|
|
Optical two-dimensional coherent spectroscopy of excitons in transition-metal dichalcogenides |
YanZuo Chen1, ShaoGang Yu1( ), Tao Jiang2, XiaoJun Liu1, XinBin Cheng2,3, Di Huang2( ) |
1. State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China 2. MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai Frontiers Science Center of Digital Optics, Institute of Precision Optical Engineering, and School of Physics Science and Engineering, Tongji University, Shanghai 200092, China 3. Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China |
|
|
Abstract Exciton physics in atomically thin transition-metal dichalcogenides (TMDCs) holds paramount importance for fundamental physics research and prospective applications. However, the experimental exploration of exciton physics, including excitonic coherence dynamics, exciton many-body interactions, and their optical properties, faces challenges stemming from factors such as spatial heterogeneity and intricate many-body effects. In this perspective, we elaborate upon how optical two-dimensional coherent spectroscopy (2DCS) emerges as an effective tool to tackle the challenges, and outline potential directions for gaining deeper insights into exciton physics in forthcoming experiments with the advancements in 2DCS techniques and new materials.
|
Keywords
monolayer transition-metal dichalcogenides
two-dimensional coherent spectroscopy
|
Corresponding Author(s):
ShaoGang Yu,Di Huang
|
Issue Date: 13 October 2023
|
|
1 |
Castellanos-Gomez A.. Why all the fuss about 2D semiconductors. Nat. Photonics, 2016, 10(4): 202
https://doi.org/10.1038/nphoton.2016.53
|
2 |
Wang G., Chernikov A., M. Glazov M., F. Heinz T., Marie X., Amand T., Urbaszek B.. Colloquium: Excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys., 2018, 90(2): 021001
https://doi.org/10.1103/RevModPhys.90.021001
|
3 |
P. Aue W., Bartholdi E., R. Ernst R.. Two dimensional spectroscopy. Application to nuclear magnetic resonance. J. Chem. Phys., 1976, 64(5): 2229
https://doi.org/10.1063/1.432450
|
4 |
Tanimura Y., Mukamel S.. Two-dimensional femtosecond vibrational spectroscopy of liquids. J. Chem. Phys., 1993, 99(12): 9496
https://doi.org/10.1063/1.465484
|
5 |
T. Cundiff S., Mukamel S.. Optical multidimensional coherent spectroscopy. Phys. Today, 2013, 66(7): 44
https://doi.org/10.1063/PT.3.2047
|
6 |
Hamm P., Lim M., F. DeGrado W., M. Hochstrasser R.. The two-dimensional IR nonlinear spectroscopy of a cyclic penta-peptide in relation to its three dimensional structure. Proc. Natl. Acad. Sci. USA, 1999, 96(5): 2036
https://doi.org/10.1073/pnas.96.5.2036
|
7 |
Golonzka O., Khalil M., Demirdöven N., Tokmakoff A.. Vibrational anharmonicities revealed by coherent two-dimensional infrared spectroscopy. Phys. Rev. Lett., 2001, 86(10): 2154
https://doi.org/10.1103/PhysRevLett.86.2154
|
8 |
D. Fuller F., P. Ogilvie J.. Experimental implementations of two-dimensional Fourier transform electronic spectroscopy. Annu. Rev. Phys. Chem., 2015, 66(1): 667
https://doi.org/10.1146/annurev-physchem-040513-103623
|
9 |
Cho M., Coherent Multidimensional Spectroscopy, Springer, 2019
|
10 |
Li H.Lomsadze B. Moody G.Smallwood C.T. Cundiff S., Optical Multidimensional Coherent Spectroscopy, Oxford University Press, 2023
|
11 |
Brixner T., Stenger J., M. Vaswani H., Cho M., E. Blankenship R., R. Fleming G.. Two-dimensional spectroscopy of electronic couplings in photosynthesis. Nature, 2005, 434(7033): 625
https://doi.org/10.1038/nature03429
|
12 |
Collini E., Y. Wong C., E. Wilk K., M. Curmi P., Brumer P., D. Scholes G.. Coherently wired light harvesting in photosynthetic marine algae at ambient temperature. Nature, 2010, 463(7281): 644
https://doi.org/10.1038/nature08811
|
13 |
J. Fecko C., D. Eaves J., J. Loparo J., Tokmakoff A., L. Geissler P.. Ultrafast hydrogen-bond dynamics in the infrared spectroscopy of water. Science, 2003, 301(5640): 1698
https://doi.org/10.1126/science.1087251
|
14 |
Dereka B., Yu Q., H. C. Lewis N., B. Carpenter W., M. Bowman J., Tokmakoff A.. Crossover from hydrogen to chemical bonding. Science, 2021, 371(6525): 160
https://doi.org/10.1126/science.abe1951
|
15 |
Dai X., Richter M., Li H., D. Bristow A., Falvo C., Mukamel S., T. Cundiff S.. Two-dimensional double-quantum spectra reveal collective resonances in an atomic vapor. Phys. Rev. Lett., 2012, 108(19): 193201
https://doi.org/10.1103/PhysRevLett.108.193201
|
16 |
Yu S., Titze M., Zhu Y., Liu X., Li H.. Observation of scalable and deterministic multi-atom Dicke states in an atomic vapor. Opt. Lett., 2019, 44(11): 2795
https://doi.org/10.1364/OL.44.002795
|
17 |
W. Stone K., Gundogdu K., B. Turner D., Li X., T. Cundiff S., A. Nelson K.. Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells. Science, 2009, 324(5931): 1169
https://doi.org/10.1126/science.1170274
|
18 |
M. Richter J., Branchi F., Valduga de Almeida Camargo F., Zhao B., H. Friend R., Cerullo G., Deschler F.. Ultrafast carrier thermalization in lead iodide perovskite probed with two-dimensional electronic spectroscopy. Nat. Commun., 2017, 8(1): 376
https://doi.org/10.1038/s41467-017-00546-z
|
19 |
Nishida J., P. Breen J., P. Lindquist K., Umeyama D., I. Karunadasa H., D. Fayer M.. Dynamically disordered lattice in a layered Pb−I−SCN perovskite thin film probed by two dimensional infrared spectroscopy. J. Am. Chem. Soc., 2018, 140(31): 9882
https://doi.org/10.1021/jacs.8b03787
|
20 |
Moody G., Kavir Dass C., Hao K., H. Chen C., J. Li L., Singh A., Tran K., Clark G., Xu X., Berghäuser G., Malic E., Knorr A., Li X.. Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides. Nat. Commun., 2015, 6(1): 8315
https://doi.org/10.1038/ncomms9315
|
21 |
Guo L., A. Chen C., Zhang Z., M. Monahan D., H. Lee Y., R. Fleming G.. Lineshape characterization of excitons in monolayer WS2 by two-dimensional electronic spectroscopy. Nanoscale Adv., 2020, 2(6): 2333
https://doi.org/10.1039/D0NA00240B
|
22 |
Jakubczyk T., Delmonte V., Koperski M., Nogajewski K., Faugeras C., Langbein W., Potemski M., Kasprzak J.. Radiatively limited dephasing and exciton dynamics in MoSe2 monolayers revealed with four-wave mixing microscopy. Nano Lett., 2016, 16(9): 5333
https://doi.org/10.1021/acs.nanolett.6b01060
|
23 |
Jakubczyk T., Nogajewski K., R. Molas M., Bartos M., Langbein W., Potemski M., Kasprzak J.. Impact of environment on dynamics of exciton complexes in a WS2 monolayer. 2D Mater., 2018, 5: 031007
https://doi.org/10.1088/2053-1583/aabc1c
|
24 |
Boule C., Vaclavkova D., Bartos M., Nogajewski K., Zdražil L., Taniguchi T., Watanabe K., Potemski M., Kasprzak J.. Coherent dynamics and mapping of excitons in single-layer MoSe2 and WSe2 at the homogeneous limit. Phys. Rev. Mater., 2020, 4(3): 034001
https://doi.org/10.1103/PhysRevMaterials.4.034001
|
25 |
L. Purz T., W. Martin E., G. Holtzmann W., Rivera P., Alfrey A., M. Bates K., Deng H., Xu X., T. Cundiff S.. Imaging dynamic exciton interactions and coupling in transition metal dichalcogenides. J. Chem. Phys., 2022, 156(21): 214704
https://doi.org/10.1063/5.0087544
|
26 |
F. Mak K., He K., Shan J., F. Heinz T.. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol., 2012, 7(8): 494
https://doi.org/10.1038/nnano.2012.96
|
27 |
Ye Z., Sun D., F. Heinz T.. Optical manipulation of valley pseudospin. Nat. Phys., 2017, 13(1): 26
https://doi.org/10.1038/nphys3891
|
28 |
Hao K., Moody G., Wu F., K. Dass C., Xu L., H. Chen C., Sun L., Y. Li M., J. Li L., H. MacDonald A., Li X.. Direct measurement of exciton valley coherence in monolayer WSe2. Nat. Phys., 2016, 12(7): 677
https://doi.org/10.1038/nphys3674
|
29 |
Titze M., Li B., Zhang X., M. Ajayan P., Li H.. Intrinsic coherence time of trions in monolayer MoSe2 measured via two-dimensional coherent spectroscopy. Phys. Rev. Mater., 2018, 2(5): 054001
https://doi.org/10.1103/PhysRevMaterials.2.054001
|
30 |
Hao K., Xu L., Wu F., Nagler P., Tran K., Ma X., Schüller C., Korn T., H. MacDonald A., Moody G., Li X.. Trion valley coherence in monolayer semiconductors. 2D Mater., 2017, 4: 025105
https://doi.org/10.1088/2053-1583/aa70f9
|
31 |
B. Muir J., Levinsen J., K. Earl S., A. Conway M., H. Cole J., Wurdack M., Mishra R., J. Ing D., Estrecho E., Lu Y., K. Efimkin D., O. Tollerud J., A. Ostrovskaya E., M. Parish M., A. Davis J.. Interactions between Fermi polarons in monolayer WS2. Nat. Commun., 2022, 13(1): 6164
https://doi.org/10.1038/s41467-022-33811-x
|
32 |
Huang D., Sampson K., Ni Y., Liu Z., Liang D., Watanabe K., Taniguchi T., Li H., Martin E., Levinsen J., M. Parish M., Tutuc E., K. Efimkin D., Li X.. Quantum dynamics of attractive and repulsive polarons in a doped MoSe2 monolayer. Phys. Rev. X, 2023, 13(1): 011029
https://doi.org/10.1103/PhysRevX.13.011029
|
33 |
Helmrich S., Sampson K., Huang D., Selig M., Hao K., Tran K., Achstein A., Young C., Knorr A., Malic E., Woggon U., Owschimikow N., Li X.. Phonon-assisted intervalley scattering determines ultrafast exciton dynamics in MoSe2 bilayers. Phys. Rev. Lett., 2021, 127(15): 157403
https://doi.org/10.1103/PhysRevLett.127.157403
|
34 |
Li D., Trovatello C., Dal Conte S., Nuß M., Soavi G., Wang G., C. Ferrari A., Cerullo G., Brixner T.. Exciton–phonon coupling strength in single-layer MoSe2 at room temperature. Nat. Commun., 2021, 12(1): 954
https://doi.org/10.1038/s41467-021-20895-0
|
35 |
Li D., Shan H., Rupprecht C., Knopf H., Watanabe K., Taniguchi T., Qin Y., Tongay S., Nuß M., Schröder S., Eilenberger F., Höfling S., Schneider C., Brixner T.. Hybridized exciton−photon−phonon states in a transition metal dichalcogenide van der Waals heterostructure microcavity. Phys. Rev. Lett., 2022, 128(8): 087401
https://doi.org/10.1103/PhysRevLett.128.087401
|
36 |
Guo L., Wu M., Cao T., M. Monahan D., H. Lee Y., G. Louie S., R. Fleming G.. Exchange-driven intravalley mixing of excitons in monolayer transition metal dichalcogenides. Nat. Phys., 2019, 15(3): 228
https://doi.org/10.1038/s41567-018-0362-y
|
37 |
T. Lloyd L., E. Wood R., Mujid F., Sohoni S., L. Ji K., C. Ting P., S. Higgins J., Park J., S. Engel G.. Sub-10 fs intervalley exciton coupling in monolayer MoS2 revealed by helicity-resolved two-dimensional electronic spectroscopy. ACS Nano, 2021, 15(6): 10253
https://doi.org/10.1021/acsnano.1c02381
|
38 |
Mapara V., Barua A., Turkowski V., T. Trinh M., Stevens C., Liu H., A. Nugera F., Kapuruge N., R. Gutierrez H., Liu F., Zhu X., Semenov D., A. McGill S., Pradhan N., J. Hilton D., Karaiskaj D.. Bright and dark exciton coherent coupling and hybridization enabled by external magnetic fields. Nano Lett., 2022, 22(4): 1680
https://doi.org/10.1021/acs.nanolett.1c04667
|
39 |
Singh A., Moody G., Wu S., Wu Y., J. Ghimire N., Yan J., G. Mandrus D., Xu X., Li X.. Coherent electronic coupling in atomically thin MoSe2. Phys. Rev. Lett., 2014, 112(21): 216804
https://doi.org/10.1103/PhysRevLett.112.216804
|
40 |
Hao K., Xu L., Nagler P., Singh A., Tran K., K. Dass C., Schüller C., Korn T., Li X., Moody G.. Coherent and incoherent coupling dynamics between neutral and charged excitons in monolayer MoSe2. Nano Lett., 2016, 16(8): 5109
https://doi.org/10.1021/acs.nanolett.6b02041
|
41 |
Rodek A., Hahn T., Howarth J., Taniguchi T., Watanabe K., Potemski M., Kossacki P., Wigger D., Kasprzak J.. Controlled coherent-coupling and dynamics of exciton complexes in a MoSe2 monolayer. 2D Mater., 2023, 10: 025027
https://doi.org/10.1088/2053-1583/acc59a
|
42 |
Tempelaar R., C. Berkelbach T.. Many-body simulation of two-dimensional electronic spectroscopy of excitons and trions in monolayer transition metal dichalcogenides. Nat. Commun., 2019, 10(1): 3419
https://doi.org/10.1038/s41467-019-11497-y
|
43 |
Hao K., F. Specht J., Nagler P., Xu L., Tran K., Singh A., K. Dass C., Schüller C., Korn T., Richter M., Knorr A., Li X., Moody G.. Neutral and charged inter-valley biexcitons in monolayer MoSe2. Nat. Commun., 2017, 8(1): 15552
https://doi.org/10.1038/ncomms15552
|
44 |
E. Wood R., T. Lloyd L., Mujid F., Wang L., A. Allodi M., Gao H., Mazuski R., C. Ting P., Xie S., Park J., S. Engel G.. Evidence for the dominance of carrier-induced band gap renormalization over biexciton formation in cryogenic ultrafast experiments on MoS2 monolayers. J. Phys. Chem. Lett., 2020, 11(7): 2658
https://doi.org/10.1021/acs.jpclett.0c00169
|
45 |
A. Conway M., B. Muir J., K. Earl S., Wurdack M., Mishra R., O. Tollerud J., A. Davis J.. Direct measurement of biexcitons in monolayer WS2. 2D Mater., 2022, 9: 021001
https://doi.org/10.1088/2053-1583/ac4779
|
46 |
Mai C., Barrette A., Yu Y., G. Semenov Y., W. Kim K., Cao L., Gundogdu K.. Many-body effects in valleytronics: Direct measurement of valley lifetimes in single-layer MoS2. Nano Lett., 2014, 14(1): 202
https://doi.org/10.1021/nl403742j
|
47 |
Kylänpää I., P. Komsa H.. Binding energies of exciton-complexes in transition metal dichalcogenide monolayers and effect of dielectric environment. Phys. Rev. B, 2015, 92(20): 205418
https://doi.org/10.1103/PhysRevB.92.205418
|
48 |
Aeschlimann M., Brixner T., Fischer A., Kramer C., Melchior P., Pfeiffer W., Schneider C., Strüber C., Tuchscherer P., V. Voronine D.. Coherent two-dimensional nanoscopy. Science, 2011, 333(6050): 1723
https://doi.org/10.1126/science.1209206
|
49 |
S. Novoselov K., Mishchenko A., Carvalho A., H. Castro Neto A.. 2D materials and van der Waals heterostructures. Science, 2016, 353(6298): aac9439
https://doi.org/10.1126/science.aac9439
|
50 |
L. Purz T., W. Martin E., Rivera P., G. Holtzmann W., Xu X., T. Cundiff S.. Coherent exciton-exciton interactions and exciton dynamics in a MoSe2/WSe2 heterostructure. Phys. Rev. B, 2021, 104(24): L241302
https://doi.org/10.1103/PhysRevB.104.L241302
|
51 |
R. Policht V., Russo M., Liu F., Trovatello C., Maiuri M., Bai Y., Zhu X., Dal Conte S., Cerullo G.. Dissecting interlayer hole and electron transfer in transition metal dichalcogenide heterostructures via two-dimensional electronic spectroscopy. Nano Lett., 2021, 21(11): 4738
https://doi.org/10.1021/acs.nanolett.1c01098
|
52 |
Huang D., Choi J., K. Shih C., Li X.. Excitons in semiconductor moiré superlattices. Nat. Nanotechnol., 2022, 17(3): 227
https://doi.org/10.1038/s41565-021-01068-y
|
53 |
F. Mak K., Shan J.. Semiconductor moiré materials. Nat. Nanotechnol., 2022, 17(7): 686
https://doi.org/10.1038/s41565-022-01165-6
|
54 |
E. Stevens C., Paul J., Cox T., K. Sahoo P., R. Gutiérrez H., Turkowski V., Semenov D., A. McGill S., D. Kapetanakis M., E. Perakis I., J. Hilton D., Karaiskaj D.. Biexcitons in monolayer transition metal dichalcogenides tuned by magnetic fields. Nat. Commun., 2018, 9(1): 3720
https://doi.org/10.1038/s41467-018-05643-1
|
55 |
Mapara V., E. Stevens C., Paul J., Barua A., L. Reno J., A. McGill S., J. Hilton D., Karaiskaj D.. Multidimensional spectroscopy of magneto-excitons at high magnetic fields. J. Chem. Phys., 2021, 155(20): 204201
https://doi.org/10.1063/5.0070113
|
56 |
I. Azzam S., Parto K., Moody G.. Prospects and challenges of quantum emitters in 2D materials. Appl. Phys. Lett., 2021, 118(24): 240502
https://doi.org/10.1063/5.0054116
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|