Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2024, Vol. 19 Issue (2) : 23203    https://doi.org/10.1007/s11467-023-1343-x
RESEARCH ARTICLE
Magnetic phase transition and continuous spin switching in a high-entropy orthoferrite single crystal
Wanting Yang1,2, Shuang Zhu1, Xiong Luo3, Xiaoxuan Ma1,2, Chenfei Shi1, Huan Song1, Zhiqiang Sun1, Yefei Guo1, Yuriy Dedkov1, Baojuan Kang1,2, Jin-Ke Bao1, Shixun Cao1,2,4()
1. Department of Physics, Shanghai University, Shanghai 200444, China
2. Materials Genome Institute and International Center for Quantum and Molecular Structures, Shanghai University, Shanghai 200444, China
3. School of Physics, Southeast University, Nanjing 211189, China
4. Shanghai Key Laboratory of High Temperature Superconductors, Shanghai University, Shanghai 200444, China
 Download: PDF(7667 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Rare-earth orthoferrite REFeO3 (where RE is a rare-earth ion) is gaining interest. We created a high-entropy orthoferrite (Tm0.2Nd0.2Dy0.2Y0.2Yb0.2)FeO3 (HEOR) by doping five RE ions in equimolar ratios and grew the single crystal by optical floating zone method. It strongly tends to form a single-phase structure stabilized by high configurational entropy. In the low-temperature region (11.6‒ 14.4 K), the spin reorientation transition (SRT) of Γ2 (Fx, Cy, Gz)‒Γ24‒Γ4 (Gx, Ay, Fz) occurs. The weak ferromagnetic (FM) moment, which comes from the Fe sublattices distortion, rotates from the a- to c-axis. The two-step dynamic processes (Γ2‒Γ24‒Γ4) are identified by AC susceptibility measurements. SRT in HEOR can be tuned in the range of 50‒60000 Oe, which is an order of magnitude larger than that of orthoferrites in the peer system, making it a candidate for high-field spin sensing. Typical spin-switching (SSW) and continuous spin-switching (CSSW) effects occur under low magnetic fields due to the strong interactions between RE‒Fe sublattices. The CSSW effect is tunable between 20‒50 Oe, and hence, HEOR potentially can be applied to spin modulation devices. Furthermore, because of the strong anisotropy of magnetic entropy change ( ΔSm) and refrigeration capacity (RC) based on its high configurational entropy, HEOR is expected to provide a novel approach for refrigeration by altering the orientations of the crystallographic axes (anisotropic configurational entropy).

Keywords high-entropy oxide      rare-earth orthoferrite      spin reorientation transition      spin switching      magnetocaloric effect     
Corresponding Author(s): Shixun Cao   
Issue Date: 07 October 2023
 Cite this article:   
Wanting Yang,Shuang Zhu,Xiong Luo, et al. Magnetic phase transition and continuous spin switching in a high-entropy orthoferrite single crystal[J]. Front. Phys. , 2024, 19(2): 23203.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-023-1343-x
https://academic.hep.com.cn/fop/EN/Y2024/V19/I2/23203
Fig.1  (a?c) The Laue diffraction spectra along the a-, b-, and c-axes; (d?f) the XRD spectra along the a-, b-, and c-axes. (g) Powder XRD spectrum of HEOR single crystal, Rietveld refinement diagram obtained by FullProf Suite. (h) The crystal structure of HEOR from different viewing, and the structure data gotten by Rietveld refinement. The purple, green, and colored balls represent oxygen, iron, and the five rare-earth atoms at the RE site, respectively.
TmFeO3 NdFeO3 DyFeO3 YFeO3 YbFeO3 HEOR
a (Å) 5.2510 5.4489 5.3009 5.2743 5.2330 5.3030
b (Å) 5.5760 5.5887 5.5957 5.5877 5.5570 5.5920
c (Å) 7.5840 7.7619 7.6290 7.5951 7.5700 7.6310
Cell volume (Å3) 222.0563 236.3675 226.2933 223.8368 220.1339 226.2925
Fe?O1 (Å) 2.0047 2.0015 2.0024 1.9984 2.0055 2.0035
Fe?O2 (Å) 2.0265 2.0211 2.0250 2.0273 2.0257 2.0869
Fe?O3 (Å) 2.0025 2.0083 2.0120 2.0033 2.0008 1.9260
Tab.1  Lattice constants, crystal volume, and Fe−O bonding lengths of HEOR single crystal and the parents. Data of HEOR was gotten by the results of XRD Rietveld analysis.
Fig.2  XPS survey scans for annealed and sputtered HEOR. The inset shows a zoomed-in view of the spectrum from ?500 to ?100 eV.
Fig.3  Temperature dependences of the magnetization curves along the a-, b-, and c-axes at 50 Oe.
Fig.4  (a, b) Temperature dependences of magnetizations along the c-axis under various applied magnetic fields in ZFC and FCC modes, respectively. Arrows in (a) indicate the shifts of TSR1 and TSR2.
Fig.5  The HT magnetic phase diagram of HEOR single crystal. The illustration is a low-field phase diagram.
Fig.6  (a, d) Temperature dependences of the real and imaginary parts of AC susceptibility along the c-axis, respectively. HAC = 1 Oe and HDC = 0 Oe. (b) The enlarged plot of the peak in (a). (c) The enlarged plot of the step in (a). (e) The enlarged plot of the peak in (d).
Fig.7  (a−c) Temperature dependences of the negative magnetic entropy change curves calculated from isothermal magnetic curves data along the a-, b-, and c-axes, respectively. (d) Magnetic field dependences of RC curves for the a-, b-, and c-axes.
  Fig. A1 Picture of HEOR single crystal. The length is 54.0 mm and the diameter is 5.5 mm. The black arrow represents the direction of growth.
  Fig. A2 The SEM-EDS mapping of component elements Tm, Nd, Dy, Y, Yb, and Fe with a 20 μm scale bar, respectively.
  Fig. B1 The applied magnetic field dependences of magnetization curves at 2 K.
  Fig. B1 (a?c) Isothermal magnetic curves along the a-, b-, and c-axes at 2?50 K, ΔT = 2 K. (d?f) The Arrott plots calculated from isothermal magnetic curves data for HEOR along the a-, b-, and c-axes.
1 E. Hahn S., A. Podlesnyak A., Ehlers G., E. Granroth G., S. Fishman R., I. Kolesnikov A., Pomjakushina E., Conder K.. Inelastic neutron scattering studies of YFeO3. Phys. Rev. B, 2014, 89(1): 014420
https://doi.org/10.1103/PhysRevB.89.014420
2 C. Fan W., Y. Chen H., Zhao G., X. Ma X., Chakaravarthy R., J. Kang B., L. Lu W., Ren W., C. Zhang J., X. Cao S.. Thermal control magnetic switching dominated by spin reorientation transition in Mn-doped PrFeO3 single crystals. Front. Phys., 2022, 17(3): 33504
https://doi.org/10.1007/s11467-021-1131-4
3 L. White R.. Review of recent work on the magnetic and spectroscopic properties of the rare‐earth orthoferrites. J. Appl. Phys., 1969, 40(3): 1061
https://doi.org/10.1063/1.1657530
4 M. Goldschmidt V.. Die Gesetze der Krystallochemie. Naturwissenschaften, 1926, 14(21): 477
https://doi.org/10.1007/BF01507527
5 Shekhtman L., Entin-Wohlman O., Aharony A.. Moriya’s anisotropic superexchange interaction, frustration, and Dzyaloshinsky’s weak ferromagnetism. Phys. Rev. Lett., 1992, 69(5): 836
https://doi.org/10.1103/PhysRevLett.69.836
6 Treves D.. Magnetic studies of some orthoferrites. Phys. Rev., 1962, 125(6): 1843
https://doi.org/10.1103/PhysRev.125.1843
7 Dzyaloshinsky I., A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics, J. Phys. Chem. Solids 4(4), 241 (1958)
8 Yamaguchi T., Tsushima K.. Magnetic symmetry of rare-earth orthochromites and orthoferrites. Phys. Rev. B, 1973, 8(11): 5187
https://doi.org/10.1103/PhysRevB.8.5187
9 F. Bertaut E., Spin configurations of ionic structures: Theory and practice, in: Spin Arrangements and Crystal Structure, Domains, and Micromagnetics, edited by G. T. Rado and H. Suhl, Elsevier, 1963, page 149
10 Treves D.. Studies on orthoferrites at the Weizmann institute of science. J. Appl. Phys., 1965, 36(3): 1033
https://doi.org/10.1063/1.1714088
11 Yamaguchi T.. Theory of spin reorientation in rare-earth orthochromites and orthoferrites. J. Phys. Chem. Solids, 1974, 35(4): 479
https://doi.org/10.1016/S0022-3697(74)80003-X
12 Y. Zhao W., X. Cao S., X. Huang R., M. Cao Y., Xu K., J. Kang B., C. Zhang J., Ren W.. Spin reorientation transition in dysprosium-samarium orthoferrite single crystals. Phys. Rev. B, 2015, 91(10): 104425
https://doi.org/10.1103/PhysRevB.91.104425
13 B. Bazaliy Ya., T. Tsymbal L., N. Kakazei G., I. Kamenev V., E. Wigen P.. Measurements of spin reorientation in YbFeO3 and comparison with modified mean-field theory. Phys. Rev. B, 2005, 72(17): 174403
https://doi.org/10.1103/PhysRevB.72.174403
14 Y. Zhao X., L. Zhang K., M. Liu X., Wang B., Xu K., X. Cao S., H. Wu A., B. Su L., H. Ma G.. Spin reorientation transition in Sm0.5Tb0.5FeO3 orthoferrite single crystal. AIP Adv., 2016, 6(1): 015201
https://doi.org/10.1063/1.4939697
15 X. Ma X., Yuan N., Luo X., K. Chen Y., J. Kang B., Ren W., C. Zhang J., X. Cao S.. Field tunable spin switching in perovskite YbFeO3 single crystal. Mater. Today Commun., 2021, 27: 102438
https://doi.org/10.1016/j.mtcomm.2021.102438
16 S. Zhang J., Y. Zhao W., J. Feng Z., Y. Ge J., C. Zhang J., X. Cao S.. Spin reorientation and rare earth antiferromagnetic transition in single crystal Sm0.15Dy0.85FeO3. J. Alloys Compd., 2019, 804: 396
https://doi.org/10.1016/j.jallcom.2019.07.035
17 Hou L., Shi L., Y. Zhao J., Y. Pan S., Xin Y., Y. Yuan X.. Spin-reorientation transition driven by double exchange in CeFeO3 ceramics. J. Phys. Chem. C, 2020, 124(28): 15399
https://doi.org/10.1021/acs.jpcc.0c00379
18 X. Cao S., Chen L., Y. Zhao W., Xu K., H. Wang G., L. Yang Y., J. Kang B., J. Zhao H., Chen P., Stroppa A., H. Zheng R., C. Zhang J., Ren W., Íñiguez J., Bellaiche L.. Tuning the weak ferromagnetic states in dysprosium orthoferrite. Sci. Rep., 2016, 6(1): 37529
https://doi.org/10.1038/srep37529
19 X. Cao S., Z. Zhao H., J. Kang B., C. Zhang J., Ren W.. Temperature induced spin switching in SmFeO3 single crystal. Sci. Rep., 2014, 4(1): 5960
https://doi.org/10.1038/srep05960
20 X. Zhang X., C. Xia Z., J. Ke Y., Q. Zhang X., H. Cheng Z., W. Ouyang Z., F. Wang J., Huang S., Yang F., J. Song Y., L. Xiao G., Deng H., Q. Jiang D.. Magnetic behavior and complete high-field magnetic phase diagram of the orthoferrite ErFeO3. Phys. Rev. B, 2019, 100(5): 054418
https://doi.org/10.1103/PhysRevB.100.054418
21 J. Yuan S., Ren W., Hong F., B. Wang Y., C. Zhang J., Bellaiche L., X. Cao S., Cao G.. Spin switching and magnetization reversal in single-crystal NdFeO3. Phys. Rev. B, 2013, 87(18): 184405
https://doi.org/10.1103/PhysRevB.87.184405
22 Das M., Roy S., Mandal P.. Giant reversible magnetocaloric effect in a multiferroic GdFeO3 single crystal. Phys. Rev. B, 2017, 96(17): 174405
https://doi.org/10.1103/PhysRevB.96.174405
23 X. Huang R., X. Cao S., Ren W., Zhan S., J. Kang B., C. Zhang J.. Large rotating field entropy change in ErFeO3 single crystal with angular distribution contribution. Appl. Phys. Lett., 2013, 103(16): 162412
https://doi.org/10.1063/1.4825274
24 Mahana S., Manju U., Topwal D.. Giant magnetocaloric effect in GdAlO3 and a comparative study with GdMnO3. J. Phys. D Appl. Phys., 2017, 50(3): 035002
https://doi.org/10.1088/1361-6463/50/3/035002
25 K. Pecharsky V.Gschneidner Jr, Magnetocaloric effect and magnetic refrigeration, J. Magn. Magn. Mater. 200(1‒3), 44 (1999)
26 J. Shao M., X. Cao S., J. Yuan S., C. Shang J., J. Kang B., Lu B., C. Zhang J.. Large magnetocaloric effect induced by intrinsic structural transition in Dy1−xHoxMnO3. Appl. Phys. Lett., 2012, 100(22): 222404
https://doi.org/10.1063/1.4722930
27 J. Ke Y., Q. Zhang X., Ge H., Ma Y., H. Cheng Z.. Low field induced giant anisotropic magnetocaloric effect in DyFeO3 single crystal. Chin. Phys. B, 2015, 24(3): 037501
https://doi.org/10.1088/1674-1056/24/3/037501
28 W. Yeh J., K. Chen S., J. Lin S., Y. Gan J., S. Chin T., T. Shun T., H. Tsau C., Y. Chang S.. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater., 2004, 6(5): 299
https://doi.org/10.1002/adem.200300567
29 M. Rost C., Sachet E., Borman T., Moballegh A., C. Dickey E., Hou D., L. Jones J., Curtarolo S., P. Maria J.. Entropy-stabilized oxides. Nat. Commun., 2015, 6(1): 8485
https://doi.org/10.1038/ncomms9485
30 C. Jiang S.Hu T.Gild J.X. Zhou N.Nie J. D. Qin M.Harrington T.Vecchio K.Luo J., A new class of high-entropy perovskite oxides, Scr. Mater. 142, 116 (2018)
31 Y. Zhou S., P. Pu Y., W. Zhang Q., K. Shi R., Guo X., Wang W., M. Ji J., C. Wei T., Ouyang T.. Microstructure and dielectric properties of high entropy Ba(Zr0.2Ti0.2Sn0.2Hf0.2Me0.2)O3 perovskite oxides. Ceram. Int., 2020, 46(6): 7430
https://doi.org/10.1016/j.ceramint.2019.11.239
32 Sarkar A., Breitung B., Hahn H.. High entropy oxides: The role of entropy, enthalpy and synergy. Scr. Mater., 2020, 187: 43
https://doi.org/10.1016/j.scriptamat.2020.05.019
33 Staub U., Rettig L., M. Bothschafter E., W. Windsor Y., Ramakrishnan M., R. V. Avula S., Dreiser J., Piamonteze C., Scagnoli V., Mukherjee S., Niedermayer C., Medarde M., Pomjakushina E.. Interplay of Fe and Tm moments through the spin-reorientation transition in TmFeO3. Phys. Rev. B, 2017, 96(17): 174408
https://doi.org/10.1103/PhysRevB.96.174408
34 Shen H., X. Cheng Z., Hong F., Y. Xu J., J. Yuan S., X. Cao S., L. Wang X.. Magnetic field induced discontinuous spin reorientation in ErFeO3 single crystal. Appl. Phys. Lett., 2013, 103(19): 192404
https://doi.org/10.1063/1.4829468
35 Bombik A.W. Pacyna A., AC susceptibility of TmFeO3 single-crystal, J. Magn. Magn. Mater. 220(1), 18 (2000)
36 B. Song G., J. Jiang J., J. Kang B., C. Zhang J., X. Cheng Z., H. Ma G., X. Cao S.. Spin reorientation transition process in single crystal NdFeO3. Solid State Commun., 2015, 211: 47
https://doi.org/10.1016/j.ssc.2015.03.013
37 A. GschneidnerJr K., K. Pecharsky V., O. Tsokol A.. Recent developments in magnetocaloric materials. Rep. Prog. Phys., 2005, 68(6): 1479
https://doi.org/10.1088/0034-4885/68/6/R04
38 Arrott A.. Criterion for ferromagnetism from observations of magnetic isotherms. Phys. Rev., 1957, 108(6): 1394
https://doi.org/10.1103/PhysRev.108.1394
39 Inoue J., Shimizu M.. First- and second-order magnetic phase transitions in (R-Y)Co2 and R(Co-Al)2 (R = heavy rare-earth element) compounds. J. Phys. F Met. Phys., 1988, 18(11): 2487
https://doi.org/10.1088/0305-4608/18/11/020
[1] Wencheng Fan, Haiyang Chen, Gang Zhao, Xiaoxuan Ma, Ramki Chakaravarthy, Baojuan Kang, Wenlai Lu, Wei Ren, Jincang Zhang, Shixun Cao. Thermal control magnetic switching dominated by spin reorientation transition in Mn-doped PrFeO3 single crystals[J]. Front. Phys. , 2022, 17(3): 33504-.
[2] Xiaoyun Yu, Xiao Zhang, Qi Shi, Shangjie Tian, Hechang Lei, Kun Xu, Hideo Hosono. Large magnetocaloric effect in van der Waals crystal CrBr3[J]. Front. Phys. , 2019, 14(4): 43501-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed