Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2024, Vol. 19 Issue (2) : 23301    https://doi.org/10.1007/s11467-023-1345-8
VIEW & PERSPECTIVE
Optical two-dimensional coherent spectroscopy of excitons in transition-metal dichalcogenides
YanZuo Chen1, ShaoGang Yu1(), Tao Jiang2, XiaoJun Liu1, XinBin Cheng2,3, Di Huang2()
1. State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
2. MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai Frontiers Science Center of Digital Optics, Institute of Precision Optical Engineering, and School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
3. Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
 Download: PDF(4027 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Exciton physics in atomically thin transition-metal dichalcogenides (TMDCs) holds paramount importance for fundamental physics research and prospective applications. However, the experimental exploration of exciton physics, including excitonic coherence dynamics, exciton many-body interactions, and their optical properties, faces challenges stemming from factors such as spatial heterogeneity and intricate many-body effects. In this perspective, we elaborate upon how optical two-dimensional coherent spectroscopy (2DCS) emerges as an effective tool to tackle the challenges, and outline potential directions for gaining deeper insights into exciton physics in forthcoming experiments with the advancements in 2DCS techniques and new materials.

Keywords monolayer transition-metal dichalcogenides      two-dimensional coherent spectroscopy     
Corresponding Author(s): ShaoGang Yu,Di Huang   
Issue Date: 13 October 2023
 Cite this article:   
YanZuo Chen,ShaoGang Yu,Tao Jiang, et al. Optical two-dimensional coherent spectroscopy of excitons in transition-metal dichalcogenides[J]. Front. Phys. , 2024, 19(2): 23301.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-023-1345-8
https://academic.hep.com.cn/fop/EN/Y2024/V19/I2/23301
Fig.1  Typical time orderings of the excitation pulses to generate different types of time/frequency domain 2D spectra. (a) Zero-quantum spectrum for an inhomogeneously broadened V-shape three-state system with a ground state and two mutually dipole-forbidden excited states. (b) One-quantum spectrum for an inhomogeneously broadened three-state V system. (c) Double-quantum spectrum for a three-state ladder system where a doubly excited state exists.
Fig.2  (a) Left: Monolayer TMDCs crystal structure, along with the excitons and excitonic complexes. Right: Exciton resonance with valley-dependent optical selection excitation. (b) Zero-quantum 2D spectrum of monolayer WSe2 obtained with the cross-circular polarization pulses. The linewidth extracted along the mixing frequency axis gives the valley coherence time. (c) One-quantum 2D spectrum of monolayer MoSe2 obtained using cross-circular polarization pulses. The peaks X and T denote the excitons and trions, and the additional peaks XX and T Xb (XTb) are associated with the neutral and charged bound biexciton, respectively. (d) Double-quantum 2D spectrum shows an unbound two-excitons state XX and bound biexciton state XXb. Panels adapted with permission from: (b) Ref. [28]; (c) Ref. [43], under a Creative Commons license CC BY 4.0; (d) Ref. [45].
Fig.3  Future directions of 2DCS in TMDCs.
1 Castellanos-Gomez A.. Why all the fuss about 2D semiconductors. Nat. Photonics, 2016, 10(4): 202
https://doi.org/10.1038/nphoton.2016.53
2 Wang G., Chernikov A., M. Glazov M., F. Heinz T., Marie X., Amand T., Urbaszek B.. Colloquium: Excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys., 2018, 90(2): 021001
https://doi.org/10.1103/RevModPhys.90.021001
3 P. Aue W., Bartholdi E., R. Ernst R.. Two dimensional spectroscopy. Application to nuclear magnetic resonance. J. Chem. Phys., 1976, 64(5): 2229
https://doi.org/10.1063/1.432450
4 Tanimura Y., Mukamel S.. Two-dimensional femtosecond vibrational spectroscopy of liquids. J. Chem. Phys., 1993, 99(12): 9496
https://doi.org/10.1063/1.465484
5 T. Cundiff S., Mukamel S.. Optical multidimensional coherent spectroscopy. Phys. Today, 2013, 66(7): 44
https://doi.org/10.1063/PT.3.2047
6 Hamm P., Lim M., F. DeGrado W., M. Hochstrasser R.. The two-dimensional IR nonlinear spectroscopy of a cyclic penta-peptide in relation to its three dimensional structure. Proc. Natl. Acad. Sci. USA, 1999, 96(5): 2036
https://doi.org/10.1073/pnas.96.5.2036
7 Golonzka O., Khalil M., Demirdöven N., Tokmakoff A.. Vibrational anharmonicities revealed by coherent two-dimensional infrared spectroscopy. Phys. Rev. Lett., 2001, 86(10): 2154
https://doi.org/10.1103/PhysRevLett.86.2154
8 D. Fuller F., P. Ogilvie J.. Experimental implementations of two-dimensional Fourier transform electronic spectroscopy. Annu. Rev. Phys. Chem., 2015, 66(1): 667
https://doi.org/10.1146/annurev-physchem-040513-103623
9 Cho M., Coherent Multidimensional Spectroscopy, Springer, 2019
10 Li H.Lomsadze B. Moody G.Smallwood C.T. Cundiff S., Optical Multidimensional Coherent Spectroscopy, Oxford University Press, 2023
11 Brixner T., Stenger J., M. Vaswani H., Cho M., E. Blankenship R., R. Fleming G.. Two-dimensional spectroscopy of electronic couplings in photosynthesis. Nature, 2005, 434(7033): 625
https://doi.org/10.1038/nature03429
12 Collini E., Y. Wong C., E. Wilk K., M. Curmi P., Brumer P., D. Scholes G.. Coherently wired light harvesting in photosynthetic marine algae at ambient temperature. Nature, 2010, 463(7281): 644
https://doi.org/10.1038/nature08811
13 J. Fecko C., D. Eaves J., J. Loparo J., Tokmakoff A., L. Geissler P.. Ultrafast hydrogen-bond dynamics in the infrared spectroscopy of water. Science, 2003, 301(5640): 1698
https://doi.org/10.1126/science.1087251
14 Dereka B., Yu Q., H. C. Lewis N., B. Carpenter W., M. Bowman J., Tokmakoff A.. Crossover from hydrogen to chemical bonding. Science, 2021, 371(6525): 160
https://doi.org/10.1126/science.abe1951
15 Dai X., Richter M., Li H., D. Bristow A., Falvo C., Mukamel S., T. Cundiff S.. Two-dimensional double-quantum spectra reveal collective resonances in an atomic vapor. Phys. Rev. Lett., 2012, 108(19): 193201
https://doi.org/10.1103/PhysRevLett.108.193201
16 Yu S., Titze M., Zhu Y., Liu X., Li H.. Observation of scalable and deterministic multi-atom Dicke states in an atomic vapor. Opt. Lett., 2019, 44(11): 2795
https://doi.org/10.1364/OL.44.002795
17 W. Stone K., Gundogdu K., B. Turner D., Li X., T. Cundiff S., A. Nelson K.. Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells. Science, 2009, 324(5931): 1169
https://doi.org/10.1126/science.1170274
18 M. Richter J., Branchi F., Valduga de Almeida Camargo F., Zhao B., H. Friend R., Cerullo G., Deschler F.. Ultrafast carrier thermalization in lead iodide perovskite probed with two-dimensional electronic spectroscopy. Nat. Commun., 2017, 8(1): 376
https://doi.org/10.1038/s41467-017-00546-z
19 Nishida J., P. Breen J., P. Lindquist K., Umeyama D., I. Karunadasa H., D. Fayer M.. Dynamically disordered lattice in a layered Pb−I−SCN perovskite thin film probed by two dimensional infrared spectroscopy. J. Am. Chem. Soc., 2018, 140(31): 9882
https://doi.org/10.1021/jacs.8b03787
20 Moody G., Kavir Dass C., Hao K., H. Chen C., J. Li L., Singh A., Tran K., Clark G., Xu X., Berghäuser G., Malic E., Knorr A., Li X.. Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides. Nat. Commun., 2015, 6(1): 8315
https://doi.org/10.1038/ncomms9315
21 Guo L., A. Chen C., Zhang Z., M. Monahan D., H. Lee Y., R. Fleming G.. Lineshape characterization of excitons in monolayer WS2 by two-dimensional electronic spectroscopy. Nanoscale Adv., 2020, 2(6): 2333
https://doi.org/10.1039/D0NA00240B
22 Jakubczyk T., Delmonte V., Koperski M., Nogajewski K., Faugeras C., Langbein W., Potemski M., Kasprzak J.. Radiatively limited dephasing and exciton dynamics in MoSe2 monolayers revealed with four-wave mixing microscopy. Nano Lett., 2016, 16(9): 5333
https://doi.org/10.1021/acs.nanolett.6b01060
23 Jakubczyk T., Nogajewski K., R. Molas M., Bartos M., Langbein W., Potemski M., Kasprzak J.. Impact of environment on dynamics of exciton complexes in a WS2 monolayer. 2D Mater., 2018, 5: 031007
https://doi.org/10.1088/2053-1583/aabc1c
24 Boule C., Vaclavkova D., Bartos M., Nogajewski K., Zdražil L., Taniguchi T., Watanabe K., Potemski M., Kasprzak J.. Coherent dynamics and mapping of excitons in single-layer MoSe2 and WSe2 at the homogeneous limit. Phys. Rev. Mater., 2020, 4(3): 034001
https://doi.org/10.1103/PhysRevMaterials.4.034001
25 L. Purz T., W. Martin E., G. Holtzmann W., Rivera P., Alfrey A., M. Bates K., Deng H., Xu X., T. Cundiff S.. Imaging dynamic exciton interactions and coupling in transition metal dichalcogenides. J. Chem. Phys., 2022, 156(21): 214704
https://doi.org/10.1063/5.0087544
26 F. Mak K., He K., Shan J., F. Heinz T.. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol., 2012, 7(8): 494
https://doi.org/10.1038/nnano.2012.96
27 Ye Z., Sun D., F. Heinz T.. Optical manipulation of valley pseudospin. Nat. Phys., 2017, 13(1): 26
https://doi.org/10.1038/nphys3891
28 Hao K., Moody G., Wu F., K. Dass C., Xu L., H. Chen C., Sun L., Y. Li M., J. Li L., H. MacDonald A., Li X.. Direct measurement of exciton valley coherence in monolayer WSe2. Nat. Phys., 2016, 12(7): 677
https://doi.org/10.1038/nphys3674
29 Titze M., Li B., Zhang X., M. Ajayan P., Li H.. Intrinsic coherence time of trions in monolayer MoSe2 measured via two-dimensional coherent spectroscopy. Phys. Rev. Mater., 2018, 2(5): 054001
https://doi.org/10.1103/PhysRevMaterials.2.054001
30 Hao K., Xu L., Wu F., Nagler P., Tran K., Ma X., Schüller C., Korn T., H. MacDonald A., Moody G., Li X.. Trion valley coherence in monolayer semiconductors. 2D Mater., 2017, 4: 025105
https://doi.org/10.1088/2053-1583/aa70f9
31 B. Muir J., Levinsen J., K. Earl S., A. Conway M., H. Cole J., Wurdack M., Mishra R., J. Ing D., Estrecho E., Lu Y., K. Efimkin D., O. Tollerud J., A. Ostrovskaya E., M. Parish M., A. Davis J.. Interactions between Fermi polarons in monolayer WS2. Nat. Commun., 2022, 13(1): 6164
https://doi.org/10.1038/s41467-022-33811-x
32 Huang D., Sampson K., Ni Y., Liu Z., Liang D., Watanabe K., Taniguchi T., Li H., Martin E., Levinsen J., M. Parish M., Tutuc E., K. Efimkin D., Li X.. Quantum dynamics of attractive and repulsive polarons in a doped MoSe2 monolayer. Phys. Rev. X, 2023, 13(1): 011029
https://doi.org/10.1103/PhysRevX.13.011029
33 Helmrich S., Sampson K., Huang D., Selig M., Hao K., Tran K., Achstein A., Young C., Knorr A., Malic E., Woggon U., Owschimikow N., Li X.. Phonon-assisted intervalley scattering determines ultrafast exciton dynamics in MoSe2 bilayers. Phys. Rev. Lett., 2021, 127(15): 157403
https://doi.org/10.1103/PhysRevLett.127.157403
34 Li D., Trovatello C., Dal Conte S., Nuß M., Soavi G., Wang G., C. Ferrari A., Cerullo G., Brixner T.. Exciton–phonon coupling strength in single-layer MoSe2 at room temperature. Nat. Commun., 2021, 12(1): 954
https://doi.org/10.1038/s41467-021-20895-0
35 Li D., Shan H., Rupprecht C., Knopf H., Watanabe K., Taniguchi T., Qin Y., Tongay S., Nuß M., Schröder S., Eilenberger F., Höfling S., Schneider C., Brixner T.. Hybridized exciton−photon−phonon states in a transition metal dichalcogenide van der Waals heterostructure microcavity. Phys. Rev. Lett., 2022, 128(8): 087401
https://doi.org/10.1103/PhysRevLett.128.087401
36 Guo L., Wu M., Cao T., M. Monahan D., H. Lee Y., G. Louie S., R. Fleming G.. Exchange-driven intravalley mixing of excitons in monolayer transition metal dichalcogenides. Nat. Phys., 2019, 15(3): 228
https://doi.org/10.1038/s41567-018-0362-y
37 T. Lloyd L., E. Wood R., Mujid F., Sohoni S., L. Ji K., C. Ting P., S. Higgins J., Park J., S. Engel G.. Sub-10 fs intervalley exciton coupling in monolayer MoS2 revealed by helicity-resolved two-dimensional electronic spectroscopy. ACS Nano, 2021, 15(6): 10253
https://doi.org/10.1021/acsnano.1c02381
38 Mapara V., Barua A., Turkowski V., T. Trinh M., Stevens C., Liu H., A. Nugera F., Kapuruge N., R. Gutierrez H., Liu F., Zhu X., Semenov D., A. McGill S., Pradhan N., J. Hilton D., Karaiskaj D.. Bright and dark exciton coherent coupling and hybridization enabled by external magnetic fields. Nano Lett., 2022, 22(4): 1680
https://doi.org/10.1021/acs.nanolett.1c04667
39 Singh A., Moody G., Wu S., Wu Y., J. Ghimire N., Yan J., G. Mandrus D., Xu X., Li X.. Coherent electronic coupling in atomically thin MoSe2. Phys. Rev. Lett., 2014, 112(21): 216804
https://doi.org/10.1103/PhysRevLett.112.216804
40 Hao K., Xu L., Nagler P., Singh A., Tran K., K. Dass C., Schüller C., Korn T., Li X., Moody G.. Coherent and incoherent coupling dynamics between neutral and charged excitons in monolayer MoSe2. Nano Lett., 2016, 16(8): 5109
https://doi.org/10.1021/acs.nanolett.6b02041
41 Rodek A., Hahn T., Howarth J., Taniguchi T., Watanabe K., Potemski M., Kossacki P., Wigger D., Kasprzak J.. Controlled coherent-coupling and dynamics of exciton complexes in a MoSe2 monolayer. 2D Mater., 2023, 10: 025027
https://doi.org/10.1088/2053-1583/acc59a
42 Tempelaar R., C. Berkelbach T.. Many-body simulation of two-dimensional electronic spectroscopy of excitons and trions in monolayer transition metal dichalcogenides. Nat. Commun., 2019, 10(1): 3419
https://doi.org/10.1038/s41467-019-11497-y
43 Hao K., F. Specht J., Nagler P., Xu L., Tran K., Singh A., K. Dass C., Schüller C., Korn T., Richter M., Knorr A., Li X., Moody G.. Neutral and charged inter-valley biexcitons in monolayer MoSe2. Nat. Commun., 2017, 8(1): 15552
https://doi.org/10.1038/ncomms15552
44 E. Wood R., T. Lloyd L., Mujid F., Wang L., A. Allodi M., Gao H., Mazuski R., C. Ting P., Xie S., Park J., S. Engel G.. Evidence for the dominance of carrier-induced band gap renormalization over biexciton formation in cryogenic ultrafast experiments on MoS2 monolayers. J. Phys. Chem. Lett., 2020, 11(7): 2658
https://doi.org/10.1021/acs.jpclett.0c00169
45 A. Conway M., B. Muir J., K. Earl S., Wurdack M., Mishra R., O. Tollerud J., A. Davis J.. Direct measurement of biexcitons in monolayer WS2. 2D Mater., 2022, 9: 021001
https://doi.org/10.1088/2053-1583/ac4779
46 Mai C., Barrette A., Yu Y., G. Semenov Y., W. Kim K., Cao L., Gundogdu K.. Many-body effects in valleytronics: Direct measurement of valley lifetimes in single-layer MoS2. Nano Lett., 2014, 14(1): 202
https://doi.org/10.1021/nl403742j
47 Kylänpää I., P. Komsa H.. Binding energies of exciton-complexes in transition metal dichalcogenide monolayers and effect of dielectric environment. Phys. Rev. B, 2015, 92(20): 205418
https://doi.org/10.1103/PhysRevB.92.205418
48 Aeschlimann M., Brixner T., Fischer A., Kramer C., Melchior P., Pfeiffer W., Schneider C., Strüber C., Tuchscherer P., V. Voronine D.. Coherent two-dimensional nanoscopy. Science, 2011, 333(6050): 1723
https://doi.org/10.1126/science.1209206
49 S. Novoselov K., Mishchenko A., Carvalho A., H. Castro Neto A.. 2D materials and van der Waals heterostructures. Science, 2016, 353(6298): aac9439
https://doi.org/10.1126/science.aac9439
50 L. Purz T., W. Martin E., Rivera P., G. Holtzmann W., Xu X., T. Cundiff S.. Coherent exciton-exciton interactions and exciton dynamics in a MoSe2/WSe2 heterostructure. Phys. Rev. B, 2021, 104(24): L241302
https://doi.org/10.1103/PhysRevB.104.L241302
51 R. Policht V., Russo M., Liu F., Trovatello C., Maiuri M., Bai Y., Zhu X., Dal Conte S., Cerullo G.. Dissecting interlayer hole and electron transfer in transition metal dichalcogenide heterostructures via two-dimensional electronic spectroscopy. Nano Lett., 2021, 21(11): 4738
https://doi.org/10.1021/acs.nanolett.1c01098
52 Huang D., Choi J., K. Shih C., Li X.. Excitons in semiconductor moiré superlattices. Nat. Nanotechnol., 2022, 17(3): 227
https://doi.org/10.1038/s41565-021-01068-y
53 F. Mak K., Shan J.. Semiconductor moiré materials. Nat. Nanotechnol., 2022, 17(7): 686
https://doi.org/10.1038/s41565-022-01165-6
54 E. Stevens C., Paul J., Cox T., K. Sahoo P., R. Gutiérrez H., Turkowski V., Semenov D., A. McGill S., D. Kapetanakis M., E. Perakis I., J. Hilton D., Karaiskaj D.. Biexcitons in monolayer transition metal dichalcogenides tuned by magnetic fields. Nat. Commun., 2018, 9(1): 3720
https://doi.org/10.1038/s41467-018-05643-1
55 Mapara V., E. Stevens C., Paul J., Barua A., L. Reno J., A. McGill S., J. Hilton D., Karaiskaj D.. Multidimensional spectroscopy of magneto-excitons at high magnetic fields. J. Chem. Phys., 2021, 155(20): 204201
https://doi.org/10.1063/5.0070113
56 I. Azzam S., Parto K., Moody G.. Prospects and challenges of quantum emitters in 2D materials. Appl. Phys. Lett., 2021, 118(24): 240502
https://doi.org/10.1063/5.0054116
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed