|
|
Holographic images of an AdS black hole within the framework of gravity theory |
Guo-Ping Li1( ), Ke-Jian He2, Xin-Yun Hu3, Qing-Quan Jiang1( ) |
1. School of Physics and Astronomy, China West Normal University, Nanchong 637000, China 2. College Of Physics, Chongqing University, Chongqing 401331, China 3. College of Economic and Management, Chongqing Jiaotong University, Chongqing 400074, China |
|
|
Abstract Based on the AdS/CFT correspondence, this study employs an oscillating Gaussian source to numerically study the holographic images of an AdS black hole under gravity using wave optics. Due to the diffraction of scalar wave, it turns out that one can clearly observed the interference patten of the absolute amplitude of response function on the AdS boundary. Furthermore, it is observed that its peak increases with the parameter but decreases with the global monopole , frequency , and horizon . More importantly, the results reveal that the holographic Einstein ring is a series of concentric striped patterns for an observer at the North Pole and that their center is analogous to a Poisson–Arago spot. This ring can evolve into a luminosity-deformed ring or two light spots when the observer is at a different position. According to geometrical optics, it is true that the size of the brightest holographic ring is approximately equal to that of the photon sphere, and the two light spots correspond to clockwise and anticlockwise light rays. In addition, holographic images for different values of black holes and optical system parameters were obtained, and different features emerged. Finally, we conclude that the holographic rings of the AdS black hole in modified gravities are more suitable and helpful for testing the existence of a gravity dual for a given material.
|
Keywords
AdS black hole
holographic images
AdS/CFT correspondence
|
Corresponding Author(s):
Guo-Ping Li,Qing-Quan Jiang
|
Issue Date: 22 May 2024
|
|
1 |
’t Hooft G., Dimensional reduction in quantum gravity, arXiv: gr-qc/9310026 (1993)
|
2 |
Susskind L.. The world as a hologram. J. Math. Phys., 1995, 36(11): 6377
https://doi.org/10.1063/1.531249
|
3 |
M. Maldacena J.. The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys., 1998, 2(2): 231
https://doi.org/10.4310/ATMP.1998.v2.n2.a1
|
4 |
Witten E.. Anti-de Sitter space and holography. Adv. Theor. Math. Phys., 1998, 2(2): 253
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
|
5 |
S. Gubser S.R. Klebanov I.M. Polyakov A., Gauge theory correlators from noncritical string theory, Phys. Lett. B 428(1−2), 105 (1998)
|
6 |
Erlich J.Katz E.T. Son D.A. Stephanov M., QCD and a holographic model of hadrons, Phys. Rev. Lett. 95(26), 261602 (2005)
|
7 |
A. Hartnoll S., P. Herzog C., T. Horowitz G.. Building a holographic superconductor. Phys. Rev. Lett., 2008, 101(3): 031601
https://doi.org/10.1103/PhysRevLett.101.031601
|
8 |
Damour T., in: Proceedings of the Second Marcel Grossmann Meeting on General Relativity, edited by R. Ruffini, North Holland, Amsterdam, p. 587, 1982
|
9 |
Policastro G., T. Son D., O. Starinets A.. From AdS/CFT correspondence to hydrodynamics. J. High Energy Phys., 2002, 09: 043
|
10 |
Bhattacharyya S., E. Hubeny V., Minwalla S., Rangamani M.. Nonlinear fluid dynamics from gravity. J. High Energy Phys., 2008, 02: 045
|
11 |
Kachru S., Liu X., Mulligan M.. Gravity duals of Lifshitz-like fixed points. Phys. Rev. D, 2008, 78(10): 106005
https://doi.org/10.1103/PhysRevD.78.106005
|
12 |
T. Son D.. Toward an AdS/cold atoms correspondence: A geometric realization of the Schrodinger symmetry. Phys. Rev. D, 2008, 78(4): 046003
https://doi.org/10.1103/PhysRevD.78.046003
|
13 |
Balasubramanian K., McGreevy J.. Gravity duals for nonrelativistic conformal field theories. Phys. Rev. Lett., 2008, 101(6): 061601
https://doi.org/10.1103/PhysRevLett.101.061601
|
14 |
Charmousis C., Goutéraux B., Soo Kim B., Kiritsis E., Meyer R.. Effective holographic theories for low-temperature condensed matter systems. J. High Energy Phys., 2010, 2010(11): 151
https://doi.org/10.1007/JHEP11(2010)151
|
15 |
Gouteraux B., Kiritsis E.. Generalized holographic quantum criticality at finite density. J. High Energy Phys., 2011, 1112: 036
https://doi.org/10.1007/JHEP12(2011)036
|
16 |
Ryu S., Takayanagi T.. Holographic derivation of entanglement entropy from the anti-de Sitter space/conformal field theory correspondence. Phys. Rev. Lett., 2006, 96(18): 181602
https://doi.org/10.1103/PhysRevLett.96.181602
|
17 |
Ryu S., Takayanagi T.. Aspects of holographic entanglement entropy. J. High Energy Phys., 2006, 08: 045
https://doi.org/10.1088/1126-6708/2006/08/045
|
18 |
Tonni E.. Holographic entanglement entropy: Near horizon geometry and disconnected regions. J. High Energy Phys., 2011, 05: 004
https://doi.org/10.1007/JHEP05(2011)004
|
19 |
Stanford D., Susskind L.. Complexity and shock wave geometries. Phys. Rev. D, 2014, 90(12): 126007
https://doi.org/10.1103/PhysRevD.90.126007
|
20 |
Li M., A model of holographic dark energy, Phys. Lett. B 603(1−2), 1 (2004)
|
21 |
G. Cai R., A dark energy model characterized by the age of the universe, Phys. Lett. B 657(4−5), 228 (2007)
|
22 |
Gao C.Wu F.Chen X.G. Shen Y., A holographic dark energy model from Ricci scalar curvature, Phys. Rev. D 79(4), 043511 (2009)
|
23 |
Strominger A.. The dS/CFT correspondence. J. High Energy Phys., 2001, 10: 034
|
24 |
Bredberg I., Keeler C., Lysov V., Strominger A.. Lectures on the Kerr/CFT correspondence. Nucl. Phys. B Proc. Suppl., 2011, 216(1): 194
https://doi.org/10.1016/j.nuclphysbps.2011.04.155
|
25 |
G. Huang Q., Li M.. The holographic dark energy in a non-flat universe. J. Cosmol. Astropart. Phys., 2004, 08: 013
|
26 |
Zhang X., Q. Wu F.. Constraints on holographic dark energy from Type Ia supernova observations. Phys. Rev. D, 2005, 72(4): 043524
https://doi.org/10.1103/PhysRevD.72.043524
|
27 |
Wang B., Gong Y., Abdalla E.. Thermodynamics of an accelerated expanding universe. Phys. Rev. D, 2006, 74(8): 083520
https://doi.org/10.1103/PhysRevD.74.083520
|
28 |
Jing J., Chen S.. Holographic superconductors in the Born‒Infeld electrodynamics. Phys. Lett. B, 2010, 686(1): 68
https://doi.org/10.1016/j.physletb.2010.02.022
|
29 |
P. Wu J., Cao Y., M. Kuang X., J. Li W.. The 3+1 holographic superconductor with Weyl corrections. Phys. Lett. B, 2011, 697(2): 153
https://doi.org/10.1016/j.physletb.2011.01.045
|
30 |
Ling Y., Niu C., Wu J., Xian Z., B. Zhang H.. Metal−insulator transition by holographic charge density waves. Phys. Rev. Lett., 2014, 113(9): 091602
https://doi.org/10.1103/PhysRevLett.113.091602
|
31 |
G. Cai R., Li L., F. Li L., Q. Yang R.. Introduction to holographic superconductor models. Sci. China Phys. Mech. Astron., 2015, 58(6): 060401
https://doi.org/10.1007/s11433-015-5676-5
|
32 |
X. Zeng X., Zhang H., F. Li L.. Phase transition of holographic entanglement entropy in massive gravity. Phys. Lett. B, 2016, 756: 170
https://doi.org/10.1016/j.physletb.2016.03.013
|
33 |
Kusuki Y., Kudler-Flam J., Ryu S.. Derivation of holographic negativity in AdS3/CFT2. Phys. Rev. Lett., 2019, 123(13): 131603
https://doi.org/10.1103/PhysRevLett.123.131603
|
34 |
Akers C., Engelhardt N., Harlow D.. Simple holographic models of black hole evaporation. J. High Energy Phys., 2020, 08: 032
https://doi.org/10.1007/JHEP08(2020)032
|
35 |
Bhattacharya A., Bhattacharyya A., Nandy P., K. Patra A.. Islands and complexity of eternal black hole and radiation subsystems for a doubly holographic model. J. High Energy Phys., 2021, 2021(5): 135
https://doi.org/10.1007/JHEP05(2021)135
|
36 |
Nojiri S., D. Odintsov S., Faraoni V.. From nonextensive statistics and black hole entropy to the holographic dark universe. Phys. Rev. D, 2022, 105(4): 044042
https://doi.org/10.1103/PhysRevD.105.044042
|
37 |
Karndumri P.. Holographic RG flows and symplectic deformations of N=4 gauged supergravity. Phys. Rev. D, 2022, 105(8): 086009
https://doi.org/10.1103/PhysRevD.105.086009
|
38 |
K. Yan Y., Lan S., Tian Y., Yang P., Yao S., Zhang H.. Holographic dissipation prefers the Landau over the Keldysh form. Phys. Rev. D, 2023, 107: L121901
https://doi.org/10.1103/PhysRevD.107.L121901
|
39 |
Lan S., Li X., Mo J., Tian Y., K. Yan Y., Yang P., Zhang H.. Splitting of doubly quantized vortices in holographic superfluid of finite temperature. J. High Energy Phys., 2023, 2023(5): 223
https://doi.org/10.1007/JHEP05(2023)223
|
40 |
Yao S., Tian Y., Yang P., Zhang H.. Baby skyrmion in two-component holographic superfluids. J. High Energy Phys., 2023, 08: 055
https://doi.org/10.1007/JHEP08(2023)055
|
41 |
P. Abbott B., Abbott R., D. Abbott T., R. Abernathy M., Acernese F.. et al.. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett., 2016, 116(6): 061102
https://doi.org/10.1103/PhysRevLett.116.061102
|
42 |
Akiyama K., Alberdi A., Alef W., Asada K., Azulay R., [Event Horizon Telescope Collaboration] .. et al.. First M87 event horizon telescope results. I. The shadow of the supermassive black hole. Astrophys. J. Lett., 2019, 875(1): L1
https://doi.org/10.3847/2041-8213/ab0ec7
|
43 |
Akiyama K., [Event Horizon Telescope Collaboration] .. et al.. First sagittarius A* event horizon telescope results. I. The shadow of the supermassive black hole in the center of the Milky Way. Astrophys. J. Lett., 2022, 930(2): L12
https://doi.org/10.3847/2041-8213/ac6674
|
44 |
W. Wei S., Cheng P., Zhong Y., N. Zhou X.. Shadow of noncommutative geometry inspired black hole. J. Cosmol. Astropart. Phys., 2015, 08: 004
|
45 |
Guo M., A. Obers N., Yan H.. Observational signatures of near-extremal Kerr-like black holes in a modified gravity theory at the Event Horizon Telescope. Phys. Rev. D, 2018, 98(8): 084063
https://doi.org/10.1103/PhysRevD.98.084063
|
46 |
W. Wei S., C. Zou Y., X. Liu Y., B. Mann R.. Curvature radius and Kerr black hole shadow. J. Cosmol. Astropart. Phys., 2019, 08: 030
https://doi.org/10.1088/1475-7516/2019/08/030
|
47 |
M. Wang H., M. Xu Y., W. Wei S.. Shadows of Kerr-like black holes in a modified gravity theory. J. Cosmol. Astropart. Phys., 2019, 03: 046
https://doi.org/10.1088/1475-7516/2019/03/046
|
48 |
Guo M., C. Li P.. Innermost stable circular orbit and shadow of the 4D Einstein‒Gauss‒Bonnet black hole. Eur. Phys. J. C, 2020, 80(6): 588
https://doi.org/10.1140/epjc/s10052-020-8164-7
|
49 |
Long F., Wang J., Chen S., Jing J.. Shadow of a rotating squashed Kaluza‒Klein black hole. J. High Energy Phys., 2019, 2019(10): 269
https://doi.org/10.1007/JHEP10(2019)269
|
50 |
Hu Z.Zhong Z. C. Li P.Guo M.Chen B., QED effect on a black hole shadow, Phys. Rev. D 103(4), 044057 (2021)
|
51 |
Chen Y., Wang P., Wu H., Yang H.. Observational appearance of a freely-falling star in an asymmetric thin-shell wormhole. Eur. Phys. J. C, 2023, 83(5): 361
https://doi.org/10.1140/epjc/s10052-023-11486-y
|
52 |
Hou Y., Zhang Z., Yan H., Guo M., Chen B.. Image of a Kerr‒Melvin black hole with a thin accretion disk. Phys. Rev. D, 2022, 106(6): 064058
https://doi.org/10.1103/PhysRevD.106.064058
|
53 |
Gan Q., Wang P., Wu H., Yang H.. Photon spheres and spherical accretion image of a hairy black hole. Phys. Rev. D, 2021, 104(2): 024003
https://doi.org/10.1103/PhysRevD.104.024003
|
54 |
E. Gralla S., E. Holz D., M. Wald R.. Black hole shadows, photon rings, and lensing rings. Phys. Rev. D, 2019, 100(2): 024018
https://doi.org/10.1103/PhysRevD.100.024018
|
55 |
X. Zeng X., Q. Zhang H.. Influence of quintessence dark energy on the shadow of black hole. Eur. Phys. J. C, 2020, 80(11): 1058
https://doi.org/10.1140/epjc/s10052-020-08656-7
|
56 |
X. Zeng X., Zhang H., Q. Zhang H.. Shadows and photon spheres with spherical accretions in the four-dimensional Gauss‒Bonnet black hole. Eur. Phys. J. C, 2020, 80(9): 872
https://doi.org/10.1140/epjc/s10052-020-08449-y
|
57 |
P. Li G., J. He K.. Shadows and rings of the Kehagias‒Sfetsos black hole surrounded by thin disk accretion. J. Cosmol. Astropart. Phys., 2021, 06: 037
https://doi.org/10.1088/1475-7516/2021/06/037
|
58 |
P. Li G., J. He K.. Observational appearances of a f(R) global monopole black hole illuminated by various accretions. Eur. Phys. J. C, 2021, 81(11): 1018
https://doi.org/10.1140/epjc/s10052-021-09817-y
|
59 |
J. He K., C. Tan S., P. Li G.. Influence of torsion charge on shadow and observation signature of black hole surrounded by various profiles of accretions. Eur. Phys. J. C, 2022, 82(1): 81
https://doi.org/10.1140/epjc/s10052-022-10032-6
|
60 |
J. He K., Guo S., C. Tan S., P. Li G.. Shadow images and observed luminosity of the Bardeen black hole surrounded by different accretions. Chin. Phys. C, 2021, 46: 085106
https://doi.org/10.1088/1674-1137/ac67fe
|
61 |
X. Zeng X., J. He K., P. Li G.. Effects of dark matter on shadows and rings of brane-world black holes illuminated by various accretions. Sci. China Phys. Mech. Astron., 2022, 65(9): 290411
https://doi.org/10.1007/s11433-022-1896-0
|
62 |
Peng J., Guo M., H. Feng X.. Influence of quantum correction on the black hole shadows, photon rings and lensing rings. Chin. Phys. C, 2021, 45: 085103
https://doi.org/10.1088/1674-1137/ac06bb
|
63 |
X. Zeng X., P. Li G., J. He K.. The shadows and observational appearance of a noncommutative black hole surrounded by various profiles of accretions. Nucl. Phys. B, 2022, 974: 115639
https://doi.org/10.1016/j.nuclphysb.2021.115639
|
64 |
M. Wang H., C. Lin Z., W. Wei S.. Optical appearance of Einstein‒Æther black hole surrounded by thin disk. Nucl. Phys. B, 2022, 985: 116026
https://doi.org/10.1016/j.nuclphysb.2022.116026
|
65 |
Lapi A., Negrello M., González-Nuevo J., Y. Cai Z., De Zotti G., Danese L.. Effective models for statistical studies of galaxy-scale gravitational lensing. Astrophys. J., 2012, 755(1): 46
https://doi.org/10.1088/0004-637X/755/1/46
|
66 |
J. Lagattuta D.Vegetti S.D. Fassnacht C.W. Auger M.V. E. Koopmans L.P. McKean J., SHARP-I. A high-resolution multi-band view of the infra-red Einstein ring of JVAS B1938+666, Mon. Not. R. Astron. Soc. 424(4), 2800 (2012)
|
67 |
Sahu S., Patil M., Narasimha D., S. Joshi P.. Can strong gravitational lensing distinguish naked singularities from black holes. Phys. Rev. D, 2012, 86(6): 063010
https://doi.org/10.1103/PhysRevD.86.063010
|
68 |
L. Kelly P., A. Rodney S., Treu T., J. Foley R., Brammer G.. et al.. Multiple images of a highly magnified supernova formed by an early-type cluster galaxy lens. Science, 2015, 347(6226): 1123
https://doi.org/10.1126/science.aaa3350
|
69 |
Goobar A.Amanullah R.R. Kulkarni S.E. Nugent P.Johansson J., et al.., iPTF16geu: A multiply imaged, gravitationally lensed type Ia supernova, Science 356(6335), 291 (2017)
|
70 |
Li R., S. Frenk C., Cole S., Wang Q., Gao L.. Projection effects in the strong lensing study of subhaloes. Mon. Not. R. Astron. Soc., 2017, 468(2): 1426
https://doi.org/10.1093/mnras/stx554
|
71 |
B. Metcalf R., Meneghetti M., Avestruz C., Bellagamba F., R. Bom C.. et al.. The strong gravitational lens finding challenge. Astron. Astrophys., 2019, 625: A119
https://doi.org/10.1051/0004-6361/201832797
|
72 |
Tamburini F., Thidé B., Della Valle M.. Measurement of the spin of the M87 black hole from its observed twisted light. Mon. Not. R. Astron. Soc., 2020, 492(1): L22
https://doi.org/10.1093/mnrasl/slz176
|
73 |
Hashimoto K., Kinoshita S., Murata K.. Einstein rings in holography. Phys. Rev. Lett., 2019, 123(3): 031602
https://doi.org/10.1103/PhysRevLett.123.031602
|
74 |
Hashimoto K., Kinoshita S., Murata K.. Imaging black holes through the AdS/CFT correspondence. Phys. Rev. D, 2020, 101(6): 066018
https://doi.org/10.1103/PhysRevD.101.066018
|
75 |
Kaku Y., Murata K., Tsujimura J.. Observing black holes through superconductors. J. High Energy Phys., 2021, 2021(9): 138
https://doi.org/10.1007/JHEP09(2021)138
|
76 |
Liu Y., Chen Q., X. Zeng X., Zhang H., Zhang W.. Holographic Einstein ring of a charged AdS black hole. J. High Energy Phys., 2022, 2022(10): 189
https://doi.org/10.1007/JHEP10(2022)189
|
77 |
X. Zeng X., J. He K., Pu J., P. Li G., Q. Jiang Q.. Holographic Einstein rings of a Gauss‒Bonnet AdS black hole. Eur. Phys. J. C, 2023, 83(10): 897
https://doi.org/10.1140/epjc/s10052-023-12079-5
|
78 |
X. Zeng X.F. Li L.Xu P., Holographic Einstein rings of a black hole with a global monopole, arXiv: 2307.01973 (2023)
|
79 |
Y. Hu X.I. Aslam M.Saleem R.X. Zeng X., Holographic Einstein rings of an AdS black hole in massive gravity, J. Cosmol. Astropart. Phys. 11, 013 (2023), arXiv: 2308.05132v2
|
80 |
Y. Hu X.X. Zeng X.F. Li L.Xu P., Holographic Einstein rings of non-commutative black holes, arXiv: 2309.07404 (2023)
|
81 |
X. Zeng X.Israr Aslam M.Saleem R.Y. Hu X., Holographic Einstein rings of black holes in scalar-tensor-vector gravity, arXiv: 2311.04680 (2023)
|
82 |
M. Will C.. The confrontation between general relativity and experiment. Living Rev. Relativ., 2014, 17(1): 4
https://doi.org/10.12942/lrr-2014-4
|
83 |
De Felice A., Tsujikawa S.. Excluding static and spherically symmetric black holes in Einsteinian cubic gravity with unsuppressed higher-order curvature terms. Phys. Lett. B, 2023, 843: 138047
https://doi.org/10.1016/j.physletb.2023.138047
|
84 |
A. Buchdahl H.. Non-linear Lagrangians and cosmological theory. Mon. Not. R. Astron. Soc., 1970, 150(1): 1
https://doi.org/10.1093/mnras/150.1.1
|
85 |
Nojiri S., D. Odintsov S.. Modified gravity with negative and positive powers of curvature: Unification of inflation and cosmic acceleration. Phys. Rev. D, 2003, 68(12): 123512
https://doi.org/10.1103/PhysRevD.68.123512
|
86 |
M. Carroll S., Duvvuri V., Trodden M., S. Turner M.. Is cosmic speed-up due to new gravitational physics. Phys. Rev. D, 2004, 70(4): 043528
https://doi.org/10.1103/PhysRevD.70.043528
|
87 |
Fay S.Tavakol R.Tsujikawa S., f(R) gravity theories in Palatini formalism: Cosmological dynamics and observational constraints? Phys. Rev. D 75(6), 063509 (2007)
|
88 |
R. P. Caramês T., R. Bezerra De Mello E., E. X. Guimarães M.. Gravitational field of a global monopole in a modified gravity. Int. J. Mod. Phys. Conf. Ser., 2011, 3: 446
https://doi.org/10.1142/S2010194511000961
|
89 |
Man J., Cheng H.. Thermodynamic quantities of a black hole with an f(R) global monopole. Phys. Rev. D, 2013, 87(4): 044002
https://doi.org/10.1103/PhysRevD.87.044002
|
90 |
P. Morais Graça J., P. Lobo I., G. Salako I.. Cloud of strings in f(R) gravity. Chin. Phys. C, 2018, 42(6): 063105
https://doi.org/10.1088/1674-1137/42/6/063105
|
91 |
R. Nascimento J., J. Olmo G., J. Porfirio P., Yu. Petrov A., R. Soares A.. Global monopole in palatini f(R) gravity. Phys. Rev. D, 2019, 99(6): 064053
https://doi.org/10.1103/PhysRevD.99.064053
|
92 |
Man J., Cheng H.. Analytical discussion on strong gravitational lensing for a massive source with a f(R) global monopole. Phys. Rev. D, 2015, 92(2): 024004
https://doi.org/10.1103/PhysRevD.92.024004
|
93 |
B. Lustosa F., E. X. Guimarães M., N. Ferreira C., L. Neto J., A. Helayel-Neto J.. On the thermodynamical black hole stability in the space-time of a global monopole in f(R) gravity. J. High Energy Phys., 2019, 5: 587
|
94 |
S. Matos I., O. Calvão M., Waga I.. Gravitational wave propagation in f(R) models: New parametrizations and observational constraints. Phys. Rev. D, 2021, 103(10): 104059
https://doi.org/10.1103/PhysRevD.103.104059
|
95 |
Karakasis T., Papantonopoulos E., Y. Tang Z., Wang B.. Black holes of (2+1)-dimensional f(R) gravity coupled to a scalar field. Phys. Rev. D, 2021, 103(6): 064063
https://doi.org/10.1103/PhysRevD.103.064063
|
96 |
Guo S., Han Y., P. Li G.. Joule‒Thomson expansion of a specific black hole in f(R) gravity coupled with Yang‒Mills field. Class. Quantum Gravity, 2020, 37(8): 085016
https://doi.org/10.1088/1361-6382/ab77ec
|
97 |
J. He K., P. Li G., Y. Hu X.. Violations of the weak cosmic censorship conjecture in the higher dimensional f(R) black holes with pressure. Eur. Phys. J. C, 2020, 80(3): 209
https://doi.org/10.1140/epjc/s10052-020-7669-4
|
98 |
P. Sotiriou T.Faraoni V., f(R) theories of gravity, Rev. Mod. Phys. 82(1), 451 (2010)
|
99 |
De Felice A.Tsujikawa S., f(R) theories, Living Rev. Relativ. 13(1), 3 (2010)
|
100 |
R. P. Caramês T.C. Fabris J.R. Bezerra de Mello E.Belich H., f(R) global monopole revisited, Eur. Phys. J. C 77(7), 496 (2017)
|
101 |
S. Vieira H.. On the Schwarzschild‒anti-de Sitter black hole with an f(R) global monopole. Eur. Phys. J. C, 2021, 81(12): 1143
https://doi.org/10.1140/epjc/s10052-021-09961-5
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|