|
|
Two-dimensional anisotropic vortex quantum droplets in dipolar Bose−Einstein condensates |
Guilong Li1, Xunda Jiang1, Bin Liu1( ), Zhaopin Chen2, Boris A. Malomed3,4, Yongyao Li1,5( ) |
1. School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528225, China 2. Physics Department and Solid-State Institute, Technion, Haifa 32000, Israel 3. Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel 4. Instituto de Alta Investigación, Universidad de Tarapacá, Casilla 7D, Arica, Chile 5. Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro−Nano Optoelectronic Technology, Foshan University, Foshan 528225, China |
|
|
Abstract Creation of stable intrinsically anisotropic self-bound states with embedded vorticity is a challenging issue. Previously, no such states in Bose−Einstein condensates (BECs) or other physical settings were known. Dipolar BEC suggests a unique possibility to predict stable two dimensional anisotropic vortex quantum droplets (2D-AVQDs). We demonstrate that they can be created with the vortex axis oriented perpendicular to the polarization of dipoles. The stability area and characteristics of the 2D-AVQDs in the parameter space are revealed by means of analytical and numerical methods. Further, the rotation of the polarizing magnetic field is considered, and the largest angular velocities, up to which spinning 2D-AVQDs can follow the rotation in clockwise and anti-clockwise directions, are found. Collisions between moving 2D-AVQDs are studied too, demonstrating formation of bound states with a vortex−antivortex−vortex structure. A stability domain for such stationary bound states is identified. Unstable dipolar states, that can be readily implemented by means of phase imprinting, quickly transform into robust 2D-AVQDs, which suggests a straightforward possibility for the creation of these states in the experiment.
|
Keywords
dipolar Bose−Einstein condensate
anisotropic vortex quantum droplets
|
Corresponding Author(s):
Bin Liu,Yongyao Li
|
Issue Date: 26 September 2023
|
|
1 |
Fibich G. , Papanicolaou G. . Self-focusing in the perturbed and unperturbed nonlinear Schrӧdinger equation in critical dimension. SIAM J. Appl. Math., 1999, 60(1): 183
https://doi.org/10.1137/S0036139997322407
|
2 |
Bergé L. . Wave collapse in physics: Principles and applications to light and plasma waves. Phys. Rep., 1998, 303(5−6): 259
https://doi.org/10.1016/S0370-1573(97)00092-6
|
3 |
A. Kuznetsov E. , Dias F. . Bifurcations of solitons and their stability. Phys. Rep., 2011, 507(2−3): 43
https://doi.org/10.1016/j.physrep.2011.06.002
|
4 |
A. Malomed B. . Two-dimensional solitons in nonlocal media: A brief review. Symmetry (Basel), 2022, 14(8): 1565
https://doi.org/10.3390/sym14081565
|
5 |
A. Malomed B., Multidimensional Solitons, American Institute of Physics: Melville, NY, 2022
|
6 |
Heidemann R. , Raitzsch U. , Bendkowsky V. , Butscher B. , Löw R. , Pfau T. . Rydberg excitation of Bose–Einstein condensates. Phys. Rev. Lett., 2008, 100(3): 033601
https://doi.org/10.1103/PhysRevLett.100.033601
|
7 |
Maucher F. , Henkel N. , Saffman M. , Królikowski W. , Skupin S. , Pohl T. . Rydberg-induced solitons: Three-dimensional self-trapping of matter waves. Phys. Rev. Lett., 2011, 106(17): 170401
https://doi.org/10.1103/PhysRevLett.106.170401
|
8 |
O’Dell D. , Giovanazzi S. , Kurizki G. , M. Akulin V. . Bose–Einstein condensates with 1/r interatomic attraction: Electromagnetically induced “gravity”. Phys. Rev. Lett., 2000, 84(25): 5687
https://doi.org/10.1103/PhysRevLett.84.5687
|
9 |
Qin J. , Dong G. , A. Malomed B. . Stable giant vortex annuli in microwave-coupled atomic condensates. Phys. Rev. A, 2016, 94(5): 053611
https://doi.org/10.1103/PhysRevA.94.053611
|
10 |
Lahaye T. , Menotti C. , Santos L. , Lewenstein M. , Pfau T. . The physics of dipolar bosonic quantum gases. Rep. Prog. Phys., 2009, 72(12): 126401
https://doi.org/10.1088/0034-4885/72/12/126401
|
11 |
Pedri P. , Santos L. . Two-dimensional bright solitons in dipolar Bose–Einstein condensates. Phys. Rev. Lett., 2005, 95(20): 200404
https://doi.org/10.1103/PhysRevLett.95.200404
|
12 |
Nath R. , Pedri P. , Santos L. . Stability of dark solitons in three dimensional dipolar Bose–Einstein condensates. Phys. Rev. Lett., 2008, 101(21): 210402
https://doi.org/10.1103/PhysRevLett.101.210402
|
13 |
Tikhonenkov I. , A. Malomed B. , Vardi A. . Anisotropic solitons in dipolar Bose–Einstein condensates. Phys. Rev. Lett., 2008, 100(9): 090406
https://doi.org/10.1103/PhysRevLett.100.090406
|
14 |
Raghunandan M. , Mishra C. , Lakomy K. , Pedri P. , Santos L. , Nath R. . Two-dimensional bright solitons in dipolar Bose–Einstein condensates with tilted dipoles. Phys. Rev. A, 2015, 92(1): 013637
https://doi.org/10.1103/PhysRevA.92.013637
|
15 |
B. Blakie P. . Axial collective mode of a dipolar quantum droplet. Photonics, 2023, 10(4): 393
https://doi.org/10.3390/photonics10040393
|
16 |
Zhao Y. , Lei Y. , Xu Y. , Xu S. , Triki H. , Biswas A. , Zhou Q. . Vector spatiotemporal solitons and their memory features in cold Rydberg gases. Chin. Phys. Lett., 2022, 39(3): 034202
https://doi.org/10.1088/0256-307X/39/3/034202
|
17 |
Tikhonenkov I. , A. Malomed B. , Vardi A. . Vortex solitons in dipolar Bose–Einstein condensates. Phys. Rev. A, 2008, 78(4): 043614
https://doi.org/10.1103/PhysRevA.78.043614
|
18 |
Jiang X. , Fan Z. , Chen Z. , Pang W. , Li Y. , A. Malomed B. . Two-dimensional solitons in dipolar Bose-Einstein condensates with spin–orbit coupling. Phys. Rev. A, 2016, 93(2): 023633
https://doi.org/10.1103/PhysRevA.93.023633
|
19 |
Liao B. , Ye Y. , Zhuang J. , Huang C. , Deng H. , Pang W. , Liu B. , Li Y. . Anisotropic solitary semivortices in dipolar spinor condensates controlled by the twodimensional anisotropic spin–orbit coupling. Chaos Solitons Fractals, 2018, 116: 424
https://doi.org/10.1016/j.chaos.2018.10.001
|
20 |
Liao B. , Li S. , Huang C. , Luo Z. , Pang W. , Tan H. , A. Malomed B. , Li Y. . Anisotropic semivortices in dipolar spinor condensates controlled by Zeeman splitting. Phys. Rev. A, 2017, 96(4): 043613
https://doi.org/10.1103/PhysRevA.96.043613
|
21 |
Schmitt M. , Wenzel M. , Böttcher F. , Ferrier-Barbut I. , Pfau T. . Self-bound droplets of a dilute magnetic quantum liquid. Nature, 2016, 539(7628): 259
https://doi.org/10.1038/nature20126
|
22 |
Chomaz L. , Baier S. , Petter D. , J. Mark M. , Wächtler F. , Santos L. , Ferlaino F. . Quantum-fluctuation-driven crossover from a dilute Bose–Einstein condensate to a macrodroplet in a dipolar quantum fluid. Phys. Rev. X, 2016, 6(4): 041039
https://doi.org/10.1103/PhysRevX.6.041039
|
23 |
R. Cabrera C. , Tanzi L. , Sanz J. , Naylor B. , Thomas P. , Cheiney P. , Tarruell L. . Quantum liquid droplets in a mixture of Bose–Einstein condensates. Science, 2018, 359(6373): 301
https://doi.org/10.1126/science.aao5686
|
24 |
Semeghini G. , Ferioli G. , Masi L. , Mazzinghi C. , Wolswijk L. , Minardi F. , Modugno M. , Modugno G. , Inguscio M. , Fattori M. . Self-bound quantum droplets of atomic mixtures in free space. Phys. Rev. Lett., 2018, 120(23): 235301
https://doi.org/10.1103/PhysRevLett.120.235301
|
25 |
D’Errico C. , Burchianti A. , Prevedelli M. , Salasnich L. , Ancilotto F. , Modugno M. , Minardi F. , Fort C. . Observation of quantum droplets in a heteronuclear bosonic mixture. Phys. Rev. Res., 2019, 1(3): 033155
https://doi.org/10.1103/PhysRevResearch.1.033155
|
26 |
S. Petrov D. . Quantum mechanical stabilization of a collapsing Bose–Bose mixture. Phys. Rev. Lett., 2015, 115(15): 155302
https://doi.org/10.1103/PhysRevLett.115.155302
|
27 |
Luo Z. , Pang W. , Liu B. , Li Y. , A. Malomed B. . A new kind form of liquid matter: Quantum droplets. Front. Phys., 2021, 16(3): 32201
https://doi.org/10.1007/s11467-020-1020-2
|
28 |
Böttcher F. , N. Schmidt J. , Hertkorn J. , S. H. Ng K. , D. Graham S. , Guo M. , Langen T. , Pfau T. . New states of matter with fine-tuned interactions: Quantum droplets and dipolar supersolids. Rep. Prog. Phys., 2021, 84(1): 012403
https://doi.org/10.1088/1361-6633/abc9ab
|
29 |
Guo M. , Pfau T. . A new state of matter of quantum droplets. Front. Phys., 2021, 16(3): 32202
https://doi.org/10.1007/s11467-020-1035-8
|
30 |
A. Malomed B. . The family of quantum droplets keeps expanding. Front. Phys., 2021, 16(2): 22504
https://doi.org/10.1007/s11467-020-1024-y
|
31 |
Li Y. , Chen Z. , Luo Z. , Huang C. , Tan H. , Pang W. , A. Malomed B. . Two-dimensional vortex quantum droplets. Phys. Rev. A, 2018, 98(6): 063602
https://doi.org/10.1103/PhysRevA.98.063602
|
32 |
V. Kartashov Y. , A. Malomed B. , Tarruell L. , Torner L. . Three-dimensional droplets of swirling superfluids. Phys. Rev. A, 2018, 98(1): 013612
https://doi.org/10.1103/PhysRevA.98.013612
|
33 |
Zhang X. , Xu X. , Zheng Y. , Chen Z. , Liu B. , Huang C. , A. Malomed B. , Li Y. . Semidiscrete quantum droplets and vortices. Phys. Rev. Lett., 2019, 123: 113901
|
34 |
Cidrim A. , E. A. dos Santos F. , A. L. Henn E. , Macri T. . Vortices in self-bound dipolar droplets. Phys. Rev. A, 2018, 98(2): 023618
https://doi.org/10.1103/PhysRevA.98.023618
|
35 |
Baillie D. , M. Wilson R. , N. Bisset R. , B. Blakie P. . Self-bound dipolar droplet: A localized matter wave in free space. Phys. Rev. A, 2016, 94: 021602(R)
https://doi.org/10.1103/PhysRevA.94.021602
|
36 |
Sinha S. , Santos L. . Cold dipolar gases in quasi-one-dimensional geometries. Phys. Rev. Lett., 2007, 99(14): 140406
https://doi.org/10.1103/PhysRevLett.99.140406
|
37 |
Cuevas J. , A. Malomed B. , G. Kevrekidis P. , J. Frantzeskakis D. . Solitons in quasi-one-dimensional Bose-Einstein condensates with competing dipolar and local interactions. Phys. Rev. A, 2009, 79(5): 053608
https://doi.org/10.1103/PhysRevA.79.053608
|
38 |
G. Vakhitov N. , A. Kolokolov A. . Stationary solutions of the wave equation in a medium with nonlinearity saturation. Radiophys. Quantum Electron., 1973, 16(7): 783
https://doi.org/10.1007/BF01031343
|
39 |
S. Kivshar Yu. , A. Malomed B. . Dynamics of solitons in nearly integrable systems. Rev. Mod. Phys., 1989, 61(4): 763
https://doi.org/10.1103/RevModPhys.61.763
|
40 |
Burger S. , Bongs K. , Dettmer S. , Ertmer W. , Sengstock K. , Sanpera A. , V. Shlyapnikov G. , Lewenstein M. . Dark solitons in Bose−Einstein condensates. Phys. Rev. Lett., 1999, 83(25): 5198
https://doi.org/10.1103/PhysRevLett.83.5198
|
41 |
P. Anderson B. , C. Haljan P. , A. Regal C. , L. Feder D. , A. Collins L. , W. Clark C. , A. Cornell E. . Watching dark solitons decay into vortex rings in a Bose–Einstein condensate. Phys. Rev. Lett., 2001, 86(14): 2926
https://doi.org/10.1103/PhysRevLett.86.2926
|
42 |
J. Shen Y. , J. Wang X. , W. Xie Z. , J. Min C. , Fu X. , Liu Q. , L. Gong M. , C. Yuan X. . Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci. Appl., 2019, 8(1): 90
https://doi.org/10.1038/s41377-019-0194-2
|
43 |
Ramachandhran B. , Opanchuk B. , J. Liu X. , Pu H. , D. Drummond P. , Hu H. . Half-quantum vortex state in a spin–orbit-coupled Bose–Einstein condensate. Phys. Rev. A, 2012, 85(2): 023606
https://doi.org/10.1103/PhysRevA.85.023606
|
44 |
Li Y. , Liu J. , Pang W. , A. Malomed B. . Matter-wave solitons supported by field-induced dipole–dipole repulsion with spatially modulated strength. Phys. Rev. A, 2013, 88(5): 053630
https://doi.org/10.1103/PhysRevA.88.053630
|
45 |
Li Y. , Liu Y. , Fan Z. , Pang W. , Fu S. , A. Malomed B. . Two-dimensional dipolar gap solitons in free space with spin−orbit coupling. Phys. Rev. A, 2017, 95(6): 063613
https://doi.org/10.1103/PhysRevA.95.063613
|
46 |
Huang C. , Ye Y. , Liu S. , He H. , Pang W. , A. Malomed B. , Li Y. . Excited states of two-dimensional solitons supported by spin–orbit coupling and field-induced dipole–dipole repulsion. Phys. Rev. A, 2018, 97(1): 013636
https://doi.org/10.1103/PhysRevA.97.013636
|
47 |
Boudjemâa A. . Fluctuations and quantum self-bound droplets in a dipolar Bose–Bose mixture. Phys. Rev. A, 2018, 98(3): 033612
https://doi.org/10.1103/PhysRevA.98.033612
|
48 |
N. Bisset R. , A. P. Ardila L. , Santos L. . Quantum droplets of dipolar mixtures. Phys. Rev. Lett., 2021, 126(2): 025301
https://doi.org/10.1103/PhysRevLett.126.025301
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|