Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2024, Vol. 19 Issue (5) : 53201    https://doi.org/10.1007/s11467-023-1389-9
A spin−rotation mechanism of Einstein–de Haas effect based on a ferromagnetic disk
Xin Nie1, Jun Li1, Trinanjan Datta2,3(), Dao-Xin Yao1,4()
1. Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, State Key Laboratory of Optoelectronic Materials and Technologies, Center for Neutron Science and Technology, School of Physics, Sun Yat-Sen University, Guangzhou 510275, China
2. Department of Physics and Biophysics, Augusta University, 1120 15th Street, Augusta, Georgia 30912, USA
3. Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA
4. International Quantum Academy, Shenzhen 518048, China
 Download: PDF(5988 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Spin−rotation coupling (SRC) is a fundamental interaction that connects electronic spins with the rotational motion of a medium. We elucidate the Einstein−de Haas (EdH) effect and its inverse with SRC as the microscopic mechanism using the dynamic spin−lattice equations derived by elasticity theory and Lagrangian formalism. By applying the coupling equations to an iron disk in a magnetic field, we exhibit the transfer of angular momentum and energy between spins and lattice, with or without damping. The timescale of the angular momentum transfer from spins to the entire lattice is estimated by our theory to be on the order of 0.01 ns, for the disk with a radius of 100 nm. Moreover, we discover a linear relationship between the magnetic field strength and the rotation frequency, which is also enhanced by a higher ratio of Young’s modulus to Poisson’s coefficient. In the presence of damping, we notice that the spin−lattice relaxation time is nearly inversely proportional to the magnetic field. Our explorations will contribute to a better understanding of the EdH effect and provide valuable insights for magneto-mechanical manufacturing.

Keywords Einstein−de Haas effect      spin−rotation coupling     
Corresponding Author(s): Trinanjan Datta,Dao-Xin Yao   
Issue Date: 09 April 2024
 Cite this article:   
Xin Nie,Jun Li,Trinanjan Datta, et al. A spin−rotation mechanism of Einstein–de Haas effect based on a ferromagnetic disk[J]. Front. Phys. , 2024, 19(5): 53201.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-023-1389-9
https://academic.hep.com.cn/fop/EN/Y2024/V19/I5/53201
Fig.1  Schematic diagram of SRC mechanism in an iron disk. (a) Initial ferromagnetic configuration. (b) After the application of an external magnetic field B in the z-direction, the change in spin angular momentum causes atomic motion, resulting in local rotation of the disk. (c) The microscopic rotational “message” is transmitted throughout the disk at the speed of sound, leading to the macroscopic EdH rotation, as discussed in Refs. [1, 2].
Fig.2  Evolution of the time derivative of angular momentum in the z-direction. J˙S corresponds to the spin angular momentum, J˙L to the mechanical angular momentum, and J˙d to the angular momentum loss. (a) Undamped case, J˙totoal=J˙S+ J˙L. (b) Damped case, J˙total=J ˙ S+J˙L+ J˙d. Damping factors η= 0.5 and ζ=0.5 are used. The large damping coefficients are chosen to display the final state of the system.
Fig.3  Influence of the magnetic field on angular momentum transfer. (a) The oscillation frequency of angular momentum versus the magnetic field B. In the linear fitting y=k1B +b 1, k1= 4.493 and b1=0.1367. (b) Magnetization evolution under different magnetic fields. Damping factors η=0.5 and ζ= 0.5. The inset shows the case without damping, but with magnetic field B=1T. (c) Spin−lattice relaxation time versus B. The solid line (shown in red) represents an inverse proportional fitting with a=0.19.
Fig.4  The oscillation frequency of angular momentum versus E/(1+ν) and I. Here, E0= 1.85×1011Pa, ν0= 0.32, I0=4.29× 10 20 J, and B=0T.
Fig.5  Evolution of each part of energy. Eex represents the Heisenberg energy, Eu includes the kinetic energy of the displacement field and elastic energy, EZ is the Zeeman energy, Ed illustrates the effect of spin damping on the Zeeman term, and Etotal is their sum. Δ denotes their change. (a) Undamped case with B=2T. (b) Damped case with B=50T, ζ= 0.5, and η=0.5. B is set to 50T to amplify the variation of EZ.
Fig.6  The oscillation frequency of energy versus the magnetic field B. In the linear fitting y=k2B +b 2, k2= 4.5 and b2=4.45. The critical magnetic field (corresponding to the field at zero frequency) is about 1T.
1 E. Losby J., T. K. Sauer V., R. Freeman M.. Recent advances in mechanical torque studies of small-scale magnetism. J. Phys. D Appl. Phys., 2018, 51(48): 483001
https://doi.org/10.1088/1361-6463/aadccb
2 R. Tauchert S., Volkov M., Ehberger D., Kazenwadel D., Evers M., Lange H., Donges A., Book A., Kreuzpaintner W., Nowak U., Baum P.. Polarized phonons carry angular momentum in ultrafast demagnetization. Nature, 2022, 602(7895): 73
https://doi.org/10.1038/s41586-021-04306-4
3 W. Richardson O., A mechanical effect accompanying magnetization, Phys. Rev. Ser. I 26(3), 248 (1908)
4 Einstein A.. Experimenteller nachweis der ampereschen molekularströme. Naturwissenschaften, 1915, 3(19): 237
https://doi.org/10.1007/BF01546392
5 J. Barnett S.. Magnetization by rotation. Phys. Rev., 1915, 6(4): 239
https://doi.org/10.1103/PhysRev.6.239
6 Einstein A.De Haas W., Experimental proof of the existence of Ampère’s molecular currents, in: Proc. KNAW, Vol. 181 (1915), p. 696
7 G. Scott G.. Review of gyromagnetic ratio experiments. Rev. Mod. Phys., 1962, 34(1): 102
https://doi.org/10.1103/RevModPhys.34.102
8 Górecki W., Rzażewski K.. Making two dysprosium atoms rotate — Einstein‒de Haas effect revisited. Europhys. Lett., 2016, 116(2): 26004
https://doi.org/10.1209/0295-5075/116/26004
9 Wells T., P. Horsfield A., M. C. Foulkes W., L. Dudarev S.. The microscopic Einstein‒de Haas effect. J. Chem. Phys., 2019, 150(22): 224109
https://doi.org/10.1063/1.5092223
10 A. Wolf S., D. Awschalom D., A. Buhrman R., M. Daughton J., von Molnár S., L. Roukes M., Y. Chtchelkanova A., M. Treger D.. Spintronics: A spin-based electronics vision for the future. Science, 2001, 294(5546): 1488
https://doi.org/10.1126/science.1065389
11 Xiong Z., Wu D., Valy Vardeny Z., Shi J.. Giant magnetoresistance in organic spin-valves. Nature, 2004, 427(6977): 821
https://doi.org/10.1038/nature02325
12 Sanvito S., R. Rocha A.. Molecular-spintronics: The art of driving spin through molecules. J. Comput. Theor. Nanosci., 2006, 3(5): 624
https://doi.org/10.1166/jctn.2006.3047
13 Bogani L., Wernsdorfer W.. Molecular spintronics using single-molecule magnets. Nat. Mater., 2008, 7(3): 179
https://doi.org/10.1038/nmat2133
14 Chudnovsky E., Garanin D., Schilling R.. Universal mechanism of spin relaxation in solids. Phys. Rev. B, 2005, 72(9): 094426
https://doi.org/10.1103/PhysRevB.72.094426
15 M. Chudnovsky E., A. Garanin D.. Rotational states of a nanomagnet. Phys. Rev. B, 2010, 81(21): 214423
https://doi.org/10.1103/PhysRevB.81.214423
16 M. Chudnovsky E.. Conservation of angular momentum in the problem of tunneling of the magnetic moment. Phys. Rev. Lett., 1994, 72(21): 3433
https://doi.org/10.1103/PhysRevLett.72.3433
17 Zhang L., Niu Q.. Angular momentum of phonons and the Einstein–de Haas effect. Phys. Rev. Lett., 2014, 112(8): 085503
https://doi.org/10.1103/PhysRevLett.112.085503
18 Streib S.. Difference between angular momentum and pseudoangular momentum. Phys. Rev. B, 2021, 103(10): L100409
https://doi.org/10.1103/PhysRevB.103.L100409
19 J. Nakane J., Kohno H.. Angular momentum of phonons and its application to single-spin relaxation. Phys. Rev. B, 2018, 97(17): 174403
https://doi.org/10.1103/PhysRevB.97.174403
20 A. Garanin D., M. Chudnovsky E.. Angular momentum in spin‒phonon processes. Phys. Rev. B, 2015, 92(2): 024421
https://doi.org/10.1103/PhysRevB.92.024421
21 Ganzhorn M., Klyatskaya S., Ruben M., Wernsdorfer W.. Quantum Einstein–de Haas effect. Nat. Commun., 2016, 7(1): 11443
https://doi.org/10.1038/ncomms11443
22 Aßmann M., Nowak U.. Spin−lattice relaxation beyond gilbert damping. J. Magn. Magn. Mater., 2019, 469: 217
https://doi.org/10.1016/j.jmmm.2018.08.034
23 Perera D., Eisenbach M., M. Nicholson D., M. Stocks G., P. Landau D.. Reinventing atomistic magnetic simulations with spin‒orbit coupling. Phys. Rev. B, 2016, 93(6): 060402
https://doi.org/10.1103/PhysRevB.93.060402
24 W. Ma P., H. Woo C., L. Dudarev S.. Large-scale simulation of the spin‒lattice dynamics in ferromagnetic iron. Phys. Rev. B, 2008, 78(2): 024434
https://doi.org/10.1103/PhysRevB.78.024434
25 Dednam W., Sabater C., Botha A., Lombardi E., Fernández-Rossier J., Caturla M.. Spin‒lattice dynamics simulation of the Einstein‒de Haas effect. Comput. Mater. Sci., 2022, 209: 111359
https://doi.org/10.1016/j.commatsci.2022.111359
26 M. Wallis T., Moreland J., Kabos P.. Einstein–de Haas effect in a NiFe film deposited on a microcantilever. Appl. Phys. Lett., 2006, 89(12): 122502
https://doi.org/10.1063/1.2355445
27 Jaafar R., M. Chudnovsky E., A. Garanin D.. Dynamics of the Einstein‒de Haas effect: Application to a magnetic cantilever. Phys. Rev. B, 2009, 79(10): 104410
https://doi.org/10.1103/PhysRevB.79.104410
28 M. Chudnovsky E., A. Garanin D.. Damping of a nanocantilever by paramagnetic spins. Phys. Rev. B, 2014, 89(17): 174420
https://doi.org/10.1103/PhysRevB.89.174420
29 Beaurepaire E., C. Merle J., Daunois A., Y. Bigot J.. Ultrafast spin dynamics in ferromagnetic nickel. Phys. Rev. Lett., 1996, 76(22): 4250
https://doi.org/10.1103/PhysRevLett.76.4250
30 Carpene E., Mancini E., Dallera C., Brenna M., Puppin E., De Silvestri S.. Dynamics of electron‒magnon interaction and ultrafast demagnetization in thin iron films. Phys. Rev. B, 2008, 78(17): 174422
https://doi.org/10.1103/PhysRevB.78.174422
31 Fähnle M., Ultrafast demagnetization after femtosecond laser pulses: A complex interaction of light with quantum matter, in: Spintronics XI, Vol. 10732 (SPIE, 2018), p. 107322G
32 Dornes C., Acremann Y., Savoini M., Kubli M., J. Neugebauer M., Abreu E., Huber L., Lantz G., A. Vaz C., Lemke H., M. Bothschafter E., Porer M., Esposito V., Rettig L., Buzzi M., Alberca A., W. Windsor Y., Beaud P., Staub U., Zhu D., Song S., M. Glownia J., L. Johnson S.. The ultrafast Einstein‒de Haas effect. Nature, 2019, 565(7738): 209
https://doi.org/10.1038/s41586-018-0822-7
33 D. Landau L., The Classical Theory of Fields, Vol. 2, Elsevier, 2013
34 S. Fishman R., S. Gardner J., Okamoto S.. Orbital angular momentum of magnons in collinear magnets. Phys. Rev. Lett., 2022, 129: 167202
https://doi.org/10.1103/PhysRevLett.129.167202
35 N. Reddy J., Theory and Analysis of Elastic Plates and Shells, CRC press, 2006
36 D. Landau L.M. Lifšic E.M. Lifshitz E.M. Kosevich A.P. Pitaevskii L., Theory of Elasticity: Volume 7, Vol. 7, Elsevier, 1986
37 I. Lurie A., Theory of Elasticity, Springer Science & Business Media, 2010
38 M. Wysin G., Magnetic Excitations and Geometric Confinement, IOP Publishing, 2015, pp 2053‒2563
39 Courant R., Friedrichs K., Lewy H.. On the partial difference equations of mathematical physics. IBM J. Res. Develop., 1967, 11(2): 215
https://doi.org/10.1147/rd.112.0215
40 Abe K.Higashimori N.Kubo M.Fujiwara H.Iso Y., A remark on the Courant‒Friedrichs‒Lewy condition in finite difference approach to pde’s, Adv. Appl. Math. Mech. 6(5), 693 (2014)
41 Runge‒Kutta and extrapolation methods, in: Solving Ordinary Differential Equations I: Nonstiff Problems, Berlin, Heidelberg: Springer, 1993, pp 129–353
42 Koopmans B., J. M. Ruigrok J., D. Longa F., J. M. de Jonge W.. Unifying ultrafast magnetization dynamics. Phys. Rev. Lett., 2005, 95(26): 267207
https://doi.org/10.1103/PhysRevLett.95.267207
43 Chudo H., Ono M., Harii K., Matsuo M., Ieda J., Haruki R., Okayasu S., Maekawa S., Yasuoka H., Saitoh E.. Observation of Barnett fields in solids by nuclear magnetic resonance. Appl. Phys. Express, 2014, 7(6): 063004
https://doi.org/10.7567/APEX.7.063004
44 Chudo H., Harii K., Matsuo M., Ieda J., Ono M., Maekawa S., Saitoh E.. Rotational Doppler effect and Barnett field in spinning NMR. J. Phys. Soc. Jpn., 2015, 84(4): 043601
https://doi.org/10.7566/JPSJ.84.043601
45 Ono M., Chudo H., Harii K., Okayasu S., Matsuo M., Ieda J., Takahashi R., Maekawa S., Saitoh E.. Barnett effect in paramagnetic states. Phys. Rev. B, 2015, 92(17): 174424
https://doi.org/10.1103/PhysRevB.92.174424
46 Arabgol M., Sleator T.. Observation of the nuclear Barnett effect. Phys. Rev. Lett., 2019, 122(17): 177202
https://doi.org/10.1103/PhysRevLett.122.177202
47 Xu J., A. Li B., Q. Shen W., Xia Y.. Dynamical effects of spin-dependent interactions in low- and intermediate-energy heavy-ion reactions. Front. Phys., 2015, 10(6): 102501
https://doi.org/10.1007/s11467-015-0479-8
48 Xia Y., Xu J.. Nucleon spin polarization in intermediate-energy heavy-ion collisions. Phys. Lett. B, 2020, 800: 135130
https://doi.org/10.1016/j.physletb.2019.135130
49 J. Liu R., Xu J.. Revisiting angular momentum conservation in transport simulations of intermediate-energy heavy-ion collisions. Universe, 2023, 9(1): 36
https://doi.org/10.3390/universe9010036
50 Takahashi R., Matsuo M., Ono M., Harii K., Chudo H., Okayasu S., Ieda J., Takahashi S., Maekawa S., Saitoh E.. Spin hydrodynamic generation. Nat. Phys., 2016, 12(1): 52
https://doi.org/10.1038/nphys3526
51 Matsuo M., Ohnuma Y., Maekawa S.. Theory of spin hydrodynamic generation. Phys. Rev. B, 2017, 96(2): 020401
https://doi.org/10.1103/PhysRevB.96.020401
52 Li J., Feng J., Wang P., Kan E., Xiang H.. Nature of spin‒lattice coupling in two-dimensional CrI3 and CrGeTe3. Sci. China Phys. Mech. Astron., 2021, 64(8): 286811
https://doi.org/10.1007/s11433-021-1717-9
53 Hellsvik J., Thonig D., Modin K., Iuşan D., Bergman A., Eriksson O., Bergqvist L., Delin A.. General method for atomistic spin‒lattice dynamics with first-principles accuracy. Phys. Rev. B, 2019, 99(10): 104302
https://doi.org/10.1103/PhysRevB.99.104302
54 Sadhukhan B., Bergman A., O. Kvashnin Y., Hellsvik J., Delin A.. Spin‒lattice couplings in two-dimensional CrI3 from first-principles computations. Phys. Rev. B, 2022, 105(10): 104418
https://doi.org/10.1103/PhysRevB.105.104418
55 Z. Lu X., Wu X., J. Xiang H.. General microscopic model of magnetoelastic coupling from first principles. Phys. Rev. B, 2015, 91(10): 100405
https://doi.org/10.1103/PhysRevB.91.100405
56 Li J., Datta T., X. Yao D.. Einstein‒de Haas effect of topological magnons. Phys. Rev. Res., 2021, 3(2): 023248
https://doi.org/10.1103/PhysRevResearch.3.023248
57 Matsuo M., Ieda J., Saitoh E., Maekawa S.. Effects of mechanical rotation on spin currents. Phys. Rev. Lett., 2011, 106(7): 076601
https://doi.org/10.1103/PhysRevLett.106.076601
58 Matsuo M., Ieda J., Harii K., Saitoh E., Maekawa S.. Mechanical generation of spin current by spin‒rotation coupling. Phys. Rev. B, 2013, 87(18): 180402
https://doi.org/10.1103/PhysRevB.87.180402
59 Ieda J.Matsuo M.Maekawa S., Theory of mechanical spin current generation via spin–rotation coupling, Solid State Commun. 198, 52 (2014) (sI: Spin Mechanics)
60 Matsuo M., Ieda J., Maekawa S.. Mechanical generation of spin current. Front. Phys. (Lausanne), 2015, 3: 54
https://doi.org/10.3389/fphy.2015.00054
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed