Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2024, Vol. 19 Issue (5) : 53202    https://doi.org/10.1007/s11467-023-1390-3
Sub-5 nm bilayer GaSe MOSFETs towards ultrahigh on-state current
Xueping Li1,2,3, Xiaojie Tang1, Zhuojun Wang1, Peize Yuan3, Lin Li3, Chenhai Shen3, Congxin Xia3()
1. College of Electronic and Electrical Engineering, Henan Normal University, Xinxiang 453007, China
2. Henan Key Laboratory of Optoelectronic Sensing Integrated Application, Xinxiang 453007, China
3. School of Physics, Henan Normal University, Xinxiang 453007, China
 Download: PDF(7780 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Dielectric engineering plays a crucial role in the process of device miniaturization. Herein we investigate the electrical properties of bilayer GaSe metal-oxide-semiconductor field-effect transistors (MOSFETs), considering hetero-gate-dielectric construction, dielectric materials and GaSe stacking pattern. The results show that device performance strongly depends on the dielectric constants and locations of insulators. When high-k dielectric is placed close to the drain, it behaves with a larger on-state current (Ion) of 5052 μA/μm when the channel is 5 nm. Additionally, when the channel is 5 nm and insulator is HfO2, the largest Ion is 5134 μA/μm for devices with AC stacking GaSe channel. In particular, when the gate length is 2 nm, it still meets the HP requirements of ITRS 2028 for the device with AA stacking when high-k dielectric is used. Hence, the work provides guidance to regulate the performance of the two-dimensional nanodevices by dielectric engineering.

Keywords GaSe stacking pattern      metal-oxide-semiconductor field-effect transistors (MOSFETs)      ultrahigh on-state current      dielectric engineering     
Corresponding Author(s): Congxin Xia   
About author:

Issue Date: 27 March 2024
 Cite this article:   
Xueping Li,Xiaojie Tang,Zhuojun Wang, et al. Sub-5 nm bilayer GaSe MOSFETs towards ultrahigh on-state current[J]. Front. Phys. , 2024, 19(5): 53202.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-023-1390-3
https://academic.hep.com.cn/fop/EN/Y2024/V19/I5/53202
Fig.1  (a) Structure diagram of the double gate MOSFETs. (b) Band structure of bilayer GaSe. (c) Transfer characteristic curves. (d?f) Ion, SS, τ and PDP of the devices with dielectric constants of 3.9 under Vds = 0.64 V. The Arm, Zig, and ND denote armchair direction, zigzag direction, and doping concentration, respectively.
Fig.2  The (a?c) Ids?Vg, Ion, and Ion/Ioff of the MOSFETs with Lg = 5 nm for type-A structure, the (d?f) for type-B structure.
Fig.3  The PLDOS and spectral current of the T22B22 and T12B12 devices at (a, b) off-state and (d, e) on-state under Vds = 0.64 V. The light red area indicates the spectral current in the bias window, and the yellow dashed area indicates the bias window. The (c) and (f) valence band profiles of devices at different gate voltages when Vds = 0.64 V.
Fig.4  (a) The IdsVg of MOSFETs with different stackings under Lg = 5 nm. The inserts are for the enlarged curves between Vg = 0.2 V and 0.3 V. The transmission spectra of bilayer GaSe under Vds = 0.64 V with (b) Vg = 0.2 V and (d) Vg = ?0.2 V. (c) The Voff of the devices with SiO2 and HfO2 insulators under different stacking patterns.
Fig.5  The Ids?Vg of devices with SiO2 and HfO2 dielectric for AA and AB stackings at (a) Lg = 6 nm, (b) 4 nm and (c) 2 nm. (d?f) The Ion, Voff and SS of the devices for different Lg.
1 Jiang J., Wen Y., Wang H., Yin L., Cheng R., Liu C., Feng L., He J.. Recent advances in 2D materials for photodetectors. Adv. Electron. Mater., 2021, 7(7): 2001125
https://doi.org/10.1002/aelm.202001125
2 Long M., Wang P., Fang H., Hu W.. Progress, challenges, and opportunities for 2D material based photodetectors. Adv. Funct. Mater., 2019, 29(19): 1803807
https://doi.org/10.1002/adfm.201803807
3 Zhang L., Yang Y., Chen J., Zhang L.. Photogalvanic effect induced charge and spin photocurrent in group-V monolayer systems. Front. Phys., 2023, 18(6): 62301
https://doi.org/10.1007/s11467-023-1307-1
4 Li X., Yuan P., He M., Li L., Du J., Xiong W., Xia C., Kou L.. Optoelectronic properties and applications of two-dimensional layered semiconductor van der Waals heterostructures: Perspective from theory. J. Phys.: Condens. Matter, 2023, 35(4): 043001
https://doi.org/10.1088/1361-648X/aca5db
5 Bikerouin M., Chdil O., Balli M.. Solar cells based on 2D Janus group-III chalcogenide van der Waals heterostructures. Nanoscale, 2023, 15(15): 7126
https://doi.org/10.1039/D2NR06200C
6 Li H., Lin L., Yao L., Wu F., Wei D., Liu G., Huang Z., Chen S., Li J., Chen G.. High‐efficiency Sb2(S, Se)3 solar cells with new hole transport layer-free back architecture via 2D titanium-carbide Mxene. Adv. Funct. Mater., 2022, 32(10): 2110335
https://doi.org/10.1002/adfm.202110335
7 K. Sangwan V., S. Lee H., Bergeron H., Balla I., E. Beck M., S. Chen K., C. Hersam M.. Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide. Nature, 2018, 554(7693): 500
https://doi.org/10.1038/nature25747
8 Yin L., Cheng R., Wang Z., Wang F., G. Sendeku M., Wen Y., Zhan X., He J.. Two-dimensional unipolar memristors with logic and memory functions. Nano Lett., 2020, 20(6): 4144
https://doi.org/10.1021/acs.nanolett.0c00002
9 Niu W., Ding G., Jia Z., Ma X., Zhao J., Zhou K., Han S., Kuo C., Zhou Y.. Recent advances in memristors based on two-dimensional ferroelectric materials. Front. Phys., 2024, 19(1): 13402
https://doi.org/10.1007/s11467-023-1329-8
10 Mennel L., Symonowicz J., Wachter S., K. Polyushkin D., J. Molina-Mendoza A., Mueller T.. Ultrafast machine vision with 2D material neural network image sensors. Nature, 2020, 579(7797): 62
https://doi.org/10.1038/s41586-020-2038-x
11 Huh W., Lee D., H. Lee C.. Memristors based on 2D materials as an artificial synapse for neuromorphic electronics. Adv. Mater., 2020, 32(51): 2002092
https://doi.org/10.1002/adma.202002092
12 Xiang D., Liu T., Zhang X., Zhou P., Chen W.. Dielectric engineered two-dimensional neuromorphic transistors. Nano Lett., 2021, 21(8): 3557
https://doi.org/10.1021/acs.nanolett.1c00492
13 H. Ju J., Seo S., Baek S., Lee D., Lee S., Lee T., Kim B., J. Lee J., Koo J., Choo H., Lee S., H. Park J.. Two-dimensional MXene synapse for brain-inspired neuromorphic computing. Small, 2021, 17(34): 2102595
https://doi.org/10.1002/smll.202102595
14 K. A. Bennett R., Yoon Y.. Using anisotropic insulators to engineer the electrostatics of conventional and tunnel field-effect transistors. IEEE Trans. Electron Dev., 2021, 68(2): 865
https://doi.org/10.1109/TED.2020.3044559
15 Tan C.Yu M.Tang J.Gao X.Yin Y. Zhang Y.Wang J.Gao X.Zhang C.Zhou X. Zheng L.Liu H.Jiang K.Ding F.Peng H., 2D fin field-effect transistors integrated with epitaxial high-k gate oxide, Nature 616(7955), 66 (2023)
16 Zhou W., Zhang S., Guo S., Qu H., Cai B., Chen X., Zeng H.. High-performance monolayer Na3Sb shrinking transistors: a DFT-NEGF study. Nanoscale, 2020, 12(36): 18931
https://doi.org/10.1039/D0NR04129G
17 K. A. Bennett R., Yoon Y.. Exploiting fringing fields created by high-κ gate insulators to enhance the performance of ultrascaled 2D-material-based transistors. IEEE Trans. Electron Dev., 2021, 68(9): 4618
https://doi.org/10.1109/TED.2021.3096178
18 Y. Choi W., Lee W.. Hetero-gate-dielectric tunneling field-effect transistors. IEEE Trans. Electron Dev., 2010, 57(9): 2317
https://doi.org/10.1109/TED.2010.2052167
19 Madan J., Chaujar R.. Gate drain-overlapped-asymmetric gate dielectric-GAA-TFET: A solution for suppressed ambipolarity and enhanced ON state behavior. Appl. Phys. A, 2016, 122(11): 973
https://doi.org/10.1007/s00339-016-0510-0
20 P. Li X., Z. Yuan P., Li L., J. He M., B. Li J., X. Xia C.. Sub-5-nm monolayer GaSe MOSFET with ultralow subthreshold swing and high on-state current: Dielectric layer effects. Phys. Rev. Appl., 2022, 18(4): 044012
https://doi.org/10.1103/PhysRevApplied.18.044012
21 Kuc A., Cusati T., Dib E., F. Oliveira A., Fortunelli A., Iannaccone G., Heine T., Fiori G.. High-performance 2D p-type transistors based on GaSe layers: An ab initio study. Adv. Electron. Mater., 2017, 3(2): 1600399
https://doi.org/10.1002/aelm.201600399
22 Cui Y., Peng L., Sun L., Qian Q., Huang Y.. Two-dimensional few-layer group-III metal monochalcogenides as effective photocatalysts for overall water splitting in the visible range. J. Mater. Chem. A, 2018, 6(45): 22768
https://doi.org/10.1039/C8TA08103D
23 J. Late D., Liu B., Luo J., Yan A., S. Matte H., Grayson M., N. Rao C., P. Dravid V.. GaS and GaSe ultrathin layer transistors. Adv. Mater., 2012, 24(26): 3549
https://doi.org/10.1002/adma.201201361
24 Chitara B., Ya’akobovitz A.. Elastic properties and breaking strengths of GaS, GaSe and GaTe nanosheets. Nanoscale, 2018, 10(27): 13022
https://doi.org/10.1039/C8NR01065J
25 W. Chen M.Kim H.Ovchinnikov D.Kuc A.Heine T. Renault O.Kis A., Large-grain MBE-grown GaSe on GaAs with a Mexican hat-like valence band dispersion, npj 2D Mater. Appl. 2(1), 2 (2018)
26 Si C., Lin Z., Zhou J., Sun Z.. Controllable Schottky barrier in GaSe/graphene heterostructure: The role of interface dipole. 2D Mater., 2016, 4(1): 015027
https://doi.org/10.1088/2053-1583/4/1/015027
27 J. Late D., Liu B., S. S. R. Matte H., N. R. Rao C., P. Dravid V.. Rapid characterization of ultrathin layers of chalcogenides on SiO2/Si substrates. Adv. Funct. Mater., 2012, 22(9): 1894
https://doi.org/10.1002/adfm.201102913
28 A. Hu P., Wen Z., Wang L., Tan P., Xiao K.. Synthesis of few-layer GaSe nanosheets for high performance photodetectors. ACS Nano, 2012, 6(7): 5988
https://doi.org/10.1021/nn300889c
29 Palepu J., Tiwari A., Sahatiya P., Kundu S., Kanungo S.. Effects of artificial stacking configurations and biaxial strain on the structural, electronic and transport properties of bilayer GaSe − A first principle study. Mater. Sci. Semicond. Process., 2022, 137: 106236
https://doi.org/10.1016/j.mssp.2021.106236
30 Li L., Z. Yuan P., Liu T., A. Ma Z., X. Xia C., P. Li X.. Self-powered broadband photodetector based on a monolayer InSe p−i−n homojunction. Phys. Rev. Appl., 2023, 19(1): 014039
https://doi.org/10.1103/PhysRevApplied.19.014039
31 Li X., Yuan P., Li L., Liu T., Shen C., Jiang Y., Song X., Xia C.. Two dimensional GeO2/MoSi2N4 van der Waals heterostructures with robust type-II band alignment. Front. Phys., 2023, 18(1): 13305
https://doi.org/10.1007/s11467-022-1216-8
32 Li X., Wang Z., Li L., Yuan P., Tang X., Shen C., Jiang Y., Song X., Xia C.. Orientation-dependent transport and photo detection in WSe2/MoSe2 planar heterojunction transistors. IEEE Trans. Electron Dev., 2023, 20(6): 064050
https://doi.org/10.1109/TED.2023.3342773
33 Li X., Li T., Yuan P., Li L., Shen C., Jiang Y., Song X., Xia C.. Ultrahigh current and ultralow power dissipation of Janus monolayer IIIA-VIA Ga2XY MOSFETs. Appl. Surf. Sci., 2023, 630: 157436
https://doi.org/10.1016/j.apsusc.2023.157436
34 P. Perdew J., Burke K., Ernzerhof M.. Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18): 3865
https://doi.org/10.1103/PhysRevLett.77.3865
35 Q. Fan Z., W. Jiang X., W. Luo J., Y. Jiao L., Huang R., S. Li S., W. Wang L.. In-plane Schottky-barrier field-effect transistors based on 1T/2H heterojunctions of transition-metal dichalcogenides. Phys. Rev. B, 2017, 96(16): 165402
https://doi.org/10.1103/PhysRevB.96.165402
36 Zhou W., Qu H., Guo S., Cai B., Chen H., Wu Z., Zeng H., Zhang S.. Dependence of tunneling mechanism on two-dimensional material parameters: A high-throughput study. Phys. Rev. Appl., 2022, 17(6): 064053
https://doi.org/10.1103/PhysRevApplied.17.064053
37 K. Zhao W., Q. Zou D., P. Sun Z., Q. Xu Y., M. Ji G., T. Li X., L. Yang C.. High-performance monolayer SiMe-graphene n-type field-effect transistors with low supply voltage and high on-state current in sub-5 nm gate length. Adv. Electron. Mater., 2022, 8(7): 2101359
https://doi.org/10.1002/aelm.202101359
38 Yin Y., Shao C., Guo H., Robertson J., Zhang Z., Guo Y.. Negative differential resistance effect in “cold” metal heterostructure diodes. IEEE Electron Device Lett., 2022, 43(3): 498
https://doi.org/10.1109/LED.2022.3146177
39 Kong L., Zhang X., Tao Q., Zhang M., Dang W., Li Z., Feng L., Liao L., Duan X., Liu Y.. Doping-free complementary WSe2 circuit via van der Waals metal integration. Nat. Commun., 2020, 11(1): 1866
https://doi.org/10.1038/s41467-020-15776-x
40 Duflou R., Pourtois G., Houssa M., Afzalian A.. Fundamentals of low-resistive 2D-semiconductor metal contacts: An ab-initio NEGF study. npj 2D Mater. Appl., 2023, 7(1): 38
https://doi.org/10.1038/s41699-023-00402-3
41 Mamori H., El Kenz A., Benyoussef A., Taleb A., Ennaoui A., El Maalam K., Hamedoun M., Mounkachi O.. Dynamic stability in phosphorene bilayer with different stacking orders: A first principle study. Mater. Sci. Semicond. Process., 2022, 140: 106341
https://doi.org/10.1016/j.mssp.2021.106341
42 Luo P., Liu C., Lin J., Duan X., Zhang W., Ma C., Lv Y., Zou X., Liu Y., Schwierz F., Qin W., Liao L., He J., Liu X.. Molybdenum disulfide transistors with enlarged van der Waals gaps at their dielectric interface via oxygen accumulation. Nat. Electron., 2022, 5(12): 849
https://doi.org/10.1038/s41928-022-00877-w
43 Li Q., Fang S., Liu S., Xu L., Xu L., Yang C., Yang J., Shi B., Ma J., Yang J., Quhe R., Lu J.. Performance limit of ultrathin GaAs transistors. ACS Appl. Mater. Interfaces, 2022, 14(20): 23597
https://doi.org/10.1021/acsami.2c01134
44 Li H., Wang Q., Liu F., Lu J.. Lifting on-state currents for GeS-based tunneling field-effect transistors with electrode optimization. Appl. Surf. Sci., 2022, 602: 154297
https://doi.org/10.1016/j.apsusc.2022.154297
45 Zhou W., Guo S., Zeng H., Zhang S.. High-performance monolayer BeN2 transistors with ultrahigh on-state current: A DFT coupled with NEGF study. IEEE Trans. Electron Dev., 2022, 69(8): 4501
https://doi.org/10.1109/TED.2022.3184648
46 Lyu J., Song S., Gong J.. Bi2O2Se/Xene for steep-slope transistors. ACS Appl. Electron. Mater., 2023, 5(8): 4248
https://doi.org/10.1021/acsaelm.3c00530
47 Ke Y., Li W., Yin G., Zhang L., Quhe R.. Quantum transport simulations of a proposed logic-in-memory device based on a bipolar magnetic semiconductor. Phys. Rev. Appl., 2023, 20(1): 014050
https://doi.org/10.1103/PhysRevApplied.20.014050
48 Sang P., Wang Q., Wei W., Tai L., Zhan X., Li Y., Chen J.. Two-dimensional silicon atomic layer field-effect transistors: Electronic property, metal-semiconductor contact, and device performance. IEEE Trans. Electron Dev., 2022, 69(4): 2173
https://doi.org/10.1109/TED.2021.3138362
49 V. Phuc H., N. Hieu N., D. Hoi B., V. Nguyen C.. Interlayer coupling and electric field tunable electronic properties and Schottky barrier in a graphene/bilayer−GaSe van der Waals heterostructure. Phys. Chem. Chem. Phys., 2018, 20(26): 17899
https://doi.org/10.1039/C8CP02190B
50 Grzonka J., S. Claro M., Molina‐Sánchez A., Sadewasser S., J. Ferreira P.. Novel polymorph of GaSe. Adv. Funct. Mater., 2021, 31(48): 2104965
https://doi.org/10.1002/adfm.202104965
51 Ben Aziza Z., Zólyomi V., Henck H., Pierucci D., G. Silly M., Avila J., J. Magorrian S., Chaste J., Chen C., Yoon M., Xiao K., Sirotti F., C. Asensio M., Lhuillier E., Eddrief M., I. Fal’ko V., Ouerghi A.. Valence band inversion and spin−orbit effects in the electronic structure of monolayer GaSe. Phys. Rev. B, 2018, 98(11): 115405
https://doi.org/10.1103/PhysRevB.98.115405
52 International Technology Roadmap for Semiconductors (ITRS) The,
53 Xie H., Cai X., Cui K., Yi X., Lu J., Fan Z.. High-performance monolayer or bilayer SiC short channel transistors with metallic 1T-phase MoS2 contact. Phys. Lett. A, 2022, 436: 128070
https://doi.org/10.1016/j.physleta.2022.128070
[1] fop-21390-of-xiacongxin_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed