|
|
A spin−rotation mechanism of Einstein–de Haas effect based on a ferromagnetic disk |
Xin Nie1, Jun Li1, Trinanjan Datta2,3( ), Dao-Xin Yao1,4( ) |
1. Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, State Key Laboratory of Optoelectronic Materials and Technologies, Center for Neutron Science and Technology, School of Physics, Sun Yat-Sen University, Guangzhou 510275, China 2. Department of Physics and Biophysics, Augusta University, 1120 15th Street, Augusta, Georgia 30912, USA 3. Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA 4. International Quantum Academy, Shenzhen 518048, China |
|
|
Abstract Spin−rotation coupling (SRC) is a fundamental interaction that connects electronic spins with the rotational motion of a medium. We elucidate the Einstein−de Haas (EdH) effect and its inverse with SRC as the microscopic mechanism using the dynamic spin−lattice equations derived by elasticity theory and Lagrangian formalism. By applying the coupling equations to an iron disk in a magnetic field, we exhibit the transfer of angular momentum and energy between spins and lattice, with or without damping. The timescale of the angular momentum transfer from spins to the entire lattice is estimated by our theory to be on the order of 0.01 ns, for the disk with a radius of 100 nm. Moreover, we discover a linear relationship between the magnetic field strength and the rotation frequency, which is also enhanced by a higher ratio of Young’s modulus to Poisson’s coefficient. In the presence of damping, we notice that the spin−lattice relaxation time is nearly inversely proportional to the magnetic field. Our explorations will contribute to a better understanding of the EdH effect and provide valuable insights for magneto-mechanical manufacturing.
|
Keywords
Einstein−de Haas effect
spin−rotation coupling
|
Corresponding Author(s):
Trinanjan Datta,Dao-Xin Yao
|
Issue Date: 09 April 2024
|
|
1 |
E. Losby J., T. K. Sauer V., R. Freeman M.. Recent advances in mechanical torque studies of small-scale magnetism. J. Phys. D Appl. Phys., 2018, 51(48): 483001
https://doi.org/10.1088/1361-6463/aadccb
|
2 |
R. Tauchert S., Volkov M., Ehberger D., Kazenwadel D., Evers M., Lange H., Donges A., Book A., Kreuzpaintner W., Nowak U., Baum P.. Polarized phonons carry angular momentum in ultrafast demagnetization. Nature, 2022, 602(7895): 73
https://doi.org/10.1038/s41586-021-04306-4
|
3 |
W. Richardson O., A mechanical effect accompanying magnetization, Phys. Rev. Ser. I 26(3), 248 (1908)
|
4 |
Einstein A.. Experimenteller nachweis der ampereschen molekularströme. Naturwissenschaften, 1915, 3(19): 237
https://doi.org/10.1007/BF01546392
|
5 |
J. Barnett S.. Magnetization by rotation. Phys. Rev., 1915, 6(4): 239
https://doi.org/10.1103/PhysRev.6.239
|
6 |
Einstein A.De Haas W., Experimental proof of the existence of Ampère’s molecular currents, in: Proc. KNAW, Vol. 181 (1915), p. 696
|
7 |
G. Scott G.. Review of gyromagnetic ratio experiments. Rev. Mod. Phys., 1962, 34(1): 102
https://doi.org/10.1103/RevModPhys.34.102
|
8 |
Górecki W., Rzażewski K.. Making two dysprosium atoms rotate — Einstein‒de Haas effect revisited. Europhys. Lett., 2016, 116(2): 26004
https://doi.org/10.1209/0295-5075/116/26004
|
9 |
Wells T., P. Horsfield A., M. C. Foulkes W., L. Dudarev S.. The microscopic Einstein‒de Haas effect. J. Chem. Phys., 2019, 150(22): 224109
https://doi.org/10.1063/1.5092223
|
10 |
A. Wolf S., D. Awschalom D., A. Buhrman R., M. Daughton J., von Molnár S., L. Roukes M., Y. Chtchelkanova A., M. Treger D.. Spintronics: A spin-based electronics vision for the future. Science, 2001, 294(5546): 1488
https://doi.org/10.1126/science.1065389
|
11 |
Xiong Z., Wu D., Valy Vardeny Z., Shi J.. Giant magnetoresistance in organic spin-valves. Nature, 2004, 427(6977): 821
https://doi.org/10.1038/nature02325
|
12 |
Sanvito S., R. Rocha A.. Molecular-spintronics: The art of driving spin through molecules. J. Comput. Theor. Nanosci., 2006, 3(5): 624
https://doi.org/10.1166/jctn.2006.3047
|
13 |
Bogani L., Wernsdorfer W.. Molecular spintronics using single-molecule magnets. Nat. Mater., 2008, 7(3): 179
https://doi.org/10.1038/nmat2133
|
14 |
Chudnovsky E., Garanin D., Schilling R.. Universal mechanism of spin relaxation in solids. Phys. Rev. B, 2005, 72(9): 094426
https://doi.org/10.1103/PhysRevB.72.094426
|
15 |
M. Chudnovsky E., A. Garanin D.. Rotational states of a nanomagnet. Phys. Rev. B, 2010, 81(21): 214423
https://doi.org/10.1103/PhysRevB.81.214423
|
16 |
M. Chudnovsky E.. Conservation of angular momentum in the problem of tunneling of the magnetic moment. Phys. Rev. Lett., 1994, 72(21): 3433
https://doi.org/10.1103/PhysRevLett.72.3433
|
17 |
Zhang L., Niu Q.. Angular momentum of phonons and the Einstein–de Haas effect. Phys. Rev. Lett., 2014, 112(8): 085503
https://doi.org/10.1103/PhysRevLett.112.085503
|
18 |
Streib S.. Difference between angular momentum and pseudoangular momentum. Phys. Rev. B, 2021, 103(10): L100409
https://doi.org/10.1103/PhysRevB.103.L100409
|
19 |
J. Nakane J., Kohno H.. Angular momentum of phonons and its application to single-spin relaxation. Phys. Rev. B, 2018, 97(17): 174403
https://doi.org/10.1103/PhysRevB.97.174403
|
20 |
A. Garanin D., M. Chudnovsky E.. Angular momentum in spin‒phonon processes. Phys. Rev. B, 2015, 92(2): 024421
https://doi.org/10.1103/PhysRevB.92.024421
|
21 |
Ganzhorn M., Klyatskaya S., Ruben M., Wernsdorfer W.. Quantum Einstein–de Haas effect. Nat. Commun., 2016, 7(1): 11443
https://doi.org/10.1038/ncomms11443
|
22 |
Aßmann M., Nowak U.. Spin−lattice relaxation beyond gilbert damping. J. Magn. Magn. Mater., 2019, 469: 217
https://doi.org/10.1016/j.jmmm.2018.08.034
|
23 |
Perera D., Eisenbach M., M. Nicholson D., M. Stocks G., P. Landau D.. Reinventing atomistic magnetic simulations with spin‒orbit coupling. Phys. Rev. B, 2016, 93(6): 060402
https://doi.org/10.1103/PhysRevB.93.060402
|
24 |
W. Ma P., H. Woo C., L. Dudarev S.. Large-scale simulation of the spin‒lattice dynamics in ferromagnetic iron. Phys. Rev. B, 2008, 78(2): 024434
https://doi.org/10.1103/PhysRevB.78.024434
|
25 |
Dednam W., Sabater C., Botha A., Lombardi E., Fernández-Rossier J., Caturla M.. Spin‒lattice dynamics simulation of the Einstein‒de Haas effect. Comput. Mater. Sci., 2022, 209: 111359
https://doi.org/10.1016/j.commatsci.2022.111359
|
26 |
M. Wallis T., Moreland J., Kabos P.. Einstein–de Haas effect in a NiFe film deposited on a microcantilever. Appl. Phys. Lett., 2006, 89(12): 122502
https://doi.org/10.1063/1.2355445
|
27 |
Jaafar R., M. Chudnovsky E., A. Garanin D.. Dynamics of the Einstein‒de Haas effect: Application to a magnetic cantilever. Phys. Rev. B, 2009, 79(10): 104410
https://doi.org/10.1103/PhysRevB.79.104410
|
28 |
M. Chudnovsky E., A. Garanin D.. Damping of a nanocantilever by paramagnetic spins. Phys. Rev. B, 2014, 89(17): 174420
https://doi.org/10.1103/PhysRevB.89.174420
|
29 |
Beaurepaire E., C. Merle J., Daunois A., Y. Bigot J.. Ultrafast spin dynamics in ferromagnetic nickel. Phys. Rev. Lett., 1996, 76(22): 4250
https://doi.org/10.1103/PhysRevLett.76.4250
|
30 |
Carpene E., Mancini E., Dallera C., Brenna M., Puppin E., De Silvestri S.. Dynamics of electron‒magnon interaction and ultrafast demagnetization in thin iron films. Phys. Rev. B, 2008, 78(17): 174422
https://doi.org/10.1103/PhysRevB.78.174422
|
31 |
Fähnle M., Ultrafast demagnetization after femtosecond laser pulses: A complex interaction of light with quantum matter, in: Spintronics XI, Vol. 10732 (SPIE, 2018), p. 107322G
|
32 |
Dornes C., Acremann Y., Savoini M., Kubli M., J. Neugebauer M., Abreu E., Huber L., Lantz G., A. Vaz C., Lemke H., M. Bothschafter E., Porer M., Esposito V., Rettig L., Buzzi M., Alberca A., W. Windsor Y., Beaud P., Staub U., Zhu D., Song S., M. Glownia J., L. Johnson S.. The ultrafast Einstein‒de Haas effect. Nature, 2019, 565(7738): 209
https://doi.org/10.1038/s41586-018-0822-7
|
33 |
D. Landau L., The Classical Theory of Fields, Vol. 2, Elsevier, 2013
|
34 |
S. Fishman R., S. Gardner J., Okamoto S.. Orbital angular momentum of magnons in collinear magnets. Phys. Rev. Lett., 2022, 129: 167202
https://doi.org/10.1103/PhysRevLett.129.167202
|
35 |
N. Reddy J., Theory and Analysis of Elastic Plates and Shells, CRC press, 2006
|
36 |
D. Landau L.M. Lifšic E.M. Lifshitz E.M. Kosevich A.P. Pitaevskii L., Theory of Elasticity: Volume 7, Vol. 7, Elsevier, 1986
|
37 |
I. Lurie A., Theory of Elasticity, Springer Science & Business Media, 2010
|
38 |
M. Wysin G., Magnetic Excitations and Geometric Confinement, IOP Publishing, 2015, pp 2053‒2563
|
39 |
Courant R., Friedrichs K., Lewy H.. On the partial difference equations of mathematical physics. IBM J. Res. Develop., 1967, 11(2): 215
https://doi.org/10.1147/rd.112.0215
|
40 |
Abe K.Higashimori N.Kubo M.Fujiwara H.Iso Y., A remark on the Courant‒Friedrichs‒Lewy condition in finite difference approach to pde’s, Adv. Appl. Math. Mech. 6(5), 693 (2014)
|
41 |
Runge‒Kutta and extrapolation methods, in: Solving Ordinary Differential Equations I: Nonstiff Problems, Berlin, Heidelberg: Springer, 1993, pp 129–353
|
42 |
Koopmans B., J. M. Ruigrok J., D. Longa F., J. M. de Jonge W.. Unifying ultrafast magnetization dynamics. Phys. Rev. Lett., 2005, 95(26): 267207
https://doi.org/10.1103/PhysRevLett.95.267207
|
43 |
Chudo H., Ono M., Harii K., Matsuo M., Ieda J., Haruki R., Okayasu S., Maekawa S., Yasuoka H., Saitoh E.. Observation of Barnett fields in solids by nuclear magnetic resonance. Appl. Phys. Express, 2014, 7(6): 063004
https://doi.org/10.7567/APEX.7.063004
|
44 |
Chudo H., Harii K., Matsuo M., Ieda J., Ono M., Maekawa S., Saitoh E.. Rotational Doppler effect and Barnett field in spinning NMR. J. Phys. Soc. Jpn., 2015, 84(4): 043601
https://doi.org/10.7566/JPSJ.84.043601
|
45 |
Ono M., Chudo H., Harii K., Okayasu S., Matsuo M., Ieda J., Takahashi R., Maekawa S., Saitoh E.. Barnett effect in paramagnetic states. Phys. Rev. B, 2015, 92(17): 174424
https://doi.org/10.1103/PhysRevB.92.174424
|
46 |
Arabgol M., Sleator T.. Observation of the nuclear Barnett effect. Phys. Rev. Lett., 2019, 122(17): 177202
https://doi.org/10.1103/PhysRevLett.122.177202
|
47 |
Xu J., A. Li B., Q. Shen W., Xia Y.. Dynamical effects of spin-dependent interactions in low- and intermediate-energy heavy-ion reactions. Front. Phys., 2015, 10(6): 102501
https://doi.org/10.1007/s11467-015-0479-8
|
48 |
Xia Y., Xu J.. Nucleon spin polarization in intermediate-energy heavy-ion collisions. Phys. Lett. B, 2020, 800: 135130
https://doi.org/10.1016/j.physletb.2019.135130
|
49 |
J. Liu R., Xu J.. Revisiting angular momentum conservation in transport simulations of intermediate-energy heavy-ion collisions. Universe, 2023, 9(1): 36
https://doi.org/10.3390/universe9010036
|
50 |
Takahashi R., Matsuo M., Ono M., Harii K., Chudo H., Okayasu S., Ieda J., Takahashi S., Maekawa S., Saitoh E.. Spin hydrodynamic generation. Nat. Phys., 2016, 12(1): 52
https://doi.org/10.1038/nphys3526
|
51 |
Matsuo M., Ohnuma Y., Maekawa S.. Theory of spin hydrodynamic generation. Phys. Rev. B, 2017, 96(2): 020401
https://doi.org/10.1103/PhysRevB.96.020401
|
52 |
Li J., Feng J., Wang P., Kan E., Xiang H.. Nature of spin‒lattice coupling in two-dimensional CrI3 and CrGeTe3. Sci. China Phys. Mech. Astron., 2021, 64(8): 286811
https://doi.org/10.1007/s11433-021-1717-9
|
53 |
Hellsvik J., Thonig D., Modin K., Iuşan D., Bergman A., Eriksson O., Bergqvist L., Delin A.. General method for atomistic spin‒lattice dynamics with first-principles accuracy. Phys. Rev. B, 2019, 99(10): 104302
https://doi.org/10.1103/PhysRevB.99.104302
|
54 |
Sadhukhan B., Bergman A., O. Kvashnin Y., Hellsvik J., Delin A.. Spin‒lattice couplings in two-dimensional CrI3 from first-principles computations. Phys. Rev. B, 2022, 105(10): 104418
https://doi.org/10.1103/PhysRevB.105.104418
|
55 |
Z. Lu X., Wu X., J. Xiang H.. General microscopic model of magnetoelastic coupling from first principles. Phys. Rev. B, 2015, 91(10): 100405
https://doi.org/10.1103/PhysRevB.91.100405
|
56 |
Li J., Datta T., X. Yao D.. Einstein‒de Haas effect of topological magnons. Phys. Rev. Res., 2021, 3(2): 023248
https://doi.org/10.1103/PhysRevResearch.3.023248
|
57 |
Matsuo M., Ieda J., Saitoh E., Maekawa S.. Effects of mechanical rotation on spin currents. Phys. Rev. Lett., 2011, 106(7): 076601
https://doi.org/10.1103/PhysRevLett.106.076601
|
58 |
Matsuo M., Ieda J., Harii K., Saitoh E., Maekawa S.. Mechanical generation of spin current by spin‒rotation coupling. Phys. Rev. B, 2013, 87(18): 180402
https://doi.org/10.1103/PhysRevB.87.180402
|
59 |
Ieda J.Matsuo M.Maekawa S., Theory of mechanical spin current generation via spin–rotation coupling, Solid State Commun. 198, 52 (2014) (sI: Spin Mechanics)
|
60 |
Matsuo M., Ieda J., Maekawa S.. Mechanical generation of spin current. Front. Phys. (Lausanne), 2015, 3: 54
https://doi.org/10.3389/fphy.2015.00054
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|