. D 85, 071105 (2012), arXiv: 1203.0930 [hep-ex]
|
347 |
Apostolakis A.. et al.. A Determination of the CP violation parameter η+− from the decay of strangeness tagged neutral kaons. Phys. Lett. B, 1999, 458 : 545
https://doi.org/10.1016/S0370-2693(99)00596-1
|
348 |
Schwingenheuer B.. et al.. CPT tests in the neutral kaon system. Phys. Rev. Lett., 1995, 74 : 4376
https://doi.org/10.1103/PhysRevLett.74.4376
|
349 |
Essig R., et al.., in: Community Summer Study 2013: Snowmass on the Mississippi (2013), arXiv: 1311.0029 [hep-ph]
|
350 |
Adriani O.(PAMELA) ., et al.. An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV, Nature 458, 607 (2009), arXiv: 0810.4995 [astro-ph]
|
351 |
Chang J.. et al.. An excess of cosmic ray electrons at energies of 300−800 GeV. Nature, 2008, 456 : 362
|
352 |
A. Abdo A.(Fermi-LAT) ., et al.., Measurement of the cosmic ray e+ plus e− spectrum from 20 GeV to 1 TeV with the Fermi Large Area Telescope, Phys. Rev. Lett. 102, 181101 (2009), arXiv: 0905.0025 [astro-ph.HE]
|
353 |
Aguilar M.. et al.. First result from the alpha magnetic spectrometer on the international space station: Precision measurement of the positron fraction in primary cosmic rays of 0.5–350 GeV. Phys. Rev. Lett., 2013, 110 : 141102
https://doi.org/10.1103/PhysRevLett.110.141102
|
354 |
Arkani-Hamed N.P. Finkbeiner D.R. Slatyer T.Weiner N., A theory of dark matter, Phys. Rev. D 79, 015014 (2009), arXiv: 0810.0713 [hep-ph]
|
355 |
Pospelov M.Ritz A., Astrophysical signatures of secluded dark matter, Phys. Lett. B 671, 391 (2009), arXiv: 0810.1502 [hep-ph]
|
356 |
Arkani-Hamed N.Weiner N., LHC signals for a superunified theory of dark matter, JHEP 12, 104 (2008), arXiv: 0810.0714 [hep-ph]
|
357 |
Cheung C.T. Ruderman J.Wang L.-T.Yavin I., Kinetic mixing as the origin of light dark scales, Phys. Rev. D 80, 035008 (2009), arXiv: 0902.3246 [hep-ph]
|
358 |
Zhu S.-h., U-boson at BESIII, Phys. Rev. D75, 115004 (2007), arXiv: hep-ph/0701001
|
359 |
Fayet P., U-boson production in e+e− annihilations, ψ and Υ decays, and light dark matter, Phys. Rev. D 75, 115017 (2007), arXiv: hep-ph/0702176
|
360 |
Reece M.Wang L.-T., Searching for the light dark gauge boson in GeV-scale experiments, JHEP 07, 051 (2009), arXiv: 0904.1743 [hep-ph]
|
361 |
Essig R.Schuster P.Toro N., Probing dark forces and light hidden sectors at low-energy e+e− colliders, Phys. Rev. D 80, 015003 (2009), arXiv: 0903.3941 [hep-ph]
|
362 |
Yin P.-F.Liu J.Zhu S.-H., Detecting light leptophilic gauge boson at BESIII detector, Phys. Lett. B 679, 362 (2009), arXiv: 0904.4644 [hep-ph]
|
363 |
Aubert B.(BaBar) ., et al.., Search for dimuon decays of a light scalar boson in radiative transitions Υ → γA0, Phys. Rev. Lett. 103, 081803 (2009), arXiv: 0905.4539 [hep-ex]
|
364 |
D. Bjorken J.Essig R.Schuster P. Toro N., New fixed-target experiments to search for dark gauge forces, Phys. Rev. D 80, 075018 (2009), arXiv: 0906.0580 [hep-ph]
|
365 |
Jia S.(Belle) ., et al.., Search for a light Higgs boson in single-photon decays of Υ(1S) using Υ(2S) → π+π−Υ(1S) tagging method, Phys. Rev. Lett. 128, 081804 (2022), arXiv: 2112.11852 [hep-ex]
|
366 |
O’Leary B.(SuperB) ., et al.., SuperB progress reports − Physics, arXiv: 1008.1541 (2010)
|
367 |
Altmannshofer W.(Belle-II) ., et al.., The Belle II physics book, PTEP 2019, 123C01 (2019) [Erratum: PTEP 2020, 029201 (2020)], arXiv: 1808.10567 [hep-ex]
|
368 |
Li H.-B.Luo T., Probing dark force at BES-III/BEPCII, Phys. Lett. B 686, 249 (2010), arXiv: 0911.2067 [hep-ph]
|
369 |
Baumgart M.Cheung C.T. Ruderman J.Wang L.-T.Yavin I., Non-Abelian dark sectors and their collider signatures, JHEP 04, 014 (2009), arXiv: 0901.0283 [hep-ph]
|
370 |
Batell B.Pospelov M.Ritz A., Probing a secluded U(1) at B-factories, Phys. Rev. D 79, 115008 (2009), arXiv: 0903.0363 [hep-ph]
|
371 |
Adachi I.(Belle-II) ., et al.., Search for an invisibly decaying Z' boson at Belle II in e+e− → µ+µ−(e± μ∓) plus missing energy final states, Phys. Rev. Lett. 124, 141801 (2020), arXiv: 1912.11276 [hep-ex]
|
372 |
Abudinén F.(Belle-II) ., et al.., Search for axionlike particles produced in e+e− collisions at Belle II, Phys. Rev. Lett. 125, 161806 (2020), arXiv: 2007.13071 [hep-ex]
|
373 |
Holdom B.. Two U(1)’s and epsilon charge shifts. Phys. Lett. B, 1986, 166 : 196
https://doi.org/10.1016/0370-2693(86)91377-8
|
374 |
Holdom B.. Searching for ϵ charges and a new U(1). Phys. Lett. B, 1986, 178 : 65
https://doi.org/10.1016/0370-2693(86)90470-3
|
375 |
Foot R., He X.-G.. Comment on zz-prime mixing in extended gauge theories. Phys. Lett. B, 1991, 267 : 509
|
376 |
Kors B.Nath P., A Stueckelberg extension of the standard model, Phys. Lett. B 586, 366 (2004), arXiv: hep-ph/0402047
|
377 |
Cheung K.Yuan T.-C., Hidden fermion as milli-charged dark matter in Stueckelberg Z-prime model, JHEP 03, 120 (2007), arXiv: hep-ph/0701107
|
378 |
Feldman D.Liu Z.Nath P., Stueckelberg Z' extension with kinetic mixing and millicharged dark matter from the hidden sector, Phys. Rev. D 75, 115001 (2007), arXiv: hep-ph/0702123
|
379 |
Jaeckel J.Ringwald A., The low-energy frontier of particle physics, Ann. Rev. Nucl. Part. Sci. 60, 405 (2010), arXiv: 1002.0329[hep-ph]
|
380 |
Liu Z.Zhang Y., Probing millicharge at BESIII via monophoton searches, Phys. Rev. D 99, 015004 (2019), arXiv: 1808.00983 [hep-ph]
|
381 |
Liang J.Liu Z.Ma Y.Zhang Y., Millicharged particles at electron colliders, Phys. Rev. D 102, 015002 (2020), arXiv: 1909.06847 [hep-ph]
|
382 |
Davidson S., Campbell B., C. Bailey D.. Limits on particles of small electric charge. Phys. Rev. D, 1991, 43 : 2314
https://doi.org/10.1103/PhysRevD.43.2314
|
383 |
A. Prinz A., et al.., Search for millicharged particles at SLAC, Phys. Rev. Lett. 81, 1175 (1998), arXiv: hep-ex/9804008
|
384 |
Magill G.Plestid R.Pospelov M.Tsai Y.-D., Millicharged particles in neutrino experiments, Phys. Rev. Lett. 122, 071801 (2019), arXiv: 1806.03310[hep-ph]
|
385 |
D. Bowman J.E. E. Rogers A.A. Monsalve R.J. Mozdzen T.Mahesh N., An absorption profile centred at 78 megahertz in the sky-averaged spectrum, Nature 555, 67 (2018), arXiv: 1810.05912 [astro-ph.CO]
|
386 |
B. Muñoz J.Loeb A., A small amount of mini-charged dark matter could cool the baryons in the early universe, Nature 557, 684 (2018), arXiv: 1802.10094 [astro-ph.CO]
|
387 |
Berlin A.Hooper D.Krnjaic G.D. McDermott S., Severely constraining dark matter interpretations of the 21-cm anomaly, Phys. Rev. Lett. 121, 011102 (2018), arXiv: 1803.02804 [hep-ph]
|
388 |
Barkana R.J. Outmezguine N.Redigolo D. Volansky T., Strong constraints on light dark matter interpretation of the EDGES signal, Phys. Rev. D 98, 103005 (2018), arXiv: 1803.03091 [hep-ph]
|
389 |
H.Brück Circular particle accelerators, PUF, Paris (1966).
|
390 |
(2022)
|
391 |
Battaglia M.Da Via C.Bortoletto D.Brenner R.Campbell M. Collins P.Dalla Betta G.Demarteau M.Denes P.Graafsma H., et al.., R&d paths of pixel detectors for vertex tracking and radiation imaging, Nucl. Instrum. Methods Phys. Res. A 716, 29 (2013)
|
392 |
Contin G., Anderssen E., Greiner L., Schambach J., Silber J., Stezelberger T., Sun X., Szelezniak M., Vu C., Wieman H.. et al.. The maps based PXL vertex detector for the star experiment. J. Instrum., 2015, 10 : C03026
|
393 |
Lacasta C., in: Proceedings of the 22nd International Workshop on Vertex Detectors (Vertex2013), 15−20 September (2013), page 5
|
394 |
e. a. Abe T., Belle II technical design report, (2010)
|
395 |
Balla A.Bencivenni G.Cerioni S.Ciambrone P.De Lucia E. Domenici D.Dong J.Felici G.Gatta M.Jacewicz M., et al.., in: 2011 IEEE Nuclear Science Symposium Conference Record (IEEE, 2011) pp 1002–1005
|
396 |
Bencivenni G., Branchini P., Ciambrone P., Czerwinski E., De Lucia E., Di Cicco A., Domenici D., Felici G., Kang X., Morello G.. The cylindrical-gem inner tracker detector of the kloe-2 experiment. Nucl. Instrum. Meth. Phys. Res. A, 2020, 958 : 162366
|
397 |
Amoroso A., Baldini R., Bertani M., Bettoni D., Bianchi F., Calcaterra A., Carassiti V., Cerioni S., Chai J., Cibinetto G.. et al.. A cylindrical gem detector with analog readout for the be- siii experiment. Nucl. Instrum. Meth. Phys. Res. A, 2016, 824 : 515
|
398 |
P. Lener M., Bencivenni G., de Olivera R., Felici G., Franchino S., Gatta M., Maggi M., Morello G., Sharma A.. The μ-RWELL: A compact, spark protected, single amplification-stage mpgd. Nucl. Instrum. Meth. Phys. Res. A, 2016, 824 : 565
|
399 |
Bencivenni G., De Oliveira R., Felici G., Gatta M., Morello G., Ochi A., P. Lener M., Tskhadadze E.. Performance of μ-RWELL detector vs resistivity of the resistive stage. Nucl. Instrum. Meth. Phys. Res. A, 2018, 886 : 36
|
400 |
Bencivenni G., Benussi L., Borgonovi L., De Oliveira R., De Simone P., Felici G., Gatta M., Giacomelli P., Morello G., Ochi A.. et al.. The μ-RWELL detector. J. Instrum., 2017, 12 : C06027
|
401 |
Bachmann S., Bressan A., Ropelewski L., Sauli F., Sharma A., Mörmann D.. Charge amplification and transfer processes in the gas electron multiplier. Nucl. Instru. Meth. Phys. Res. A, 1999, 438 : 376
|
402 |
Agostinelli S., Allison J., A. Amako K., Apostolakis J., Araujo H., Arce P., Asai M., Axen D., Banerjee S., Barrand G.. et al.. GEANT4 — a simulation toolkit. Nucl. Instrum. Meth. Phys. Res. A, 2003, 506 : 250
|
403 |
Bencivenni G.Felici G.Gatta M. Giovannetti M.Morello G.P. Lener M. de Oliveira R.Ochi A.Tskhadadze E., in: Journal of Physics: Conference Series, Vol. 1498 (IOP Publishing, 2020), page 012003
|
404 |
Wang H., Wang Y., Yao Y.-Z., Hu J., Yang J., Hao W., Luo Y.-Q.. Aramid paper’s structure and performance and their effect on the mechanical properties of aramid paper honey-comb. J. Funct. Mater., 2013, 44 : 2184
|
405 |
Arezoo S., Tagarielli V., Siviour C., Petrinic N.. Compressive deformation of rohacell foams: Effects of strain rate and temperature. Inter. J. Impact Eng., 2013, 51 : 50
|
406 |
Contin G., Anderssen E., Greiner L., Schambach J., Silber J., Stezelberger T., Sun X., Szelezniak M., Vu C., Wieman H.. et al.. The maps based pxl vertex detector for the star experiment. J. Instrum., 2015, 10 : C03026
|
407 |
Valin I., Hu-Guo C., Baudot J., Bertolone G., Besson A., Colledani C., Claus G., Dorokhov A., Doziere G., Dulinski W.. et al.. A reticle size cmos pixel sensor dedicated to the star hft. J. Instrum., 2012, 7 : C01102
|
408 |
Abelev B., Adam J., Adamová D., Aggarwal M., A. Rinella G., Agnello M., Agostinelli A., Agrawal N., Ahammed Z., Ahmad N.. et al.. Technical design report for the upgrade of the alice inner tracking system. J. Phys. G, 2014, 41 : 087002
|
409 |
A. Rinella G.. et al.. The alpide pixel sensor chip for the upgrade of the alice inner tracking system. Nucl. Instrum. Meth. Phys. Res. A, 2017, 845 : 583
|
410 |
Chen L., et al.., Characterization of the prototype cmos pixel sensor Jadepix-1 for the CEPC vertex detector, (2019)
|
411 |
S. Group C., et al.., CEPC conceptual design report: Volume 2 − physics & detector, arXiv: 1811.10545 (2018)
|
412 |
Arndt K., Augustin H., Baesso P., Berger N., Berg F., Betancourt C., Bortoletto D., Bravar A., Briggl K., vom Bruch D.. et al.. Technical design of the phase I MU3E experiment. Nucl. Instrum. Meth. Phys. Res. A, 2021, 1014 : 165679
|
413 |
Prathapan M.Schimassek R.Benoit M.Casanova R.Ehrler F. Meneses A.Pangaud P.Sultan D.Vilella E.L. Weber A., et al.., in: Proceedings of Topical Workshop on Electronics for Particle Physics-PoS (TWEPP2019) (Sissa Medialab, 2020)
|
414 |
Spannagel S.. Silicon technologies for the clic vertex detector. J. Instrum., 2017, 12 : C06006
|
415 |
Schöning A.Anders J.Augustin H. Benoit M.Berger N.Dittmeier S.Ehrler F.Fehr A. Golling T.G. Sevilla S., et al.., Mupix and atlaspix-architectures and results, arXiv: 2002.07253 (2020)
|
416 |
Snoeys W.. et al.. A process modification for CMOS monolithic active pixel sensors for enhanced depletion, timing performance and radiation tolerance. Nucl. Instrum. Meth. A, 2017, 871 : 90
|
417 |
Gustavino G., et al.., in: 23rd International Workshop on Radiation Imaging Detectors (2022), arXiv: 2209.14676 [physics.ins-det]
|
418 |
Paladino A.. Beam background evaluation at superkekb and Belle II. J. Instrum., 2020, 15 : C07023
|
419 |
Mager M., collaboration A.. et al.. Alpide, the monolithic active pixel sensor for the alice its upgrade. Nucl. Instrum. Meth. A, 2016, 824 : 434
|
420 |
Titov M., in: Innovative Detectors for Supercolliders, World Scientific, 2004, pp 199–226
|
421 |
Ablikim M., An Z., Bai J., Berger N., Bian J., Cai X., Cao G., Cao X., Chang J., Chen C.. et al.. Design and construction of the besiii detector. Nucl. Instrum. Meth. A, 2010, 614 : 345
|
422 |
Abe T.Adachi I.Adamczyk K.Ahn S.Aihara H. Akai K.Aloi M.Andricek L.Aoki K.Arai Y., et al.., Belle II technical design report, arXiv: 1011.0352 (2010)
|
423 |
Adhikari S., Akondi C., Al Ghoul H., Ali A., Amaryan M., Anassontzis E., Austregesilo A., Barbosa F., Barlow J., Barnes A.. et al.. The gluex beamline and detector. Nucl. Instrum. Meth. A, 2021, 987 : 164807
|
424 |
Baldini A., Baracchini E., Bemporad C., Berg F., Biasotti M., Boca G., Cattaneo P., Cavoto G., Cei F., Chiappini M.. et al.. The design of the meg ii experiment. Eur. Phys. J. C, 2018, 78 : 1
|
425 |
Tassielli G.Collaboration I., et al.., in: 40th International Conference on High Energy physics (2021), p. 877
|
426 |
B. Smirnov I.. Modeling of ionization produced by fast charged particles in gases. Nucl. Instrum. Meth. A, 2005, 554 : 474
|
427 |
Cao X.-X., Li W.-D., Liu C.-L., Mao Z.-P., Chen S.-J., Deng Z.-Y., He K.-L., Huang X.-T., Huang B., Huang Y.-P.. et al.. Studies of dE/dx measurements with the besiii. Chin. Phys. C, 2010, 34 : 1852
|
428 |
Bachmann S., Bressan A., Ropelewski L., Sauli F., Sharma A., Mörmann D.. Charge ampli fication and transfer processes in the gas electron multiplier. Nucl. Instrum. Meth. A, 1999, 438 : 376
|
429 |
Tessarotto F.. et al.. Long term experience and performance of COMPASS RICH-1. JINST, 2014, 9 :
https://doi.org/10.1088/1748-0221/9/09/C09011
|
430 |
Di Mauro A.. et al.. Performance of large area CsI RICH prototypes for ALICE at LHC. Nucl. Instrum. Meth. A, 1999, 433 : 190
|
431 |
Boutigny D.Goy C.Karyotakis Y.Lees J.L. Rosier S.Palano A.Chen G.Wang Y. Wen O.Lan Y., et al.., Babar technical design report, Stanford Linear Accelerator Center, Stanford, CA94309 (1995)
|
432 |
Singh B., Erni W., Krusche B., Steinacher M., Walford N., Liu B., Liu H., Liu Z., Shen X., Wang C.. et al.. Technical design report for the barrel dirc detector. J. Phys. G, 2019, 46 : 045001
|
433 |
Kalicy G., Allison L., Cao T., Dzhygadlo R., Hartlove T., Horn T., Hyde C., Ilieva Y., Nadel-Turonski P., Park K.. et al.. High-performance dirc detector for the future electron ion collider experiment. J. Instrum., 2018, 13 : C04018
|
434 |
J. Charles M.Forty (LHCb) R., TORCH: Time of flight identification with Cherenkov radiation, Nucl. Instrum. Meth. A 639, 173 (2011), arXiv: 1009.3793 [physics.ins-det]
|
435 |
Wu B., Wang Y., Cao Q., Li Z., Li X., Zhou X., Hu Y., Wang Z., Shao M., Liu J.. et al.. Design of time-to-digital converters for time-over-threshold measurement in picosecond timing detectors. IEEE Trans. Nucl. Sci., 2021, 68 : 470
|
436 |
Hu Y., Wang Y., Kuang J., Wu B.. A clock distribution and synchronization scheme over optical links for large-scale physics experiments. IEEE Trans. Nucl. Sci., 2021, 68 : 1351
|
437 |
Ablikim M., An Z., Bai J., Berger N., Bian J., Cai X., Cao G., Cao X., Chang J., Chen C.. et al.. Design and construction of the besiii detector. Nucl. Instrum. Meth. Phys. Res. A, 2010, 614 : 345
|
438 |
Miyabayashi K.. Belle electromagnetic calorimeter. Nucl. Instrum. Meth. Phys. Res. A, 2002, 494 : 298
|
439 |
Yamamoto A., Kichimi H., Kimura N., Inoue H., Yamaoka H., Haruyama T., Mito T., Araoka O., Tadano M., Suzuki S.. et al.. Performance of the topaz thin superconducting solenoid wound with internal winding method. Japan. J. Appl. Phys., 1986, 25 : L440
|
440 |
M. Sirunyan A.(CMS) ., et al.., Reconstruction of signal amplitudes in the CMS electromagnetic calorimeter in the presence of overlapping proton−proton interactions, JINST 15, P10002 (2020), arXiv: 2006.14359 [physics.ins-det]
|
441 |
S. Huang G., The 15th International Workshop on Tau Lepton Physics, talk on “The Super Tau Charm Factory Plan in China” (2018)
|
442 |
B. Liu J., Joint Workshop on Future Tau-Charm Factories, talk on “Detector Concepts for the Super Tau-Charm Facility in China” (2018)
|
443 |
Abe T.Adachi I.Adamczyk K.Ahn S.Aihara H. Akai K.Aloi M.Andricek L.Aoki K.Arai Y., et al.., Belle II technical design report, arXiv: 1011.0352 (2010)
|
444 |
Abe K.Hoshi Y.Nagamine T.Neichi K.Onodera K. Takahashi T.Yamaguchi A.Yuta H., in: 2002 IEEE Nuclear Science Symposium Conference Record, Vol. 1 (IEEE, 2002), pp 171–175
|
445 |
Hoshi Y., Kikuchi N., Nagamine T., Neichi K., Yamaguchi A.. Performance of the endcap RPC in the Belle detector under high luminosity operation of the KEKB accelerator. Nucl. Phys. B, 2006, 158 : 190
|
446 |
Kanazawa K., Ohnishi Y., Nakayama Y., Kiesling C., Koblitz S.. et al.. Beam background simulation for superKEKB/Belle-II. Proceed. IPAC, 2011, 1109094 : 3700
|
447 |
Gouzevitch M.Lagarde F.Laktineh I. Buridon V.Chen X.Combaret C.Eynard A.Germani L. Grenier G.Mathez H., et al.., High rate, fast timing glass rpc for the high ηcms muon detectors, arXiv: 1606.00993 (2016)
|
448 |
Collaboration A., et al.., Atlas muon spectrometer: Technical design report (1997)
|
449 |
Aubert B., Bazan A., Boucham A., Boutigny D., De Bonis I., Favier J., Gaillard J.-M., Jeremie A., Karyotakis Y., Le Flour T.. et al.. The babar detector. Nucl. Instrum. Meth. Phys. Res. A, 2002, 479 : 1
|
450 |
Belle-BaBar Workshop, talk on “RPC and Muon Detection at BELLE” (2002)
|
451 |
Ackermann K., Adams N., Adler C., Ahammed Z., Ahmad S., Allgower C., Amonett J., Amsbaugh J., Anderson B., Anderson M.. et al.. Star detector overview. Nucl. Instrum. Meth. Phys. Res. A, 2003, 499 : 624
|
452 |
Xie Y.. et al.. Performance study of rpc prototypes for the BESIII muon detector. Chin. Phys. C, 2007, 31 :
|
453 |
An F., Bai J., Balantekin A., Band H., Beavis D., Beriguete W., Bishai M., Blyth S., Brown R., Butorov I.. et al.. The detector system of the daya bay reactor neutrino experiment. Nucl. Instrum. Meth. Phys. Res. A, 2016, 811 : 133
|
454 |
Aushev T., Besson D., Chilikin K., Chistov R., Danilov M., Katrenko P., Mizuk R., Pakhlova G., Pakhlov P., Rusinov V.. et al.. A scintillator based endcap KL and muon detector for the Belle II experiment. Nucl. Instrum. Meth. Phys. Res. A, 2015, 789 : 134
|
455 |
Agostinelli S., Allison J., a. Amako K., Apostolakis J., Araujo H., Arce P., Asai M., Axen D., Banerjee S., Barrand G.. et al.. GEANT4 — a simulation toolkit. Nucl. Instrum. Meth. Phys. Res. A, 2003, 506 : 250
|
456 |
Fang Z., Liu Y., Shi H., Liu J., Shao M.. A hybrid muon detector design with rpc and plastic scintillator for the experiment at the super tau-charm facility. J. Instrum., 2021, 16 : P09022
|
457 |
M. Hamada M., R. Rela P., E. da Costa F., H. de Mesquita C.. Radiation damage studies on the optical and mechanical properties of plastic scintillators. Nucl. Instrum. Meth. Phys. Res. A, 1999, 422 : 148
|
458 |
Vasil’Chenko V., Lapshin V., Peresypkin A., Konstantinchenko A., Pyshchev A., Shershukov V., Semenov B., Solov’ev A.. New results on radiation damage studies of plastic scintillators. Nucl. Instrum. Meth. A, 1996, 369 : 55
|
459 |
Yamamoto A., Mito T., Kimura N., Haruyama T., Yamaoka H., Araoka O., Tadano M., Suzuki S., Kondo Y., Kawai M.. et al.. Quench characteristics and operational stability of the topaz thin superconducting solenoid. Japan. J. Appl. Phys., 1986, 25 : L443
|
460 |
Acquistapace G.Collaboration C., et al.., Cms, the magnet project: Technical design report, Technical Design Report CMS (1997)
|
461 |
Ma X., et al.., Determination of event start time at BESIII, Chin. Phys. C 32, 744 (2008)
|
462 |
H. Zou J., T. Huang X., D. Li W., Lin T., Li T., Zhang K., Y. Deng Z., F. Cao G.. SNiPER: An offline software framework for non-collider physics experiments. J. Phys. Conf. Ser., 2015, 664 : 072053
https://doi.org/10.1088/1742-6596/664/7/072053
|
463 |
Li T.Xia X. Huang X.Zou J.Li W.lin T.Zhang K. Deng Z., Design and Development of JUNO Event Data Model, Chin. Phys. C 41, 066201 (2017), arXiv: 1702.04100
|
464 |
Gaede F., Hegner B., A. Stewart G.. PODIO: recent developments in the Plain Old Data EDM toolkit. EPJ Web Conf., 2020, 245 : 05024
https://doi.org/10.1051/epjconf/202024505024
|
465 |
Li H., Huang W., Liu D., Song Y., Shao M., Huang X.. Detector geometry management system designed for super tau charm facility offline software. J. Instrum., 2021, 16 : T04004
https://doi.org/10.1088/1748-0221/16/04/T04004
|
466 |
Frank M., Gaede F., Grefe C., Mato P.. DD4hep: A detector description toolkit for high energy physics experiments. J. Phys. Conf. Ser., 2014, 513 : 022010
https://doi.org/10.1088/1742-6596/513/2/022010
|
467 |
Extensible Markup Language (XML) web page, URL: www.w3.org/XML/ (2022)
|
468 |
Agostinelli S.. et al.. GEANT4 – a simulation toolkit. Nucl. Instrum. Meth. A, 2003, 506 : 250
|
469 |
Li H., H. Huang W., Liu D., Song Y., Shao M., T. Huang X.. Detector geometry management system designed for Super Tau Charm Facility offline software. JINST, 2021, 16 : T04004
https://doi.org/10.1088/1748-0221/16/04/T04004
|
470 |
Ablikim M.(BESIII) ., et al.., Measurement of azimuthal asymmetries in inclusive charged dip- ion production in e+e− annihilations at s = 3.65 GeV, Phys. Rev. Lett. 116, 042001 (2016), arXiv: 1507.06824 [hep-ex]
|
471 |
L. Wang B., R. Lü X., H. Zheng Y.. Collins effect at super tau-charm facility. J. Univ. Chin. Acad. Sci., 2021, 38 : 433
https://doi.org/10.7523/j.issn.2095-6134.2021.04.001
|
472 |
Ablikim M.(BESIII) ., et al.., Observation of the leptonic decay D+ → τ+ντ, Phys. Rev. Lett. 123, 211802 (2019), arXiv: 1908.08877 [hep-ex]
|
473 |
Ablikim M.(BESIII) ., et al.., Determination of the pseudoscalar decay constant f Ds+ via Ds+ → µ+νµ, Phys. Rev. Lett. 122, 071802 (2019), arXiv: 1811.10890 [hep-ex]
|
474 |
Cheng H.-Y.Lyu X.-R.Xing Z.-Z., in: 2022 Snowmass Summer Study (2022), arXiv: 2203.03211 [hep-ph]
|
475 |
Ablikim M.(BESIII) ., et al.., Precision measurement of the mass of the τ lepton, Phys. Rev. D 90, 012001 (2014), arXiv: 1405.1076 [hep-ex]
|
476 |
Airapetian A.(HERMES) ., et al.., Single-spin asymmetries in semi-inclusive deep-inelastic scattering on a transversely polarized hydrogen target, Phys. Rev. Lett. 94, 012002 (2005), arXiv: hep-ex/0408013
|
477 |
Airapetian A.(HERMES) ., et al.., Effects of transversity in deep-inelastic scattering by polarized protons, Phys. Lett. B 693, 11 (2010), arXiv: 1006.4221[hep-ex]
|
478 |
Adolph C.(COMPASS) ., et al.., Experimental investigation of transverse spin asymmetries in muon-p SIDIS processes: Collins asymmetries, Phys. Lett. B 717, 376 (2012), arXiv: 1205.5121 [hep-ex]
|
479 |
Qian X.(Jefferson Lab Hall A) ., et al.., Single spin asymmetries in charged pion production from semi-inclusive deep inelastic scattering on a transversely polarized 3He target, Phys. Rev. Lett. 107, 072003 (2011), arXiv: 1106.0363 [nucl-ex]
|
480 |
Abe K.(Belle) ., et al.., Measurement of azimuthal asymmetries in inclusive production of hadron pairs in e+e− annihilation at Belle, Phys. Rev. Lett. 96, 232002 (2006), arXiv: hep-ex/0507063
|
481 |
Seidl R.(Belle) ., et al.., Measurement of azimuthal asymmetries in inclusive production of hadron pairs in e+e− annihilation at s = 10.58-GeV, Phys. Rev. D 78, 032011 (2008) [Erratum: Phys. Rev. D 86, 039905 (2012)], arXiv: 0805.2975 [hep-ex]
|
482 |
P. Lees J.(BaBar) ., et al.., Measurement of Collins asymmetries in inclusive production of charged pion pairs in e+e− annihilation at BABAR, Phys. Rev. D 90, 052003 (2014), arXiv: 1309.5278 [hep-ex]
|
483 |
L. Wang B., Lyu X.-R., H. Zheng Y.. Collins effect at super tau-charm facility. J. Univ. Chin. Acad. Sci., 2021, 38 : 433
https://doi.org/10.7523/j.issn.2095-6134.2021.04.001
|
484 |
I. Bigi I.I. Sanda A., A “known” CP asymmetry in tau decays, Phys. Lett. B 625, 47 (2005), arXiv: hep-ph/0506037
|
485 |
Grossman Y.Nir Y., CP violation in τ±→ π±KSν and D±→ π±KS: The importance of KS−KL interference, JHEP 04, 002 (2012), arXiv: 1110.3790 [hep-ph]
|
486 |
P. Lees J.(BaBar) ., et al.., Search for CP violation in the decay τ− → π− KS0 (≥ Oπ0)ντ, Phys. Rev. D 85, 031102 (2012) [Erratum: Phys. Rev. D 85, 099904 (2012)], arXiv: 1109.1527 [hep-ex]
|
487 |
Bonvicini G.(CLEO) ., et al.., Search for CP violation in τ → Kπντ decays, Phys. Rev. Lett. 88, 111803 (2002), arXiv: hep-ex/0111095
|
488 |
Bischofberger M.(Belle) ., et al.., Search for CP violation in τ → KS0πντ decays at Belle, Phys. Rev. Lett. 107, 131801 (2011), arXiv: 1101.0349 [hep-ex]
|
489 |
H. Kuhn J.Mirkes E., Structure functions in tau decays, Z. Phys. C 56, 661 (1992) [Erratum: Z. Phys. C 67, 364 (1995)]
|
490 |
Jadach S.F. L. Ward B.Was Z., The precision Monte Carlo event generator KK for two fermion final states in e+e− collisions, Comput. Phys. Commun. 130, 260 (2000), arXiv: hep-ph/9912214
|
491 |
F. Donoghue J., He X.-G., Pakvasa S.. Hyperon decays and CP nonconservation. Phys. Rev. D, 1986, 34 : 833
https://doi.org/10.1103/PhysRevD.34.833
|
492 |
Salone N.Adlarson P.Batozskaya V.Kupsc A.Leupold S. Tandean J., Study of CP violation in hyperon decays at super-charm-τ factories with a polarized electron beam, Phys. Rev. D 105, 116022 (2022), arXiv: 2203.03035 [hep-ph]
|
493 |
Cronin-Hennessy D.(CLEO) ., et al.., Measurement of Charm Production Cross Sections in e+e− Annihilation at Energies between 3.97 and 4.26-GeV, Phys. Rev. D 80, 072001 (2009), arXiv: 0801.3418 [hep-ex]
|
494 |
S. Babu K.Kolda C., Higgs mediated τ → 3μ in the supersymmetric seesaw model, Phys. Rev. Lett. 89, 241802 (2002), arXiv: hep-ph/0206310
|
495 |
R. Ellis J.Hisano J.Raidal M.Shimizu Y., A New parametrization of the seesaw mechanism and applications in supersymmetric models, Phys. Rev. D 66, 115013 (2002), arXiv: hep-ph/0206110
|
496 |
Borzumati F., Masiero A.. Large muon and electron number violations in supergravity the-ories. Phys. Rev. Lett., 1986, 57 : 961
https://doi.org/10.1103/PhysRevLett.57.961
|
497 |
Ma E., Neutrino, lepton, and quark masses in supersymmetry, Phys. Rev. D 64, 097302 (2001), arXiv: hep-ph/0107177
|
498 |
Yue C.-X.Zhang Y.-M.Liu L.-J., Nonuniversal gauge bosons Z-prime and lepton flavor violation tau decays, Phys. Lett. B 547, 252 (2002), arXiv: hep-ph/0209291
|
499 |
E. Kim J., Ko P., Lee D.-G.. More on r-parity- and lepton-family-number-violating couplings from muon(ium) conversion, and τ and π0 decays. Phys. Rev. D, 1997, 56 : 100
https://doi.org/10.1103/PhysRevD.56.100
|
500 |
Aubert B.(BaBar) ., et al.., Searches for lepton flavor violation in the decays τ± → e±γ and τ± → μ±γ, Phys. Rev. Lett. 104, 021802 (2010), arXiv: 0908.2381 [hep-ex]
|
501 |
Hayasaka K.(Belle) ., et al.., New search for τ → μγ and τ → eγ decays at Belle, Phys. Lett. B 666, 16 (2008), arXiv: 0705.0650 [hep-ex]
|
502 |
Balossini G.M. Carloni Calame C.Montagna G. Nicrosini O.Piccinini F., Matching perturbative and parton shower corrections to Bhabha process at flavour factories, Nucl. Phys. B 758, 227 (2006), arXiv: hep-ph/0607181
|
503 |
Balossini G.Bignamini C.M. C. Calame C.Montagna G.Nicrosini O.Piccinini F., Photon pair production at flavour factories with per mille accuracy, Phys. Lett. B 663, 209 (2008), arXiv: 0801.3360 [hep-ph]
|
504 |
Rodrigo G.Czyz H.H. Kuhn J.Szopa M., Radiative return at NLO and the measurement of the hadronic cross-section in electron positron annihilation, Eur. Phys. J. C 24, 71 (2002), arXiv: hep-ph/0112184
|
505 |
Actis S.(Working Group on Radiative Corrections .Carlo generators for low energies) Monte, et al.., Quest for precision in hadronic cross sections at low energy: Monte Carlo tools vs. experimental data, Eur. Phys. J. C 66, 585 (2010), arXiv: 0912.0749 [hep-ph]
|
506 |
Sturm C., Leptonic contributions to the effective electromagnetic coupling at four-loop order in QED, Nucl. Phys. B 874, 698 (2013), arXiv: 1305.0581 [hep-ph]
|
507 |
Jegerlehner F., The Running fine structure constant alpha(E) via the Adler function, Nucl. Phys. B Suppl. 181–182, 135 (2008), arXiv: 0807.4206 [hep-ph]
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|