|
|
Magnetic phase transition and continuous spin switching in a high-entropy orthoferrite single crystal |
Wanting Yang1,2, Shuang Zhu1, Xiong Luo3, Xiaoxuan Ma1,2, Chenfei Shi1, Huan Song1, Zhiqiang Sun1, Yefei Guo1, Yuriy Dedkov1, Baojuan Kang1,2, Jin-Ke Bao1, Shixun Cao1,2,4( ) |
1. Department of Physics, Shanghai University, Shanghai 200444, China 2. Materials Genome Institute and International Center for Quantum and Molecular Structures, Shanghai University, Shanghai 200444, China 3. School of Physics, Southeast University, Nanjing 211189, China 4. Shanghai Key Laboratory of High Temperature Superconductors, Shanghai University, Shanghai 200444, China |
|
|
Abstract Rare-earth orthoferrite REFeO3 (where RE is a rare-earth ion) is gaining interest. We created a high-entropy orthoferrite (Tm0.2Nd0.2Dy0.2Y0.2Yb0.2)FeO3 (HEOR) by doping five RE ions in equimolar ratios and grew the single crystal by optical floating zone method. It strongly tends to form a single-phase structure stabilized by high configurational entropy. In the low-temperature region (11.6‒ 14.4 K), the spin reorientation transition (SRT) of Γ2 (Fx, Cy, Gz)‒Γ24‒Γ4 (Gx, Ay, Fz) occurs. The weak ferromagnetic (FM) moment, which comes from the Fe sublattices distortion, rotates from the a- to c-axis. The two-step dynamic processes (Γ2‒Γ24‒Γ4) are identified by AC susceptibility measurements. SRT in HEOR can be tuned in the range of 50‒60000 Oe, which is an order of magnitude larger than that of orthoferrites in the peer system, making it a candidate for high-field spin sensing. Typical spin-switching (SSW) and continuous spin-switching (CSSW) effects occur under low magnetic fields due to the strong interactions between RE‒Fe sublattices. The CSSW effect is tunable between 20‒50 Oe, and hence, HEOR potentially can be applied to spin modulation devices. Furthermore, because of the strong anisotropy of magnetic entropy change () and refrigeration capacity (RC) based on its high configurational entropy, HEOR is expected to provide a novel approach for refrigeration by altering the orientations of the crystallographic axes (anisotropic configurational entropy).
|
Keywords
high-entropy oxide
rare-earth orthoferrite
spin reorientation transition
spin switching
magnetocaloric effect
|
Corresponding Author(s):
Shixun Cao
|
Issue Date: 07 October 2023
|
|
1 |
E. Hahn S., A. Podlesnyak A., Ehlers G., E. Granroth G., S. Fishman R., I. Kolesnikov A., Pomjakushina E., Conder K.. Inelastic neutron scattering studies of YFeO3. Phys. Rev. B, 2014, 89(1): 014420
https://doi.org/10.1103/PhysRevB.89.014420
|
2 |
C. Fan W., Y. Chen H., Zhao G., X. Ma X., Chakaravarthy R., J. Kang B., L. Lu W., Ren W., C. Zhang J., X. Cao S.. Thermal control magnetic switching dominated by spin reorientation transition in Mn-doped PrFeO3 single crystals. Front. Phys., 2022, 17(3): 33504
https://doi.org/10.1007/s11467-021-1131-4
|
3 |
L. White R.. Review of recent work on the magnetic and spectroscopic properties of the rare‐earth orthoferrites. J. Appl. Phys., 1969, 40(3): 1061
https://doi.org/10.1063/1.1657530
|
4 |
M. Goldschmidt V.. Die Gesetze der Krystallochemie. Naturwissenschaften, 1926, 14(21): 477
https://doi.org/10.1007/BF01507527
|
5 |
Shekhtman L., Entin-Wohlman O., Aharony A.. Moriya’s anisotropic superexchange interaction, frustration, and Dzyaloshinsky’s weak ferromagnetism. Phys. Rev. Lett., 1992, 69(5): 836
https://doi.org/10.1103/PhysRevLett.69.836
|
6 |
Treves D.. Magnetic studies of some orthoferrites. Phys. Rev., 1962, 125(6): 1843
https://doi.org/10.1103/PhysRev.125.1843
|
7 |
Dzyaloshinsky I., A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics, J. Phys. Chem. Solids 4(4), 241 (1958)
|
8 |
Yamaguchi T., Tsushima K.. Magnetic symmetry of rare-earth orthochromites and orthoferrites. Phys. Rev. B, 1973, 8(11): 5187
https://doi.org/10.1103/PhysRevB.8.5187
|
9 |
F. Bertaut E., Spin configurations of ionic structures: Theory and practice, in: Spin Arrangements and Crystal Structure, Domains, and Micromagnetics, edited by G. T. Rado and H. Suhl, Elsevier, 1963, page 149
|
10 |
Treves D.. Studies on orthoferrites at the Weizmann institute of science. J. Appl. Phys., 1965, 36(3): 1033
https://doi.org/10.1063/1.1714088
|
11 |
Yamaguchi T.. Theory of spin reorientation in rare-earth orthochromites and orthoferrites. J. Phys. Chem. Solids, 1974, 35(4): 479
https://doi.org/10.1016/S0022-3697(74)80003-X
|
12 |
Y. Zhao W., X. Cao S., X. Huang R., M. Cao Y., Xu K., J. Kang B., C. Zhang J., Ren W.. Spin reorientation transition in dysprosium-samarium orthoferrite single crystals. Phys. Rev. B, 2015, 91(10): 104425
https://doi.org/10.1103/PhysRevB.91.104425
|
13 |
B. Bazaliy Ya., T. Tsymbal L., N. Kakazei G., I. Kamenev V., E. Wigen P.. Measurements of spin reorientation in YbFeO3 and comparison with modified mean-field theory. Phys. Rev. B, 2005, 72(17): 174403
https://doi.org/10.1103/PhysRevB.72.174403
|
14 |
Y. Zhao X., L. Zhang K., M. Liu X., Wang B., Xu K., X. Cao S., H. Wu A., B. Su L., H. Ma G.. Spin reorientation transition in Sm0.5Tb0.5FeO3 orthoferrite single crystal. AIP Adv., 2016, 6(1): 015201
https://doi.org/10.1063/1.4939697
|
15 |
X. Ma X., Yuan N., Luo X., K. Chen Y., J. Kang B., Ren W., C. Zhang J., X. Cao S.. Field tunable spin switching in perovskite YbFeO3 single crystal. Mater. Today Commun., 2021, 27: 102438
https://doi.org/10.1016/j.mtcomm.2021.102438
|
16 |
S. Zhang J., Y. Zhao W., J. Feng Z., Y. Ge J., C. Zhang J., X. Cao S.. Spin reorientation and rare earth antiferromagnetic transition in single crystal Sm0.15Dy0.85FeO3. J. Alloys Compd., 2019, 804: 396
https://doi.org/10.1016/j.jallcom.2019.07.035
|
17 |
Hou L., Shi L., Y. Zhao J., Y. Pan S., Xin Y., Y. Yuan X.. Spin-reorientation transition driven by double exchange in CeFeO3 ceramics. J. Phys. Chem. C, 2020, 124(28): 15399
https://doi.org/10.1021/acs.jpcc.0c00379
|
18 |
X. Cao S., Chen L., Y. Zhao W., Xu K., H. Wang G., L. Yang Y., J. Kang B., J. Zhao H., Chen P., Stroppa A., H. Zheng R., C. Zhang J., Ren W., Íñiguez J., Bellaiche L.. Tuning the weak ferromagnetic states in dysprosium orthoferrite. Sci. Rep., 2016, 6(1): 37529
https://doi.org/10.1038/srep37529
|
19 |
X. Cao S., Z. Zhao H., J. Kang B., C. Zhang J., Ren W.. Temperature induced spin switching in SmFeO3 single crystal. Sci. Rep., 2014, 4(1): 5960
https://doi.org/10.1038/srep05960
|
20 |
X. Zhang X., C. Xia Z., J. Ke Y., Q. Zhang X., H. Cheng Z., W. Ouyang Z., F. Wang J., Huang S., Yang F., J. Song Y., L. Xiao G., Deng H., Q. Jiang D.. Magnetic behavior and complete high-field magnetic phase diagram of the orthoferrite ErFeO3. Phys. Rev. B, 2019, 100(5): 054418
https://doi.org/10.1103/PhysRevB.100.054418
|
21 |
J. Yuan S., Ren W., Hong F., B. Wang Y., C. Zhang J., Bellaiche L., X. Cao S., Cao G.. Spin switching and magnetization reversal in single-crystal NdFeO3. Phys. Rev. B, 2013, 87(18): 184405
https://doi.org/10.1103/PhysRevB.87.184405
|
22 |
Das M., Roy S., Mandal P.. Giant reversible magnetocaloric effect in a multiferroic GdFeO3 single crystal. Phys. Rev. B, 2017, 96(17): 174405
https://doi.org/10.1103/PhysRevB.96.174405
|
23 |
X. Huang R., X. Cao S., Ren W., Zhan S., J. Kang B., C. Zhang J.. Large rotating field entropy change in ErFeO3 single crystal with angular distribution contribution. Appl. Phys. Lett., 2013, 103(16): 162412
https://doi.org/10.1063/1.4825274
|
24 |
Mahana S., Manju U., Topwal D.. Giant magnetocaloric effect in GdAlO3 and a comparative study with GdMnO3. J. Phys. D Appl. Phys., 2017, 50(3): 035002
https://doi.org/10.1088/1361-6463/50/3/035002
|
25 |
K. Pecharsky V.Gschneidner Jr, Magnetocaloric effect and magnetic refrigeration, J. Magn. Magn. Mater. 200(1‒3), 44 (1999)
|
26 |
J. Shao M., X. Cao S., J. Yuan S., C. Shang J., J. Kang B., Lu B., C. Zhang J.. Large magnetocaloric effect induced by intrinsic structural transition in Dy1−xHoxMnO3. Appl. Phys. Lett., 2012, 100(22): 222404
https://doi.org/10.1063/1.4722930
|
27 |
J. Ke Y., Q. Zhang X., Ge H., Ma Y., H. Cheng Z.. Low field induced giant anisotropic magnetocaloric effect in DyFeO3 single crystal. Chin. Phys. B, 2015, 24(3): 037501
https://doi.org/10.1088/1674-1056/24/3/037501
|
28 |
W. Yeh J., K. Chen S., J. Lin S., Y. Gan J., S. Chin T., T. Shun T., H. Tsau C., Y. Chang S.. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater., 2004, 6(5): 299
https://doi.org/10.1002/adem.200300567
|
29 |
M. Rost C., Sachet E., Borman T., Moballegh A., C. Dickey E., Hou D., L. Jones J., Curtarolo S., P. Maria J.. Entropy-stabilized oxides. Nat. Commun., 2015, 6(1): 8485
https://doi.org/10.1038/ncomms9485
|
30 |
C. Jiang S.Hu T.Gild J.X. Zhou N.Nie J. D. Qin M.Harrington T.Vecchio K.Luo J., A new class of high-entropy perovskite oxides, Scr. Mater. 142, 116 (2018)
|
31 |
Y. Zhou S., P. Pu Y., W. Zhang Q., K. Shi R., Guo X., Wang W., M. Ji J., C. Wei T., Ouyang T.. Microstructure and dielectric properties of high entropy Ba(Zr0.2Ti0.2Sn0.2Hf0.2Me0.2)O3 perovskite oxides. Ceram. Int., 2020, 46(6): 7430
https://doi.org/10.1016/j.ceramint.2019.11.239
|
32 |
Sarkar A., Breitung B., Hahn H.. High entropy oxides: The role of entropy, enthalpy and synergy. Scr. Mater., 2020, 187: 43
https://doi.org/10.1016/j.scriptamat.2020.05.019
|
33 |
Staub U., Rettig L., M. Bothschafter E., W. Windsor Y., Ramakrishnan M., R. V. Avula S., Dreiser J., Piamonteze C., Scagnoli V., Mukherjee S., Niedermayer C., Medarde M., Pomjakushina E.. Interplay of Fe and Tm moments through the spin-reorientation transition in TmFeO3. Phys. Rev. B, 2017, 96(17): 174408
https://doi.org/10.1103/PhysRevB.96.174408
|
34 |
Shen H., X. Cheng Z., Hong F., Y. Xu J., J. Yuan S., X. Cao S., L. Wang X.. Magnetic field induced discontinuous spin reorientation in ErFeO3 single crystal. Appl. Phys. Lett., 2013, 103(19): 192404
https://doi.org/10.1063/1.4829468
|
35 |
Bombik A.W. Pacyna A., AC susceptibility of TmFeO3 single-crystal, J. Magn. Magn. Mater. 220(1), 18 (2000)
|
36 |
B. Song G., J. Jiang J., J. Kang B., C. Zhang J., X. Cheng Z., H. Ma G., X. Cao S.. Spin reorientation transition process in single crystal NdFeO3. Solid State Commun., 2015, 211: 47
https://doi.org/10.1016/j.ssc.2015.03.013
|
37 |
A. GschneidnerJr K., K. Pecharsky V., O. Tsokol A.. Recent developments in magnetocaloric materials. Rep. Prog. Phys., 2005, 68(6): 1479
https://doi.org/10.1088/0034-4885/68/6/R04
|
38 |
Arrott A.. Criterion for ferromagnetism from observations of magnetic isotherms. Phys. Rev., 1957, 108(6): 1394
https://doi.org/10.1103/PhysRev.108.1394
|
39 |
Inoue J., Shimizu M.. First- and second-order magnetic phase transitions in (R-Y)Co2 and R(Co-Al)2 (R = heavy rare-earth element) compounds. J. Phys. F Met. Phys., 1988, 18(11): 2487
https://doi.org/10.1088/0305-4608/18/11/020
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|