Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2024, Vol. 19 Issue (4) : 41201    https://doi.org/10.1007/s11467-023-1375-2
Unravelling-based (auto)control of back-action in atomic Bose−Einstein condensate
V. A. Tomilin(), L. V. Il’ichov
Institute of Automation and Electrometry SB RAS 630090, Novosibirsk, Russia
 Download: PDF(4174 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We present a novel feedback control method for quantum systems. Feedback does not affect the controlled system itself. Instead, it controls the unravelling of the quantum channel of interaction between the system and its environment. This interaction can be represented as a history of events. If their informational content is changed, their back-action on the system is also modified. Feedback action is trigged by the events, thus granting the system the degree of control over its own state. The efficiency of the proposed scheme is demonstrated on the example of two-mode atomic Bose-Einstein condensate, with one of its modes subject to phase-contrast imaging in a Mach−Zehnder interferometer. The histories of photocounts in the output channels of the interferometer are used for feedback. Its capabilities of state engineering are studied for different settings of the feedback loop and different numbers of events in the recorded histories.

Keywords quantum feedback control      quantum measurements      two-mode Bose−Einstein condensates     
Corresponding Author(s): V. A. Tomilin   
Issue Date: 19 January 2024
 Cite this article:   
V. A. Tomilin,L. V. Il’ichov. Unravelling-based (auto)control of back-action in atomic Bose−Einstein condensate[J]. Front. Phys. , 2024, 19(4): 41201.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-023-1375-2
https://academic.hep.com.cn/fop/EN/Y2024/V19/I4/41201
Fig.1  Double-well BEC in the Mach−Zehnder interferometer. The control is implemented by phase switchings in the condensate-free arm. Note that the feedback loop lies outside of BEC.
Fig.2  KL-divergences between normalized distributions Pn(+ ), Pn( ++),Pn(+ ++) and: (a−c) uniform distribution p n=1/(Nat+1 ); (d−f) distributions Rn(+ ), Rn( ++),Rn(+ ++), evaluated for χ=π/ 20,ω=0.07, Nat=10. Color scales to the left and to the right correspond to the respective column. A pair of adjacent maxima are marked on the (e) plot with coordinates (φ +,φ )=(0.4π,1.4π) and ( φ+,φ)=( 0.9π, 0.1π).
Fig.3  Unity-normalized steady-state distributions for values of unravellings (φ +,φ ), corresponding to the KL-divergence’ maxima highlighted in Fig.2(e). Filled circles represent actual feedback-induced distributions, while triangles represent no-feedback distributions for unravelling set at ((φ++φ)/2,( φ++φ)/2). Empty squares represent uniform distributions.
Fig.4  KL-divergences between Pn(+ ), Pn( ++),Pn(+ ++) and the binomial distribution pn(b inom). The color scale is common for all three plots.
1 Wiener N., Cybernetics: Control and Communication in the Animal and the Machine, 2nd Ed., MIT Press, Cambridge, 1961
2 Zhang J., Liu Y., B. Wu R., Jacobs K., Nori F.. Quantum feedback: Theory, experiments, and applications. Phys. Rep., 2017, 679: 1
https://doi.org/10.1016/j.physrep.2017.02.003
3 Lloyd S.. Coherent quantum feedback. Phys. Rev. A, 2000, 62(2): 022108
https://doi.org/10.1103/PhysRevA.62.022108
4 C. Doherty A., Jacobs K.. Feedback control of quantum systems using continuous state estimation. Phys. Rev. A, 1999, 60(4): 2700
https://doi.org/10.1103/PhysRevA.60.2700
5 R. James M.I. Nurdin H.R. Petersen I., H∞ control of linear quantum stochastic systems, IEEE Trans. Automat. Contr. 53(8), 1787 (2008)
6 A. Tomilin V., V. Il’ichov L.. Quantum feedback control outside of the controlled system. JETP Lett., 2022, 116(9): 649
https://doi.org/10.1134/S0021364022602019
7 M. Brańczyk A., E. M. F. Mendonça P., Gilchrist A., C. Doherty A., D. Bartlett S.. Quantum control of a single qubit. Phys. Rev. A, 2007, 75(1): 012329
https://doi.org/10.1103/PhysRevA.75.012329
8 G. Gillett G., B. Dalton R., P. Lanyon B., P. Almeida M., Barbieri M., J. Pryde G., L. O’Brien J., J. Resch K., D. Bartlett S., G. White A.. Experimental feedback control of quantum systems using weak measurements. Phys. Rev. Lett., 2010, 104(8): 080503
https://doi.org/10.1103/PhysRevLett.104.080503
9 C. Wang L., L. Huang X., X. Yi X.. Effect of feedback on the control of a two-level dissipative quantum system. Phys. Rev. A, 2008, 78(5): 052112
https://doi.org/10.1103/PhysRevA.78.052112
10 Yan Y., Zou J., M. Xu B., G. Li J., Shao B.. Measurement-based direct quantum feedback control in an open quantum system. Phys. Rev. A, 2013, 88(3): 032320
https://doi.org/10.1103/PhysRevA.88.032320
11 Cao Y., Tian G., C. Zhang Z., H. Yang Y., Y. Wen Q., Gao F.. Composite control for protecting two nonorthogonal qubit states against decoherence. Phys. Rev. A, 2017, 95(3): 032313
https://doi.org/10.1103/PhysRevA.95.032313
12 Uys H.Bassa H.du Toit P.Ghosh S.Konrad T., Quantum control through measurement feedback, Phys. Rev. A 97, 060102(R) (2018)
13 B. Horoshko D., Ya. Kilin S.. Direct detection feedback for preserving quantum coherence in an open cavity. Phys. Rev. Lett., 1997, 78(5): 840
https://doi.org/10.1103/PhysRevLett.78.840
14 R. R. Carvalho A.J. Hope J., Stabilizing entanglement by quantum-jump-based feedback, Phys. Rev. A 76, 010301(R) (2007)
15 Barchielli A., Gregoratti M., Licciardo M.. Feedback control of the fluorescence light squeezing. Europhys. Lett., 2009, 85(1): 14006
https://doi.org/10.1209/0295-5075/85/14006
16 Sayrin C., Dotsenko I., Zhou X., Peaudecerf B., Rybarczyk T., Gleyzes S., Rouchon P., Mirrahimi M., Amini H., Brune M., M. Raimond J., Haroche S.. Real-time quantum feedback prepares and stabilizes photon number states. Nature, 2011, 477(7362): 73
https://doi.org/10.1038/nature10376
17 M. Cavaletto S., Harman Z., Pfeifer T., H. Keitel C.. Deterministic strong-field quantum control. Phys. Rev. A, 2017, 95(4): 043413
https://doi.org/10.1103/PhysRevA.95.043413
18 Campagne-Ibarcq P., Flurin E., Roch N., Darson D., Morfin P., Mirrahimi M., H. Devoret M., Mallet F., Huard B.. Persistent control of a superconducting qubit by stroboscopic measurement feedback. Phys. Rev. X, 2013, 3: 021008
https://doi.org/10.1103/PhysRevX.3.021008
19 Ruskov R., Schwab K., N. Korotkov A.. Squeezing of a nanomechanical resonator by quantum nondemolition measurement and feedback. Phys. Rev. B, 2005, 71(23): 235407
https://doi.org/10.1103/PhysRevB.71.235407
20 A. Tomilin V.V. Il’ichov L., Λ-scheme feedback spectroscopy, Opt. Commun. 391, 57 (2017)
21 A. Tomilin V.V. Il’ichov L., BEC dynamics in a double-well with interferometric feedback, Ann. Phys. 528(7–8), 619 (2016)
22 A. Tomilin V., V. Il’ichov L.. Correlations of photoemissions in a multiatomic ensemble driven by a cat-state field. Phys. Rev. A, 2017, 96(6): 063805
https://doi.org/10.1103/PhysRevA.96.063805
23 C. J. Wade A., F. Sherson J., Mölmer K.. Squeezing and entanglement of density oscillations in a Bose‒Einstein condensate. Phys. Rev. Lett., 2015, 115(6): 060401
https://doi.org/10.1103/PhysRevLett.115.060401
24 C. J. Wade A., F. Sherson J., Mölmer K.. Manipulation of collective quantum states in Bose‒Einstein condensates by continuous imaging. Phys. Rev. A, 2016, 93(2): 023610
https://doi.org/10.1103/PhysRevA.93.023610
25 J. W. H. Sørensen J., Dalgaard M., H. Kiilerich A., Mölmer K., F. Sherson J.. Quantum control with measurements and quantum Zeno dynamics. Phys. Rev. A, 2018, 98(6): 062317
https://doi.org/10.1103/PhysRevA.98.062317
26 Mazzucchi G., F. Caballero-Benitez S., A. Ivanov D., B. Mekhov I.. Quantum optical feedback control for creating strong correlations in many-body systems. Optica, 2016, 3(11): 1213
https://doi.org/10.1364/OPTICA.3.001213
27 Lin R., Rosa-Medina R., Ferri F., Finger F., Kroeger K., Donner T., Esslinger T., Chitra R.. Dissipation-engineered family of nearly dark states in many-body cavity-atom systems. Phys. Rev. Lett., 2022, 128(15): 153601
https://doi.org/10.1103/PhysRevLett.128.153601
28 A. Ivanov D., Yu. Ivanova T., F. Caballero-Benitez S., B. Mekhov I.. Feedback-induced quantum phase transitions using weak measurements. Phys. Rev. Lett., 2020, 124(1): 010603
https://doi.org/10.1103/PhysRevLett.124.010603
29 C. Stitely K., Finger F., Rosa-Medina R., Ferri F., Donner T., Esslinger T., Parkins S., Krauskopf B.. Quantum fluctuation dynamics of dispersive superradiant pulses in a hybrid light‒matter system. Phys. Rev. Lett., 2023, 131(14): 143604
https://doi.org/10.1103/PhysRevLett.131.143604
30 M. Wiseman H.J. Milburn G., Quantum Measurement and Control, Cambridge: Cambridge University Press, 2010
31 Kullback S.A. Leibler L., Information and Statistics, Wiley, 1959
32 V. Il’ichev L., L. Chapovskii P.. Decoherence of an atomic condensate in a double-well trap at optical probing. JETP Lett., 2015, 102(1): 14
https://doi.org/10.1134/S0021364015130032
33 Gross C., Estève J., K. Oberthaler M., D. Martin A., Ruostekoski J.. Local and spatially extended sub-Poisson atom-number fluctuations in optical lattices. Phys. Rev. A, 2011, 84(1): 011609
https://doi.org/10.1103/PhysRevA.84.011609
[1] DONG Dao-yi, CHEN Zong-hai, ZHANG Chen-bin, CHEN Chun-lin. Feedback control of quantum system[J]. Front. Phys. , 2006, 1(3): 256-262.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed