Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2024, Vol. 19 Issue (2) : 22202    https://doi.org/10.1007/s11467-023-1338-7
RESEARCH ARTICLE
Two-dimensional anisotropic vortex quantum droplets in dipolar Bose−Einstein condensates
Guilong Li1, Xunda Jiang1, Bin Liu1(), Zhaopin Chen2, Boris A. Malomed3,4, Yongyao Li1,5()
1. School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528225, China
2. Physics Department and Solid-State Institute, Technion, Haifa 32000, Israel
3. Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
4. Instituto de Alta Investigación, Universidad de Tarapacá, Casilla 7D, Arica, Chile
5. Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro−Nano Optoelectronic Technology, Foshan University, Foshan 528225, China
 Download: PDF(3982 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Creation of stable intrinsically anisotropic self-bound states with embedded vorticity is a challenging issue. Previously, no such states in Bose−Einstein condensates (BECs) or other physical settings were known. Dipolar BEC suggests a unique possibility to predict stable two dimensional anisotropic vortex quantum droplets (2D-AVQDs). We demonstrate that they can be created with the vortex axis oriented perpendicular to the polarization of dipoles. The stability area and characteristics of the 2D-AVQDs in the parameter space are revealed by means of analytical and numerical methods. Further, the rotation of the polarizing magnetic field is considered, and the largest angular velocities, up to which spinning 2D-AVQDs can follow the rotation in clockwise and anti-clockwise directions, are found. Collisions between moving 2D-AVQDs are studied too, demonstrating formation of bound states with a vortex−antivortex−vortex structure. A stability domain for such stationary bound states is identified. Unstable dipolar states, that can be readily implemented by means of phase imprinting, quickly transform into robust 2D-AVQDs, which suggests a straightforward possibility for the creation of these states in the experiment.

Keywords dipolar Bose−Einstein condensate      anisotropic vortex quantum droplets     
Corresponding Author(s): Bin Liu,Yongyao Li   
Issue Date: 26 September 2023
 Cite this article:   
Guilong Li,Xunda Jiang,Bin Liu, et al. Two-dimensional anisotropic vortex quantum droplets in dipolar Bose−Einstein condensates[J]. Front. Phys. , 2024, 19(2): 22202.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-023-1338-7
https://academic.hep.com.cn/fop/EN/Y2024/V19/I2/22202
Fig.1  (a1, a2) A typical example of stable 2D-AVQDs, with (N,g)=(1000,0.25). The panels (a1, a2) display, severally, density and phase patterns of the droplet. (b) In the plane of (N,g), 2D-AVQDs (S=1), fundamental QDs (S=0) are stable in the orange area. In the green area, only dipole mode and fundamental QDs can be stable.
Fig.2  (a1, a2) Density and phase patterns of the stable vortex?antivortex?vortex bound state with (N,g)=(1000,0.25), x0=13.6 and μ=?0.8482. (b, c) The chemical potential of the states of this type versus g (at N=1000) and N (at g=0.25), respectively. Solid and dashed parts of the curves represent, severally, stable and unstable states. (d1?d4) Steady spinning of a vortex?antivortex?vortex bound state with (N,g)=(1000,0.25), under the action of the polarizing magnetic field rotating with angular velocity ω=0.2π×10?3. The shape of the bound state is displayed at t=0 (d1), 1250 (d2) 2500 (d3), 3750 (d4).
Fig.3  The peak density (IP), chemical potential (μ), effective area (Aeff), aspect ratio (El), and average angular momentum (Lˉz), see Eq. (9), vs. N (a1?a5) and g (b1?b5). In panels (a1?a5), g=0.25 is fixed, while in panels (b1?b5) N=1000. Red dashed curves in panels (a1?a3, b1?b3) represent the analytical approximation given by Eqs. (7) and (8), respectively.
Fig.4  (a?d) Steady spinning of 2D-AVQDs with (N,g)=(1000,0.25), which follows the rotation of the polarizing magnetic field with angular velocity ω=0.25π×10?3. The shape of 2D-AVQDs is displayed at t=0 (a), 1000 (b) 2000 (c), 3000 (d). (e, f) The largest angular velocities, |ωcr(±)|, which admit stable spinning of 2D-AVQDs in two opposite directions, vs. g (at N=1000) and N (at g=0.25), respectively.
Fig.5  The collision of two 2D-AVQDs with identical vorticities, initiated, at t=0, by input ?(x?x0,y)e?iηx+?(x+x0,y)eiηx with x0=64, η=0.025, g=0.25, and norm of each 2D-AVQDs N=1000. (a1?d1) Density patterns at t=400 (a1), 635 (b1), 760 (c1), and 900 (d1). (a2?d2) The corresponding phase diagrams for panels (a2?d2).
Fig.6  (a?c) Spontaneous transformation of the unstable dipole mode with N=1000 and g=0.25 into a stable 2D-AVQDs is represented by density snapshots taken at t=0 (a), 50 (b), and 700 (c). (d) The phase pattern at t=700.
1 Fibich G. , Papanicolaou G. . Self-focusing in the perturbed and unperturbed nonlinear Schrӧdinger equation in critical dimension. SIAM J. Appl. Math., 1999, 60(1): 183
https://doi.org/10.1137/S0036139997322407
2 Bergé L. . Wave collapse in physics: Principles and applications to light and plasma waves. Phys. Rep., 1998, 303(5−6): 259
https://doi.org/10.1016/S0370-1573(97)00092-6
3 A. Kuznetsov E. , Dias F. . Bifurcations of solitons and their stability. Phys. Rep., 2011, 507(2−3): 43
https://doi.org/10.1016/j.physrep.2011.06.002
4 A. Malomed B. . Two-dimensional solitons in nonlocal media: A brief review. Symmetry (Basel), 2022, 14(8): 1565
https://doi.org/10.3390/sym14081565
5 A. Malomed B., Multidimensional Solitons, American Institute of Physics: Melville, NY, 2022
6 Heidemann R. , Raitzsch U. , Bendkowsky V. , Butscher B. , Löw R. , Pfau T. . Rydberg excitation of Bose–Einstein condensates. Phys. Rev. Lett., 2008, 100(3): 033601
https://doi.org/10.1103/PhysRevLett.100.033601
7 Maucher F. , Henkel N. , Saffman M. , Królikowski W. , Skupin S. , Pohl T. . Rydberg-induced solitons: Three-dimensional self-trapping of matter waves. Phys. Rev. Lett., 2011, 106(17): 170401
https://doi.org/10.1103/PhysRevLett.106.170401
8 O’Dell D. , Giovanazzi S. , Kurizki G. , M. Akulin V. . Bose–Einstein condensates with 1/r interatomic attraction: Electromagnetically induced “gravity”. Phys. Rev. Lett., 2000, 84(25): 5687
https://doi.org/10.1103/PhysRevLett.84.5687
9 Qin J. , Dong G. , A. Malomed B. . Stable giant vortex annuli in microwave-coupled atomic condensates. Phys. Rev. A, 2016, 94(5): 053611
https://doi.org/10.1103/PhysRevA.94.053611
10 Lahaye T. , Menotti C. , Santos L. , Lewenstein M. , Pfau T. . The physics of dipolar bosonic quantum gases. Rep. Prog. Phys., 2009, 72(12): 126401
https://doi.org/10.1088/0034-4885/72/12/126401
11 Pedri P. , Santos L. . Two-dimensional bright solitons in dipolar Bose–Einstein condensates. Phys. Rev. Lett., 2005, 95(20): 200404
https://doi.org/10.1103/PhysRevLett.95.200404
12 Nath R. , Pedri P. , Santos L. . Stability of dark solitons in three dimensional dipolar Bose–Einstein condensates. Phys. Rev. Lett., 2008, 101(21): 210402
https://doi.org/10.1103/PhysRevLett.101.210402
13 Tikhonenkov I. , A. Malomed B. , Vardi A. . Anisotropic solitons in dipolar Bose–Einstein condensates. Phys. Rev. Lett., 2008, 100(9): 090406
https://doi.org/10.1103/PhysRevLett.100.090406
14 Raghunandan M. , Mishra C. , Lakomy K. , Pedri P. , Santos L. , Nath R. . Two-dimensional bright solitons in dipolar Bose–Einstein condensates with tilted dipoles. Phys. Rev. A, 2015, 92(1): 013637
https://doi.org/10.1103/PhysRevA.92.013637
15 B. Blakie P. . Axial collective mode of a dipolar quantum droplet. Photonics, 2023, 10(4): 393
https://doi.org/10.3390/photonics10040393
16 Zhao Y. , Lei Y. , Xu Y. , Xu S. , Triki H. , Biswas A. , Zhou Q. . Vector spatiotemporal solitons and their memory features in cold Rydberg gases. Chin. Phys. Lett., 2022, 39(3): 034202
https://doi.org/10.1088/0256-307X/39/3/034202
17 Tikhonenkov I. , A. Malomed B. , Vardi A. . Vortex solitons in dipolar Bose–Einstein condensates. Phys. Rev. A, 2008, 78(4): 043614
https://doi.org/10.1103/PhysRevA.78.043614
18 Jiang X. , Fan Z. , Chen Z. , Pang W. , Li Y. , A. Malomed B. . Two-dimensional solitons in dipolar Bose-Einstein condensates with spin–orbit coupling. Phys. Rev. A, 2016, 93(2): 023633
https://doi.org/10.1103/PhysRevA.93.023633
19 Liao B. , Ye Y. , Zhuang J. , Huang C. , Deng H. , Pang W. , Liu B. , Li Y. . Anisotropic solitary semivortices in dipolar spinor condensates controlled by the twodimensional anisotropic spin–orbit coupling. Chaos Solitons Fractals, 2018, 116: 424
https://doi.org/10.1016/j.chaos.2018.10.001
20 Liao B. , Li S. , Huang C. , Luo Z. , Pang W. , Tan H. , A. Malomed B. , Li Y. . Anisotropic semivortices in dipolar spinor condensates controlled by Zeeman splitting. Phys. Rev. A, 2017, 96(4): 043613
https://doi.org/10.1103/PhysRevA.96.043613
21 Schmitt M. , Wenzel M. , Böttcher F. , Ferrier-Barbut I. , Pfau T. . Self-bound droplets of a dilute magnetic quantum liquid. Nature, 2016, 539(7628): 259
https://doi.org/10.1038/nature20126
22 Chomaz L. , Baier S. , Petter D. , J. Mark M. , Wächtler F. , Santos L. , Ferlaino F. . Quantum-fluctuation-driven crossover from a dilute Bose–Einstein condensate to a macrodroplet in a dipolar quantum fluid. Phys. Rev. X, 2016, 6(4): 041039
https://doi.org/10.1103/PhysRevX.6.041039
23 R. Cabrera C. , Tanzi L. , Sanz J. , Naylor B. , Thomas P. , Cheiney P. , Tarruell L. . Quantum liquid droplets in a mixture of Bose–Einstein condensates. Science, 2018, 359(6373): 301
https://doi.org/10.1126/science.aao5686
24 Semeghini G. , Ferioli G. , Masi L. , Mazzinghi C. , Wolswijk L. , Minardi F. , Modugno M. , Modugno G. , Inguscio M. , Fattori M. . Self-bound quantum droplets of atomic mixtures in free space. Phys. Rev. Lett., 2018, 120(23): 235301
https://doi.org/10.1103/PhysRevLett.120.235301
25 D’Errico C. , Burchianti A. , Prevedelli M. , Salasnich L. , Ancilotto F. , Modugno M. , Minardi F. , Fort C. . Observation of quantum droplets in a heteronuclear bosonic mixture. Phys. Rev. Res., 2019, 1(3): 033155
https://doi.org/10.1103/PhysRevResearch.1.033155
26 S. Petrov D. . Quantum mechanical stabilization of a collapsing Bose–Bose mixture. Phys. Rev. Lett., 2015, 115(15): 155302
https://doi.org/10.1103/PhysRevLett.115.155302
27 Luo Z. , Pang W. , Liu B. , Li Y. , A. Malomed B. . A new kind form of liquid matter: Quantum droplets. Front. Phys., 2021, 16(3): 32201
https://doi.org/10.1007/s11467-020-1020-2
28 Böttcher F. , N. Schmidt J. , Hertkorn J. , S. H. Ng K. , D. Graham S. , Guo M. , Langen T. , Pfau T. . New states of matter with fine-tuned interactions: Quantum droplets and dipolar supersolids. Rep. Prog. Phys., 2021, 84(1): 012403
https://doi.org/10.1088/1361-6633/abc9ab
29 Guo M. , Pfau T. . A new state of matter of quantum droplets. Front. Phys., 2021, 16(3): 32202
https://doi.org/10.1007/s11467-020-1035-8
30 A. Malomed B. . The family of quantum droplets keeps expanding. Front. Phys., 2021, 16(2): 22504
https://doi.org/10.1007/s11467-020-1024-y
31 Li Y. , Chen Z. , Luo Z. , Huang C. , Tan H. , Pang W. , A. Malomed B. . Two-dimensional vortex quantum droplets. Phys. Rev. A, 2018, 98(6): 063602
https://doi.org/10.1103/PhysRevA.98.063602
32 V. Kartashov Y. , A. Malomed B. , Tarruell L. , Torner L. . Three-dimensional droplets of swirling superfluids. Phys. Rev. A, 2018, 98(1): 013612
https://doi.org/10.1103/PhysRevA.98.013612
33 Zhang X. , Xu X. , Zheng Y. , Chen Z. , Liu B. , Huang C. , A. Malomed B. , Li Y. . Semidiscrete quantum droplets and vortices. Phys. Rev. Lett., 2019, 123: 113901
34 Cidrim A. , E. A. dos Santos F. , A. L. Henn E. , Macri T. . Vortices in self-bound dipolar droplets. Phys. Rev. A, 2018, 98(2): 023618
https://doi.org/10.1103/PhysRevA.98.023618
35 Baillie D. , M. Wilson R. , N. Bisset R. , B. Blakie P. . Self-bound dipolar droplet: A localized matter wave in free space. Phys. Rev. A, 2016, 94: 021602(R)
https://doi.org/10.1103/PhysRevA.94.021602
36 Sinha S. , Santos L. . Cold dipolar gases in quasi-one-dimensional geometries. Phys. Rev. Lett., 2007, 99(14): 140406
https://doi.org/10.1103/PhysRevLett.99.140406
37 Cuevas J. , A. Malomed B. , G. Kevrekidis P. , J. Frantzeskakis D. . Solitons in quasi-one-dimensional Bose-Einstein condensates with competing dipolar and local interactions. Phys. Rev. A, 2009, 79(5): 053608
https://doi.org/10.1103/PhysRevA.79.053608
38 G. Vakhitov N. , A. Kolokolov A. . Stationary solutions of the wave equation in a medium with nonlinearity saturation. Radiophys. Quantum Electron., 1973, 16(7): 783
https://doi.org/10.1007/BF01031343
39 S. Kivshar Yu. , A. Malomed B. . Dynamics of solitons in nearly integrable systems. Rev. Mod. Phys., 1989, 61(4): 763
https://doi.org/10.1103/RevModPhys.61.763
40 Burger S. , Bongs K. , Dettmer S. , Ertmer W. , Sengstock K. , Sanpera A. , V. Shlyapnikov G. , Lewenstein M. . Dark solitons in Bose−Einstein condensates. Phys. Rev. Lett., 1999, 83(25): 5198
https://doi.org/10.1103/PhysRevLett.83.5198
41 P. Anderson B. , C. Haljan P. , A. Regal C. , L. Feder D. , A. Collins L. , W. Clark C. , A. Cornell E. . Watching dark solitons decay into vortex rings in a Bose–Einstein condensate. Phys. Rev. Lett., 2001, 86(14): 2926
https://doi.org/10.1103/PhysRevLett.86.2926
42 J. Shen Y. , J. Wang X. , W. Xie Z. , J. Min C. , Fu X. , Liu Q. , L. Gong M. , C. Yuan X. . Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci. Appl., 2019, 8(1): 90
https://doi.org/10.1038/s41377-019-0194-2
43 Ramachandhran B. , Opanchuk B. , J. Liu X. , Pu H. , D. Drummond P. , Hu H. . Half-quantum vortex state in a spin–orbit-coupled Bose–Einstein condensate. Phys. Rev. A, 2012, 85(2): 023606
https://doi.org/10.1103/PhysRevA.85.023606
44 Li Y. , Liu J. , Pang W. , A. Malomed B. . Matter-wave solitons supported by field-induced dipole–dipole repulsion with spatially modulated strength. Phys. Rev. A, 2013, 88(5): 053630
https://doi.org/10.1103/PhysRevA.88.053630
45 Li Y. , Liu Y. , Fan Z. , Pang W. , Fu S. , A. Malomed B. . Two-dimensional dipolar gap solitons in free space with spin−orbit coupling. Phys. Rev. A, 2017, 95(6): 063613
https://doi.org/10.1103/PhysRevA.95.063613
46 Huang C. , Ye Y. , Liu S. , He H. , Pang W. , A. Malomed B. , Li Y. . Excited states of two-dimensional solitons supported by spin–orbit coupling and field-induced dipole–dipole repulsion. Phys. Rev. A, 2018, 97(1): 013636
https://doi.org/10.1103/PhysRevA.97.013636
47 Boudjemâa A. . Fluctuations and quantum self-bound droplets in a dipolar Bose–Bose mixture. Phys. Rev. A, 2018, 98(3): 033612
https://doi.org/10.1103/PhysRevA.98.033612
48 N. Bisset R. , A. P. Ardila L. , Santos L. . Quantum droplets of dipolar mixtures. Phys. Rev. Lett., 2021, 126(2): 025301
https://doi.org/10.1103/PhysRevLett.126.025301
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed