|
|
Resonant four-photon photoemission from SnSe2(001) |
Chengxiang Jiao1, Kai Huang1, Hongli Guo2, Xingxia Cui1, Qing Yuan1, Cancan Lou1, Guangqiang Mei1, Chunlong Wu3, Nan Xu3, Limin Cao1, Min Feng1,3( ) |
1. School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Wuhan University, Wuhan 430072, China 2. Department of Physics and Astronomy, California State University Northridge, Northridge, CA 91330-8268, USA 3. Institute for Advanced Study, Wuhan University, Wuhan 430072, China |
|
|
Abstract High-order nonlinear multiphoton absorption is usually inefficient, but can be enhanced by designing resonant excitations between occupied and unoccupied energy levels. We conducted angle-resolved multi-photon photoemission (mPPE) studies on the SnSe2(001) surfaces excited by ultrashort laser pulses. By tuning photon energy and light polarization, we demonstrate the presence of a resonant four-photon photoemission (4PPE) process involving the occupied valence band (VB), the unoccupied second conduction band (CB2) and the unoccupied image-potential state (IPs) of SnSe2. In this 4PPE process, VB electrons of SnSe2 are resonantly excited into CB2 by adsorbing two photons, followed by the adsorption of another photon to populate the n = 1 IPs before being emitted out to the vacuum by adsorbing one more photon. This results in a double-resonant 4PPE process, which exhibits approximately a 40 times enhancement in photoemission yields compared to cases where one of the resonant pathways, CB2 → IPs, is inhibited by involving a virtual state instead of the IPs in the 4PPE. The double-resonant 4PPE process efficiently excite the bulk VB electrons outside the vacuum, like taking advantage of resonant “ladders” through two real empty electronic states of SnSe2. Our results highlight the important applications of mPPE in probing the band-structure, particularly the unoccupied states, of recently emerging main group dichalcogenide semiconductors. Furthermore, the discovered resonant mPPE process contributes to the exploration of their promising optoelectronic applications.
|
Keywords
multi-photon photoemission
four-photon photoemission
SnSe2
unoccupied states
resonant excitation
|
Corresponding Author(s):
Min Feng
|
About author: Peng Lei and Charity Ngina Mwangi contributed equally to this work. |
Issue Date: 22 November 2023
|
|
1 |
Petek H. , Ogawa S. . Femtosecond time-resolved two-photon photoemission studies of electron dynamics in metals. Prog. Surf. Sci., 1997, 56(4): 239
https://doi.org/10.1016/S0079-6816(98)00002-1
|
2 |
Fauster T. , Weinelt M. , Höfer U. . Quasi-elastic scattering of electrons in image-potential states. Prog. Surf. Sci., 2007, 82(4−6): 224
https://doi.org/10.1016/j.progsurf.2007.03.007
|
3 |
Giesen K. , Hage F. , Himpsel F. , Riess H. , Steinmann W. . Two-photon photoemission via image-potential states. Phys. Rev. Lett., 1985, 55(3): 300
https://doi.org/10.1103/PhysRevLett.55.300
|
4 |
Schoenlein R. , G. Fujimoto J. , Eesley G. , Capehart T. . Femtosecond studies of image-potential dynamics in metals. Phys. Rev. Lett., 1988, 61(22): 2596
https://doi.org/10.1103/PhysRevLett.61.2596
|
5 |
Waldfried C.McIlroy D.Zhang J.Dowben P.Katrich G.W. Plummer E., Determination of the surface Debye temperature of Mo(112) using valence band photoemission, Surf. Sci. 363(1‒3), 296 (1996)
|
6 |
Bisio F. , Winkelmann A. , Chiang C. , Petek H. , Kirschner J. . Band structure effects in above threshold photoemission. J. Phys.: Condens. Matter, 2011, 23(48): 485002
https://doi.org/10.1088/0953-8984/23/48/485002
|
7 |
Winkelmann A. , C. Lin W. , T. Chiang C. , Bisio F. , Petek H. , Kirschner J. . Resonant coherent three-photon photoemission from Cu(001). Phys. Rev. B, 2009, 80(15): 155128
https://doi.org/10.1103/PhysRevB.80.155128
|
8 |
Bisio F. , Nývlt M. , Franta J. , Petek H. , Kirschner J. . Mechanisms of high-order perturbative photoemission from Cu(001). Phys. Rev. Lett., 2006, 96(8): 087601
https://doi.org/10.1103/PhysRevLett.96.087601
|
9 |
Reutzel M. , Li A. , Wang Z. , Petek H. . Coherent multidimensional photoelectron spectroscopy of ultrafast quasiparticle dressing by light. Nat. Commun., 2020, 11(1): 2230
https://doi.org/10.1038/s41467-020-16064-4
|
10 |
Lin Y. , Li Y. , T. Sadowski J. , Jin W. , I. Dadap J. , S. Hybertsen M. . Excitation and characterization of image potential state electrons on quasi-free-standing graphene. Phys. Rev. B, 2018, 97(16): 165413
https://doi.org/10.1103/PhysRevB.97.165413
|
11 |
A. Ünal A. , Tusche C. , Ouazi S. , Wedekind S. , T. Chiang C. , Winkelmann A. , Sander D. , Henk J. , Kirschner J. . Hybridization between the unoccupied Shockley surface state and bulk electronic states on Cu(111). Phys. Rev. B, 2011, 84(7): 073107
https://doi.org/10.1103/PhysRevB.84.073107
|
12 |
Petek H. , Li A. , Li X. , Tan S. , Reutzel M. . Plasmonic decay into hot electrons in silver. Prog. Surf. Sci., 2023, 98(3): 100707
https://doi.org/10.1016/j.progsurf.2023.100707
|
13 |
Reutzel M. , Li A. , Petek H. . Coherent two-dimensional multiphoton photoelectron spectroscopy of metal surfaces. Phys. Rev. X, 2019, 9(1): 011044
https://doi.org/10.1103/PhysRevX.9.011044
|
14 |
Ogawa S. , Petek H. . Two-photon photoemission spectroscopy at clean and oxidized Cu(110) and Cu(100) surfaces. Surf. Sci., 1996, 363(1−3): 313
https://doi.org/10.1016/0039-6028(96)00153-7
|
15 |
Luan S. , Hippler R. , Schwier H. , Lutz H. . Electron emission from polycrystalline copper surfaces by multi-photon absorption. Europhys. Lett., 1989, 9(5): 489
https://doi.org/10.1209/0295-5075/9/5/014
|
16 |
Fann W. , Storz R. , Bokor J. . Observation of above-threshold multiphoton photoelectric emission from image-potential surface states. Phys. Rev. B, 1991, 44(19): 10980
https://doi.org/10.1103/PhysRevB.44.10980
|
17 |
Irvine S. , Dechant A. , Elezzabi A. . Generation of 0.4-keV femtosecond electron pulses using impulsively excited surface plasmons. Phys. Rev. Lett., 2004, 93(18): 184801
https://doi.org/10.1103/PhysRevLett.93.184801
|
18 |
Kinoshita I.Anazawa T.Matsumoto Y., Surface and image-potential states on Pt(111) probed by two-and three-photon photoemission, Chem. Phys. Lett. 259(3‒4), 445 (1996)
|
19 |
Kupersztych J. , Monchicourt P. , Raynaud M. . Ponderomotive acceleration of photoelectrons in surface-plasmon-assisted multiphoton photoelectric emission. Phys. Rev. Lett., 2001, 86(22): 5180
https://doi.org/10.1103/PhysRevLett.86.5180
|
20 |
Tan S. , Argondizzo A. , Wang C. , Cui X. , Petek H. . Ultrafast multiphoton thermionic photoemission from graphite. Phys. Rev. X, 2017, 7(1): 011004
https://doi.org/10.1103/PhysRevX.7.011004
|
21 |
Tan S. , Dai Y. , Zhang S. , Liu L. , Zhao J. , Petek H. . Coherent electron transfer at the Ag/graphite heterojunction interface. Phys. Rev. Lett., 2018, 120(12): 126801
https://doi.org/10.1103/PhysRevLett.120.126801
|
22 |
Tan S. , Liu L. , Dai Y. , Ren J. , Zhao J. , Petek H. . Ultrafast plasmon-enhanced hot electron generation at Ag nanocluster/graphite heterojunctions. J. Am. Chem. Soc., 2017, 139(17): 6160
https://doi.org/10.1021/jacs.7b01079
|
23 |
A. Formstone C. , T. FitzGerald E. , O’Hare D. , A. Cox P. , Kurmoo M. , W. Hodby J. , Lillicrap D. , Goss-Custard M. . Observation of superconductivity in the organometallic intercalation compound SnSe2{Co(η-C5H5)2}0.33. J. Chem. Soc. Chem. Commun., 1990, 0(6): 501
https://doi.org/10.1039/C39900000501
|
24 |
A. Formstone C. , Kurmoo M. , T. FitzGerald E. , A. Cox P. , O’Hare D. . Single-crystal conductivity study of the tin dichalcogenides SnS2–xSex intercalated with cobaltocene. J. Mater. Chem., 1991, 1(1): 51
https://doi.org/10.1039/JM9910100051
|
25 |
O’Hare D. , V. Wong H. , Hazell S. , W. Hodby J. . Relatively isotropic superconductivity at 8.3 K in the Lamellar organometallic intercalate SnSe2{Co(η-C5H5)2}0.3. Adv. Mater., 1992, 4(10): 658
https://doi.org/10.1002/adma.19920041007
|
26 |
Li Z. , Zhao Y. , Mu K. , Shan H. , Guo Y. , Wu J. , Su Y. , Wu Q. , Sun Z. , Zhao A. , Cui X. , Wu C. , Xie Y. . Molecule-confined engineering toward superconductivity and ferromagnetism in two-dimensional superlattice. J. Am. Chem. Soc., 2017, 139(45): 16398
https://doi.org/10.1021/jacs.7b10071
|
27 |
R. Bhimanapati G. , Lin Z. , Meunier V. , Jung Y. , Cha J. , Das S. , Xiao D. , Son Y. , S. Strano M. , R. Cooper V. , Liang L. , G. Louie S. , Ringe E. , Zhou W. , S. Kim S. , R. Naik R. , G. Sumpter B. , Terrones H. , Xia F. , Wang Y. , Zhu J. , Akinwande D. , Alem N. , A. Schuller J. , E. Schaak R. , Terrones M. , A. Robinson J. . Recent advances in two-dimensional materials beyond graphene. ACS Nano, 2015, 9(12): 11509
https://doi.org/10.1021/acsnano.5b05556
|
28 |
A. Klemm R. . Pristine and intercalated transition metal dichalcogenide superconductors. Physica C, 2015, 514: 86
https://doi.org/10.1016/j.physc.2015.02.023
|
29 |
Zhou X. , Gan L. , Tian W. , Zhang Q. , Jin S. , Li H. , Bando Y. , Golberg D. , Zhai T. . Ultrathin SnSe2 flakes grown by chemical vapor deposition for high‐performance photodetectors. Adv. Mater., 2015, 27(48): 8035
https://doi.org/10.1002/adma.201503873
|
30 |
Giri A. , Park G. , Jeong U. . Layer-structured anisotropic metal chalcogenides: Recent advances in synthesis, modulation, and applications. Chem. Rev., 2023, 123(7): 3329
https://doi.org/10.1021/acs.chemrev.2c00455
|
31 |
P. Mukhokosi E. , V. Manohar G. , Nagao T. , B. Krupanidhi S. , K. Nanda K. . Device architecture for visible and near-infrared photodetectors based on two-dimensional SnSe2 and MoS2: A review. Micromachines (Basel), 2020, 11(8): 750
https://doi.org/10.3390/mi11080750
|
32 |
Li X. , Li L. , Zhao H. , Ruan S. , Zhang W. , Yan P. , Sun Z. , Liang H. , Tao K. . SnSe2 quantum dots: Facile fabrication and application in highly responsive UV-detectors. Nanomaterials (Basel), 2019, 9(9): 1324
https://doi.org/10.3390/nano9091324
|
33 |
Mooser E. , B. Pearson W. . New semiconducting compounds. Phys. Rev., 1956, 101(1): 492
https://doi.org/10.1103/PhysRev.101.492
|
34 |
Domingo G. , S. Itoga R. , R. Kannewurf C. . Fundamental optical absorption in SnS2 and SnSe2. Phys. Rev., 1966, 143(2): 536
https://doi.org/10.1103/PhysRev.143.536
|
35 |
Y. Auyang M. , L. Cohen M. . Electronic structure and optical properties of SnS2 and SnSe2. Phys. Rev., 1969, 178(3): 1279
https://doi.org/10.1103/PhysRev.178.1279
|
36 |
Williams R. , Murray R. , Govan D. , Thomas J. , Evans E. . Band structure and photoemission studies of SnS2 and SnSe2. I. Experimental. J. Phys. C Solid State Phys., 1973, 6(24): 3631
https://doi.org/10.1088/0022-3719/6/24/022
|
37 |
Cohen R. , Wertheim G. , Rosencwaig A. , Guggenheim H. . Multiplet splitting of the 4s and 5s electrons of the rare earths. Phys. Rev. B, 1972, 5(3): 1037
https://doi.org/10.1103/PhysRevB.5.1037
|
38 |
Domingo G. , Itoga R. , Kannewurf C. . Fundamental optical absorption in SnS2 and SnSe2. Phys. Rev., 1966, 143(2): 536
https://doi.org/10.1103/PhysRev.143.536
|
39 |
Fong C. , Cohen M. . Electronic charge densities for two layer semiconductors − SnS2 and SnSe2. J. Phys. C Solid State Phys., 1974, 7(1): 107
https://doi.org/10.1088/0022-3719/7/1/018
|
40 |
George J. , Joseph K. . Absorption edge measurements in tin disulphide thin films. J. Phys. D Appl. Phys., 1982, 15(6): 1109
https://doi.org/10.1088/0022-3727/15/6/021
|
41 |
Schlüter M. , L. Cohen M. . Valence-band density of states and chemical bonding for several non-transition-metal layer compounds: SnSe2, PbI2, BiI3, and GaSe. Phys. Rev. B, 1976, 14(2): 424
https://doi.org/10.1103/PhysRevB.14.424
|
42 |
Smith A. , Meek P. , Liang W. . Raman scattering studies of SnS2 and SnSe2. J. Phys. C Solid State Phys., 1977, 10(8): 1321
https://doi.org/10.1088/0022-3719/10/8/035
|
43 |
Schlaf R. , Pettenkofer C. , Jaegermann W. . Band lineup of a SnS2/SnSe2/SnS2 semiconductor quantum well structure prepared by van der Waals epitaxy. J. Appl. Phys., 1999, 85(9): 6550
https://doi.org/10.1063/1.370160
|
44 |
Kresse G. , Furthmüller J. . Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996, 54(16): 11169
https://doi.org/10.1103/PhysRevB.54.11169
|
45 |
Kresse G. , Furthmüller J. . Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci., 1996, 6(1): 15
https://doi.org/10.1016/0927-0256(96)00008-0
|
46 |
P. Perdew J. , Burke K. , Ernzerhof M. . Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18): 3865
https://doi.org/10.1103/PhysRevLett.77.3865
|
47 |
A. Franzman M. , W. Schlenker C. , E. Thompson M. , L. Brutchey R. . Solution-phase synthesis of SnSe nanocrystals for use in solar cells. J. Am. Chem. Soc., 2010, 132(12): 4060
https://doi.org/10.1021/ja100249m
|
48 |
Li L. , Chen Z. , Hu Y. , Wang X. , Zhang T. , Chen W. , Wang Q. . Single-layer single-crystalline SnSe nanosheets. J. Am. Chem. Soc., 2013, 135(4): 1213
https://doi.org/10.1021/ja3108017
|
49 |
Zhang C. , Yin H. , Han M. , Dai Z. , Pang H. , Zheng Y. , Q. Lan Y. , Bao J. , Zhu J. . Two-dimensional tin selenide nanostructures for flexible all-solid-state supercapacitors. ACS Nano, 2014, 8(4): 3761
https://doi.org/10.1021/nn5004315
|
50 |
Zhou X. , Gan L. , Tian W. , Zhang Q. , Jin S. , Li H. , Bando Y. , Golberg D. , Zhai T. . Ultrathin SnSe2 flakes grown by chemical vapor deposition for high-performance photodetectors. Adv. Mater., 2015, 27(48): 8035
https://doi.org/10.1002/adma.201503873
|
51 |
Zhou Y. , Zhang B. , Chen X. , Gu C. , An C. , Zhou Y. , Cai K. , Yuan Y. , Chen C. , Wu H. , Zhang R. , Park C. , Xiong Y. , Zhang X. , Wang K. , Yang Z. . Pressure‐induced metallization and robust superconductivity in pristine 1T‐SnSe2. Adv. Electron. Mater., 2018, 4(8): 1800155
https://doi.org/10.1002/aelm.201800155
|
52 |
J. Forty A.VI. The growth of cadmium iodide crystals (I): Dislocations and spiral growth, Lond. Edinb. Dublin Philos. Mag. J. Sci. 43(336), 72 (1952)
|
53 |
E. Brown B. , J. Beerntsen D. . Layer structure polytypism among niobium and tantalum selenides. Acta Crystallogr., 1965, 18(1): 31
https://doi.org/10.1107/S0365110X65000063
|
54 |
Bjerkelund E. , Kjkshus A. . On the structural properties of the Ta1+xSe2 phase. Acta Chem. Scand., 1967, 21: 513
https://doi.org/10.3891/ACTA.CHEM.SCAND.21-0513
|
55 |
Mao Y.-H. , Shan H. , Wu J.-R. , Li Z.-J. , Wu C.-Z. , Zhai X.-F. , Zhao A.-D. , Wang B. . Observation of pseudogap in SnSe2 atomic layers grown on graphite. Front. Phys., 2020, 15(4): 43501
https://doi.org/10.1007/s11467-020-0977-1
|
56 |
M. Zhang Y. , Q. Fan J. , L. Wang W. , Zhang D. , Wang L. , Li W. , He K. , L. Song C. , C. Ma X. , K. Xue Q. . Observation of interface superconductivity in a SnSe2/epitaxial graphene van der Waals heterostructure. Phys. Rev. B, 2018, 98(22): 220508
https://doi.org/10.1103/PhysRevB.98.220508
|
57 |
B. Lochocki E. , Vishwanath S. , Liu X. , Dobrowolska M. , Furdyna J. , G. Xing H. , M. Shen K. . Electronic structure of SnSe2 films grown by molecular beam epitaxy. Appl. Phys. Lett., 2019, 114(9): 091602
https://doi.org/10.1063/1.5084147
|
58 |
Schlaf R. , Lang O. , Pettenkofer C. , Jaegermann W. . Band lineup of layered semiconductor heterointerfaces prepared by van der Waals epitaxy: Charge transfer correction term for the electron affinity rule. J. Appl. Phys., 1999, 85(5): 2732
https://doi.org/10.1063/1.369590
|
59 |
Zhang Q. , O. Li M. , B. Lochocki E. , Vishwanath S. , Liu X. , Yan R. , H. Lien H. , Dobrowolska M. , Furdyna J. , M. Shen K. , Cheng G. , R. Hight Walker A. , J. Gundlach D. , G. Xing H. , V. Nguyen N. . Band offset and electron affinity of MBE-grown SnSe2. Appl. Phys. Lett., 2018, 112(4): 042108
https://doi.org/10.1063/1.5016183
|
60 |
Steinmann W. . Two‐photon photoemission spectroscopy of electronic states at metal surfaces. Phys. Status Solidi B, 1995, 192(2): 339
https://doi.org/10.1002/pssb.2221920210
|
61 |
M. Gonzalez J. , I. Oleynik I. . Layer-dependent properties of SnS2 and SnSe2 two-dimensional materials. Phys. Rev. B, 2016, 94(12): 125443
https://doi.org/10.1103/PhysRevB.94.125443
|
62 |
Peter Y.Cardona M., Fundamentals of Semiconductors: Physics and Materials Properties, Springer Science & Business Media, 2010
|
63 |
Petek H. , Heberle A. , Nessler W. , Nagano H. , Kubota S. , Matsunami S. , Moriya N. , Ogawa S. . Optical phase control of coherent electron dynamics in metals. Phys. Rev. Lett., 1997, 79(23): 4649
https://doi.org/10.1103/PhysRevLett.79.4649
|
64 |
Ogawa S. , Nagano H. , Petek H. , Heberle A. . Optical dephasing in Cu(111) measured by interferometric two-photon time-resolved photoemission. Phys. Rev. Lett., 1997, 78(7): 1339
https://doi.org/10.1103/PhysRevLett.78.1339
|
65 |
Petek H. , Nagano H. , Ogawa S. . Hole decoherence of d bands in copper. Phys. Rev. Lett., 1999, 83(4): 832
https://doi.org/10.1103/PhysRevLett.83.832
|
[1] |
fop-21355-OF-fengmin_suppl_1
|
Download
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|