Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2024, Vol. 19 Issue (3) : 33207    https://doi.org/10.1007/s11467-023-1365-4
RESEARCH ARTICLE
Resonant four-photon photoemission from SnSe2(001)
Chengxiang Jiao1, Kai Huang1, Hongli Guo2, Xingxia Cui1, Qing Yuan1, Cancan Lou1, Guangqiang Mei1, Chunlong Wu3, Nan Xu3, Limin Cao1, Min Feng1,3()
1. School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Wuhan University, Wuhan 430072, China
2. Department of Physics and Astronomy, California State University Northridge, Northridge, CA 91330-8268, USA
3. Institute for Advanced Study, Wuhan University, Wuhan 430072, China
 Download: PDF(5943 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

High-order nonlinear multiphoton absorption is usually inefficient, but can be enhanced by designing resonant excitations between occupied and unoccupied energy levels. We conducted angle-resolved multi-photon photoemission (mPPE) studies on the SnSe2(001) surfaces excited by ultrashort laser pulses. By tuning photon energy and light polarization, we demonstrate the presence of a resonant four-photon photoemission (4PPE) process involving the occupied valence band (VB), the unoccupied second conduction band (CB2) and the unoccupied image-potential state (IPs) of SnSe2. In this 4PPE process, VB electrons of SnSe2 are resonantly excited into CB2 by adsorbing two photons, followed by the adsorption of another photon to populate the n = 1 IPs before being emitted out to the vacuum by adsorbing one more photon. This results in a double-resonant 4PPE process, which exhibits approximately a 40 times enhancement in photoemission yields compared to cases where one of the resonant pathways, CB2 → IPs, is inhibited by involving a virtual state instead of the IPs in the 4PPE. The double-resonant 4PPE process efficiently excite the bulk VB electrons outside the vacuum, like taking advantage of resonant “ladders” through two real empty electronic states of SnSe2. Our results highlight the important applications of mPPE in probing the band-structure, particularly the unoccupied states, of recently emerging main group dichalcogenide semiconductors. Furthermore, the discovered resonant mPPE process contributes to the exploration of their promising optoelectronic applications.

Keywords multi-photon photoemission      four-photon photoemission      SnSe2      unoccupied states      resonant excitation     
Corresponding Author(s): Min Feng   
About author:

Peng Lei and Charity Ngina Mwangi contributed equally to this work.

Issue Date: 22 November 2023
 Cite this article:   
Chengxiang Jiao,Kai Huang,Hongli Guo, et al. Resonant four-photon photoemission from SnSe2(001)[J]. Front. Phys. , 2024, 19(3): 33207.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-023-1365-4
https://academic.hep.com.cn/fop/EN/Y2024/V19/I3/33207
Fig.1  (a) The top and side views of the atomic structure of 1T-SnSe2. (b) Schematic representation of the 3D Brillouin zones of 1T-SnSe2 along with its projection onto the (001) surfaces. (c) Typical STM topography image of the SnSe2(001) surfaces acquired at a sample bias of 0.6 V and a tunneling current of 8 pA. The white rhomboid defines the unit cell of the surface. The atomic structural model of one SnSe2 sandwich-layer on the surface illustrates that the bright contrast resolved by STM originates from the Se atoms on the top atomic layer. The inset shows typical STS dI/dV spectra acquired on the surfaces.
Fig.2  (a) The normal-emission mPPE spectra versus photon energy measured with p-polarized irradiation from the SnSe2(001) surfaces. Three separated features, labelled as I, II and III, are marked in the spectra. The insets highlight each of these features individually. (b) The peak positions of features I, II and III in the Efinal versus photon energy plot. The dotted line represents the linear fitting of the data for VB, CB2, and IPs. (c) The calculated band structure along K?M?Γ?K of bulk 1T-SnSe2, relevant to the normal emission geometry of the mPPE. CB2 and VB around Γ point are highlighted red and purple, respectively. (d?g) The 4PPE intensity versus k// along Γ?M with p-polarized incident radiation on SnSe2 surfaces at different irradiation photon energies. CB2, IPs, and VB are fitted using red, orange and purple parabolic dashed lines, respectively. (h) Schematic representation of band structure alignment at Γ point with the proposed 4PPE resonance for a photon energy near 1.94 eV.
Fig.3  (a) Schematic illustration of the double-resonant 4PPE process of VB → CB2 → IPs → Efinal, where the IPs serves as the second intermediate state. (b) Schematic illustration of the VB → CB2 → Vs (virtual state) → Efinal 4PPE process, in which the IPs is replaced by a virtual state. In this case, there is no resonance between CB2 with the second intermediate state. (c) The experimental geometry of p- and s-polarized irradiations. s-polarized irradiation contains only the in-plane (E//y) electric field, while the p-polarized light includes both the in-plane (E//x) and out-of-plane (Exy) components. (d, e) The 4PPE intensity versus k// along Γ?M with p- and s-polarized incident radiation on SnSe2 surfaces respectively, at a photon energy of 1.94 eV. CB2 and IPs are represented by red and orange parabolic dashed lines, respectively. (f) Normal-emission 4PPE spectra measured with p-polarized (blue) and s-polarized (yellow) irradiations from the SnSe2 surfaces, corresponding to k// = 0 ??1 in (d) and (e), respectively. The spectra are normalized according to the work function edge.
Fig.4  (a?c) The side view of the wavefunction normal (|ψ|2) of VB, CB2, and n = 1 IPs. The parity of |ψ|2 is even (+) for VB and odd (?) for CB2 according to the inversion center, as highlighted by the black-dashed rectangle. (d) The calculated transition dipole moment |Tnni| (broadened with Gaussian functions) of VB → CB2, CB2 → IPs, and VB → IPs. The energy is relative to EF.
1 Petek H. , Ogawa S. . Femtosecond time-resolved two-photon photoemission studies of electron dynamics in metals. Prog. Surf. Sci., 1997, 56(4): 239
https://doi.org/10.1016/S0079-6816(98)00002-1
2 Fauster T. , Weinelt M. , Höfer U. . Quasi-elastic scattering of electrons in image-potential states. Prog. Surf. Sci., 2007, 82(4−6): 224
https://doi.org/10.1016/j.progsurf.2007.03.007
3 Giesen K. , Hage F. , Himpsel F. , Riess H. , Steinmann W. . Two-photon photoemission via image-potential states. Phys. Rev. Lett., 1985, 55(3): 300
https://doi.org/10.1103/PhysRevLett.55.300
4 Schoenlein R. , G. Fujimoto J. , Eesley G. , Capehart T. . Femtosecond studies of image-potential dynamics in metals. Phys. Rev. Lett., 1988, 61(22): 2596
https://doi.org/10.1103/PhysRevLett.61.2596
5 Waldfried C.McIlroy D.Zhang J.Dowben P.Katrich G.W. Plummer E., Determination of the surface Debye temperature of Mo(112) using valence band photoemission, Surf. Sci. 363(1‒3), 296 (1996)
6 Bisio F. , Winkelmann A. , Chiang C. , Petek H. , Kirschner J. . Band structure effects in above threshold photoemission. J. Phys.: Condens. Matter, 2011, 23(48): 485002
https://doi.org/10.1088/0953-8984/23/48/485002
7 Winkelmann A. , C. Lin W. , T. Chiang C. , Bisio F. , Petek H. , Kirschner J. . Resonant coherent three-photon photoemission from Cu(001). Phys. Rev. B, 2009, 80(15): 155128
https://doi.org/10.1103/PhysRevB.80.155128
8 Bisio F. , Nývlt M. , Franta J. , Petek H. , Kirschner J. . Mechanisms of high-order perturbative photoemission from Cu(001). Phys. Rev. Lett., 2006, 96(8): 087601
https://doi.org/10.1103/PhysRevLett.96.087601
9 Reutzel M. , Li A. , Wang Z. , Petek H. . Coherent multidimensional photoelectron spectroscopy of ultrafast quasiparticle dressing by light. Nat. Commun., 2020, 11(1): 2230
https://doi.org/10.1038/s41467-020-16064-4
10 Lin Y. , Li Y. , T. Sadowski J. , Jin W. , I. Dadap J. , S. Hybertsen M. . Excitation and characterization of image potential state electrons on quasi-free-standing graphene. Phys. Rev. B, 2018, 97(16): 165413
https://doi.org/10.1103/PhysRevB.97.165413
11 A. Ünal A. , Tusche C. , Ouazi S. , Wedekind S. , T. Chiang C. , Winkelmann A. , Sander D. , Henk J. , Kirschner J. . Hybridization between the unoccupied Shockley surface state and bulk electronic states on Cu(111). Phys. Rev. B, 2011, 84(7): 073107
https://doi.org/10.1103/PhysRevB.84.073107
12 Petek H. , Li A. , Li X. , Tan S. , Reutzel M. . Plasmonic decay into hot electrons in silver. Prog. Surf. Sci., 2023, 98(3): 100707
https://doi.org/10.1016/j.progsurf.2023.100707
13 Reutzel M. , Li A. , Petek H. . Coherent two-dimensional multiphoton photoelectron spectroscopy of metal surfaces. Phys. Rev. X, 2019, 9(1): 011044
https://doi.org/10.1103/PhysRevX.9.011044
14 Ogawa S. , Petek H. . Two-photon photoemission spectroscopy at clean and oxidized Cu(110) and Cu(100) surfaces. Surf. Sci., 1996, 363(1−3): 313
https://doi.org/10.1016/0039-6028(96)00153-7
15 Luan S. , Hippler R. , Schwier H. , Lutz H. . Electron emission from polycrystalline copper surfaces by multi-photon absorption. Europhys. Lett., 1989, 9(5): 489
https://doi.org/10.1209/0295-5075/9/5/014
16 Fann W. , Storz R. , Bokor J. . Observation of above-threshold multiphoton photoelectric emission from image-potential surface states. Phys. Rev. B, 1991, 44(19): 10980
https://doi.org/10.1103/PhysRevB.44.10980
17 Irvine S. , Dechant A. , Elezzabi A. . Generation of 0.4-keV femtosecond electron pulses using impulsively excited surface plasmons. Phys. Rev. Lett., 2004, 93(18): 184801
https://doi.org/10.1103/PhysRevLett.93.184801
18 Kinoshita I.Anazawa T.Matsumoto Y., Surface and image-potential states on Pt(111) probed by two-and three-photon photoemission, Chem. Phys. Lett. 259(3‒4), 445 (1996)
19 Kupersztych J. , Monchicourt P. , Raynaud M. . Ponderomotive acceleration of photoelectrons in surface-plasmon-assisted multiphoton photoelectric emission. Phys. Rev. Lett., 2001, 86(22): 5180
https://doi.org/10.1103/PhysRevLett.86.5180
20 Tan S. , Argondizzo A. , Wang C. , Cui X. , Petek H. . Ultrafast multiphoton thermionic photoemission from graphite. Phys. Rev. X, 2017, 7(1): 011004
https://doi.org/10.1103/PhysRevX.7.011004
21 Tan S. , Dai Y. , Zhang S. , Liu L. , Zhao J. , Petek H. . Coherent electron transfer at the Ag/graphite heterojunction interface. Phys. Rev. Lett., 2018, 120(12): 126801
https://doi.org/10.1103/PhysRevLett.120.126801
22 Tan S. , Liu L. , Dai Y. , Ren J. , Zhao J. , Petek H. . Ultrafast plasmon-enhanced hot electron generation at Ag nanocluster/graphite heterojunctions. J. Am. Chem. Soc., 2017, 139(17): 6160
https://doi.org/10.1021/jacs.7b01079
23 A. Formstone C. , T. FitzGerald E. , O’Hare D. , A. Cox P. , Kurmoo M. , W. Hodby J. , Lillicrap D. , Goss-Custard M. . Observation of superconductivity in the organometallic intercalation compound SnSe2{Co(η-C5H5)2}0.33. J. Chem. Soc. Chem. Commun., 1990, 0(6): 501
https://doi.org/10.1039/C39900000501
24 A. Formstone C. , Kurmoo M. , T. FitzGerald E. , A. Cox P. , O’Hare D. . Single-crystal conductivity study of the tin dichalcogenides SnS2–xSex intercalated with cobaltocene. J. Mater. Chem., 1991, 1(1): 51
https://doi.org/10.1039/JM9910100051
25 O’Hare D. , V. Wong H. , Hazell S. , W. Hodby J. . Relatively isotropic superconductivity at 8.3 K in the Lamellar organometallic intercalate SnSe2{Co(η-C5H5)2}0.3. Adv. Mater., 1992, 4(10): 658
https://doi.org/10.1002/adma.19920041007
26 Li Z. , Zhao Y. , Mu K. , Shan H. , Guo Y. , Wu J. , Su Y. , Wu Q. , Sun Z. , Zhao A. , Cui X. , Wu C. , Xie Y. . Molecule-confined engineering toward superconductivity and ferromagnetism in two-dimensional superlattice. J. Am. Chem. Soc., 2017, 139(45): 16398
https://doi.org/10.1021/jacs.7b10071
27 R. Bhimanapati G. , Lin Z. , Meunier V. , Jung Y. , Cha J. , Das S. , Xiao D. , Son Y. , S. Strano M. , R. Cooper V. , Liang L. , G. Louie S. , Ringe E. , Zhou W. , S. Kim S. , R. Naik R. , G. Sumpter B. , Terrones H. , Xia F. , Wang Y. , Zhu J. , Akinwande D. , Alem N. , A. Schuller J. , E. Schaak R. , Terrones M. , A. Robinson J. . Recent advances in two-dimensional materials beyond graphene. ACS Nano, 2015, 9(12): 11509
https://doi.org/10.1021/acsnano.5b05556
28 A. Klemm R. . Pristine and intercalated transition metal dichalcogenide superconductors. Physica C, 2015, 514: 86
https://doi.org/10.1016/j.physc.2015.02.023
29 Zhou X. , Gan L. , Tian W. , Zhang Q. , Jin S. , Li H. , Bando Y. , Golberg D. , Zhai T. . Ultrathin SnSe2 flakes grown by chemical vapor deposition for high‐performance photodetectors. Adv. Mater., 2015, 27(48): 8035
https://doi.org/10.1002/adma.201503873
30 Giri A. , Park G. , Jeong U. . Layer-structured anisotropic metal chalcogenides: Recent advances in synthesis, modulation, and applications. Chem. Rev., 2023, 123(7): 3329
https://doi.org/10.1021/acs.chemrev.2c00455
31 P. Mukhokosi E. , V. Manohar G. , Nagao T. , B. Krupanidhi S. , K. Nanda K. . Device architecture for visible and near-infrared photodetectors based on two-dimensional SnSe2 and MoS2: A review. Micromachines (Basel), 2020, 11(8): 750
https://doi.org/10.3390/mi11080750
32 Li X. , Li L. , Zhao H. , Ruan S. , Zhang W. , Yan P. , Sun Z. , Liang H. , Tao K. . SnSe2 quantum dots: Facile fabrication and application in highly responsive UV-detectors. Nanomaterials (Basel), 2019, 9(9): 1324
https://doi.org/10.3390/nano9091324
33 Mooser E. , B. Pearson W. . New semiconducting compounds. Phys. Rev., 1956, 101(1): 492
https://doi.org/10.1103/PhysRev.101.492
34 Domingo G. , S. Itoga R. , R. Kannewurf C. . Fundamental optical absorption in SnS2 and SnSe2. Phys. Rev., 1966, 143(2): 536
https://doi.org/10.1103/PhysRev.143.536
35 Y. Auyang M. , L. Cohen M. . Electronic structure and optical properties of SnS2 and SnSe2. Phys. Rev., 1969, 178(3): 1279
https://doi.org/10.1103/PhysRev.178.1279
36 Williams R. , Murray R. , Govan D. , Thomas J. , Evans E. . Band structure and photoemission studies of SnS2 and SnSe2. I. Experimental. J. Phys. C Solid State Phys., 1973, 6(24): 3631
https://doi.org/10.1088/0022-3719/6/24/022
37 Cohen R. , Wertheim G. , Rosencwaig A. , Guggenheim H. . Multiplet splitting of the 4s and 5s electrons of the rare earths. Phys. Rev. B, 1972, 5(3): 1037
https://doi.org/10.1103/PhysRevB.5.1037
38 Domingo G. , Itoga R. , Kannewurf C. . Fundamental optical absorption in SnS2 and SnSe2. Phys. Rev., 1966, 143(2): 536
https://doi.org/10.1103/PhysRev.143.536
39 Fong C. , Cohen M. . Electronic charge densities for two layer semiconductors − SnS2 and SnSe2. J. Phys. C Solid State Phys., 1974, 7(1): 107
https://doi.org/10.1088/0022-3719/7/1/018
40 George J. , Joseph K. . Absorption edge measurements in tin disulphide thin films. J. Phys. D Appl. Phys., 1982, 15(6): 1109
https://doi.org/10.1088/0022-3727/15/6/021
41 Schlüter M. , L. Cohen M. . Valence-band density of states and chemical bonding for several non-transition-metal layer compounds: SnSe2, PbI2, BiI3, and GaSe. Phys. Rev. B, 1976, 14(2): 424
https://doi.org/10.1103/PhysRevB.14.424
42 Smith A. , Meek P. , Liang W. . Raman scattering studies of SnS2 and SnSe2. J. Phys. C Solid State Phys., 1977, 10(8): 1321
https://doi.org/10.1088/0022-3719/10/8/035
43 Schlaf R. , Pettenkofer C. , Jaegermann W. . Band lineup of a SnS2/SnSe2/SnS2 semiconductor quantum well structure prepared by van der Waals epitaxy. J. Appl. Phys., 1999, 85(9): 6550
https://doi.org/10.1063/1.370160
44 Kresse G. , Furthmüller J. . Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996, 54(16): 11169
https://doi.org/10.1103/PhysRevB.54.11169
45 Kresse G. , Furthmüller J. . Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci., 1996, 6(1): 15
https://doi.org/10.1016/0927-0256(96)00008-0
46 P. Perdew J. , Burke K. , Ernzerhof M. . Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18): 3865
https://doi.org/10.1103/PhysRevLett.77.3865
47 A. Franzman M. , W. Schlenker C. , E. Thompson M. , L. Brutchey R. . Solution-phase synthesis of SnSe nanocrystals for use in solar cells. J. Am. Chem. Soc., 2010, 132(12): 4060
https://doi.org/10.1021/ja100249m
48 Li L. , Chen Z. , Hu Y. , Wang X. , Zhang T. , Chen W. , Wang Q. . Single-layer single-crystalline SnSe nanosheets. J. Am. Chem. Soc., 2013, 135(4): 1213
https://doi.org/10.1021/ja3108017
49 Zhang C. , Yin H. , Han M. , Dai Z. , Pang H. , Zheng Y. , Q. Lan Y. , Bao J. , Zhu J. . Two-dimensional tin selenide nanostructures for flexible all-solid-state supercapacitors. ACS Nano, 2014, 8(4): 3761
https://doi.org/10.1021/nn5004315
50 Zhou X. , Gan L. , Tian W. , Zhang Q. , Jin S. , Li H. , Bando Y. , Golberg D. , Zhai T. . Ultrathin SnSe2 flakes grown by chemical vapor deposition for high-performance photodetectors. Adv. Mater., 2015, 27(48): 8035
https://doi.org/10.1002/adma.201503873
51 Zhou Y. , Zhang B. , Chen X. , Gu C. , An C. , Zhou Y. , Cai K. , Yuan Y. , Chen C. , Wu H. , Zhang R. , Park C. , Xiong Y. , Zhang X. , Wang K. , Yang Z. . Pressure‐induced metallization and robust superconductivity in pristine 1T‐SnSe2. Adv. Electron. Mater., 2018, 4(8): 1800155
https://doi.org/10.1002/aelm.201800155
52 J. Forty A.VI. The growth of cadmium iodide crystals (I): Dislocations and spiral growth, Lond. Edinb. Dublin Philos. Mag. J. Sci. 43(336), 72 (1952)
53 E. Brown B. , J. Beerntsen D. . Layer structure polytypism among niobium and tantalum selenides. Acta Crystallogr., 1965, 18(1): 31
https://doi.org/10.1107/S0365110X65000063
54 Bjerkelund E. , Kjkshus A. . On the structural properties of the Ta1+xSe2 phase. Acta Chem. Scand., 1967, 21: 513
https://doi.org/10.3891/ACTA.CHEM.SCAND.21-0513
55 Mao Y.-H. , Shan H. , Wu J.-R. , Li Z.-J. , Wu C.-Z. , Zhai X.-F. , Zhao A.-D. , Wang B. . Observation of pseudogap in SnSe2 atomic layers grown on graphite. Front. Phys., 2020, 15(4): 43501
https://doi.org/10.1007/s11467-020-0977-1
56 M. Zhang Y. , Q. Fan J. , L. Wang W. , Zhang D. , Wang L. , Li W. , He K. , L. Song C. , C. Ma X. , K. Xue Q. . Observation of interface superconductivity in a SnSe2/epitaxial graphene van der Waals heterostructure. Phys. Rev. B, 2018, 98(22): 220508
https://doi.org/10.1103/PhysRevB.98.220508
57 B. Lochocki E. , Vishwanath S. , Liu X. , Dobrowolska M. , Furdyna J. , G. Xing H. , M. Shen K. . Electronic structure of SnSe2 films grown by molecular beam epitaxy. Appl. Phys. Lett., 2019, 114(9): 091602
https://doi.org/10.1063/1.5084147
58 Schlaf R. , Lang O. , Pettenkofer C. , Jaegermann W. . Band lineup of layered semiconductor heterointerfaces prepared by van der Waals epitaxy: Charge transfer correction term for the electron affinity rule. J. Appl. Phys., 1999, 85(5): 2732
https://doi.org/10.1063/1.369590
59 Zhang Q. , O. Li M. , B. Lochocki E. , Vishwanath S. , Liu X. , Yan R. , H. Lien H. , Dobrowolska M. , Furdyna J. , M. Shen K. , Cheng G. , R. Hight Walker A. , J. Gundlach D. , G. Xing H. , V. Nguyen N. . Band offset and electron affinity of MBE-grown SnSe2. Appl. Phys. Lett., 2018, 112(4): 042108
https://doi.org/10.1063/1.5016183
60 Steinmann W. . Two‐photon photoemission spectroscopy of electronic states at metal surfaces. Phys. Status Solidi B, 1995, 192(2): 339
https://doi.org/10.1002/pssb.2221920210
61 M. Gonzalez J. , I. Oleynik I. . Layer-dependent properties of SnS2 and SnSe2 two-dimensional materials. Phys. Rev. B, 2016, 94(12): 125443
https://doi.org/10.1103/PhysRevB.94.125443
62 Peter Y.Cardona M., Fundamentals of Semiconductors: Physics and Materials Properties, Springer Science & Business Media, 2010
63 Petek H. , Heberle A. , Nessler W. , Nagano H. , Kubota S. , Matsunami S. , Moriya N. , Ogawa S. . Optical phase control of coherent electron dynamics in metals. Phys. Rev. Lett., 1997, 79(23): 4649
https://doi.org/10.1103/PhysRevLett.79.4649
64 Ogawa S. , Nagano H. , Petek H. , Heberle A. . Optical dephasing in Cu(111) measured by interferometric two-photon time-resolved photoemission. Phys. Rev. Lett., 1997, 78(7): 1339
https://doi.org/10.1103/PhysRevLett.78.1339
65 Petek H. , Nagano H. , Ogawa S. . Hole decoherence of d bands in copper. Phys. Rev. Lett., 1999, 83(4): 832
https://doi.org/10.1103/PhysRevLett.83.832
[1] fop-21355-OF-fengmin_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed