f( R) gravity theory" /> f( R) gravity theory" /> f( R) gravity theory" />
Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2024, Vol. 19 Issue (5) : 54202    https://doi.org/10.1007/s11467-024-1393-8
Holographic images of an AdS black hole within the framework of f( R) gravity theory
Guo-Ping Li1(), Ke-Jian He2, Xin-Yun Hu3, Qing-Quan Jiang1()
1. School of Physics and Astronomy, China West Normal University, Nanchong 637000, China
2. College Of Physics, Chongqing University, Chongqing 401331, China
3. College of Economic and Management, Chongqing Jiaotong University, Chongqing 400074, China
 Download: PDF(7036 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Based on the AdS/CFT correspondence, this study employs an oscillating Gaussian source to numerically study the holographic images of an AdS black hole under f(R) gravity using wave optics. Due to the diffraction of scalar wave, it turns out that one can clearly observed the interference patten of the absolute amplitude of response function on the AdS boundary. Furthermore, it is observed that its peak increases with the f(R) parameter α but decreases with the global monopole η, frequency ω, and horizon rh. More importantly, the results reveal that the holographic Einstein ring is a series of concentric striped patterns for an observer at the North Pole and that their center is analogous to a Poisson–Arago spot. This ring can evolve into a luminosity-deformed ring or two light spots when the observer is at a different position. According to geometrical optics, it is true that the size of the brightest holographic ring is approximately equal to that of the photon sphere, and the two light spots correspond to clockwise and anticlockwise light rays. In addition, holographic images for different values of black holes and optical system parameters were obtained, and different features emerged. Finally, we conclude that the holographic rings of the AdS black hole in modified gravities are more suitable and helpful for testing the existence of a gravity dual for a given material.

Keywords AdS black hole      holographic images      AdS/CFT correspondence     
Corresponding Author(s): Guo-Ping Li,Qing-Quan Jiang   
Issue Date: 22 May 2024
 Cite this article:   
Guo-Ping Li,Ke-Jian He,Xin-Yun Hu, et al. Holographic images of an AdS black hole within the framework of f( R) gravity theory[J]. Front. Phys. , 2024, 19(5): 54202.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-024-1393-8
https://academic.hep.com.cn/fop/EN/Y2024/V19/I5/54202
Fig.1  Schematic of the imaging of a dual black hole.
Fig.2  Detailed transformation of the response function ?O? on the screen.
Fig.3  Amplitude of |?O?| around the North Pole.
Fig.4  The holographic images for ψ0 =0.1,η=0.25,ω=75,rh=0.75,d=0.6,σ =0.05, where the vertical line reads ys/f and horizontal axis is xs/f, and their range belongs to ( 1.3,1.3), which also used in later similar figures.
Fig.5  Holographic images for d=0.6,σ=0.05,ω=75.
Fig.6  Holographic images for ψ0 =0.25,η=0.1,rh=0.75.
Fig.7  Effective potential and photon orbit.
Fig.8  Angle θhr in Eq. (28).
Fig.9  Radius of the photon sphere and holographic Einstein ring.
1 ’t Hooft G., Dimensional reduction in quantum gravity, arXiv: gr-qc/9310026 (1993)
2 Susskind L.. The world as a hologram. J. Math. Phys., 1995, 36(11): 6377
https://doi.org/10.1063/1.531249
3 M. Maldacena J.. The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys., 1998, 2(2): 231
https://doi.org/10.4310/ATMP.1998.v2.n2.a1
4 Witten E.. Anti-de Sitter space and holography. Adv. Theor. Math. Phys., 1998, 2(2): 253
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
5 S. Gubser S.R. Klebanov I.M. Polyakov A., Gauge theory correlators from noncritical string theory, Phys. Lett. B 428(1−2), 105 (1998)
6 Erlich J.Katz E.T. Son D.A. Stephanov M., QCD and a holographic model of hadrons, Phys. Rev. Lett. 95(26), 261602 (2005)
7 A. Hartnoll S., P. Herzog C., T. Horowitz G.. Building a holographic superconductor. Phys. Rev. Lett., 2008, 101(3): 031601
https://doi.org/10.1103/PhysRevLett.101.031601
8 Damour T., in: Proceedings of the Second Marcel Grossmann Meeting on General Relativity, edited by R. Ruffini, North Holland, Amsterdam, p. 587, 1982
9 Policastro G., T. Son D., O. Starinets A.. From AdS/CFT correspondence to hydrodynamics. J. High Energy Phys., 2002, 09: 043
10 Bhattacharyya S., E. Hubeny V., Minwalla S., Rangamani M.. Nonlinear fluid dynamics from gravity. J. High Energy Phys., 2008, 02: 045
11 Kachru S., Liu X., Mulligan M.. Gravity duals of Lifshitz-like fixed points. Phys. Rev. D, 2008, 78(10): 106005
https://doi.org/10.1103/PhysRevD.78.106005
12 T. Son D.. Toward an AdS/cold atoms correspondence: A geometric realization of the Schrodinger symmetry. Phys. Rev. D, 2008, 78(4): 046003
https://doi.org/10.1103/PhysRevD.78.046003
13 Balasubramanian K., McGreevy J.. Gravity duals for nonrelativistic conformal field theories. Phys. Rev. Lett., 2008, 101(6): 061601
https://doi.org/10.1103/PhysRevLett.101.061601
14 Charmousis C., Goutéraux B., Soo Kim B., Kiritsis E., Meyer R.. Effective holographic theories for low-temperature condensed matter systems. J. High Energy Phys., 2010, 2010(11): 151
https://doi.org/10.1007/JHEP11(2010)151
15 Gouteraux B., Kiritsis E.. Generalized holographic quantum criticality at finite density. J. High Energy Phys., 2011, 1112: 036
https://doi.org/10.1007/JHEP12(2011)036
16 Ryu S., Takayanagi T.. Holographic derivation of entanglement entropy from the anti-de Sitter space/conformal field theory correspondence. Phys. Rev. Lett., 2006, 96(18): 181602
https://doi.org/10.1103/PhysRevLett.96.181602
17 Ryu S., Takayanagi T.. Aspects of holographic entanglement entropy. J. High Energy Phys., 2006, 08: 045
https://doi.org/10.1088/1126-6708/2006/08/045
18 Tonni E.. Holographic entanglement entropy: Near horizon geometry and disconnected regions. J. High Energy Phys., 2011, 05: 004
https://doi.org/10.1007/JHEP05(2011)004
19 Stanford D., Susskind L.. Complexity and shock wave geometries. Phys. Rev. D, 2014, 90(12): 126007
https://doi.org/10.1103/PhysRevD.90.126007
20 Li M., A model of holographic dark energy, Phys. Lett. B 603(1−2), 1 (2004)
21 G. Cai R., A dark energy model characterized by the age of the universe, Phys. Lett. B 657(4−5), 228 (2007)
22 Gao C.Wu F.Chen X.G. Shen Y., A holographic dark energy model from Ricci scalar curvature, Phys. Rev. D 79(4), 043511 (2009)
23 Strominger A.. The dS/CFT correspondence. J. High Energy Phys., 2001, 10: 034
24 Bredberg I., Keeler C., Lysov V., Strominger A.. Lectures on the Kerr/CFT correspondence. Nucl. Phys. B Proc. Suppl., 2011, 216(1): 194
https://doi.org/10.1016/j.nuclphysbps.2011.04.155
25 G. Huang Q., Li M.. The holographic dark energy in a non-flat universe. J. Cosmol. Astropart. Phys., 2004, 08: 013
26 Zhang X., Q. Wu F.. Constraints on holographic dark energy from Type Ia supernova observations. Phys. Rev. D, 2005, 72(4): 043524
https://doi.org/10.1103/PhysRevD.72.043524
27 Wang B., Gong Y., Abdalla E.. Thermodynamics of an accelerated expanding universe. Phys. Rev. D, 2006, 74(8): 083520
https://doi.org/10.1103/PhysRevD.74.083520
28 Jing J., Chen S.. Holographic superconductors in the Born‒Infeld electrodynamics. Phys. Lett. B, 2010, 686(1): 68
https://doi.org/10.1016/j.physletb.2010.02.022
29 P. Wu J., Cao Y., M. Kuang X., J. Li W.. The 3+1 holographic superconductor with Weyl corrections. Phys. Lett. B, 2011, 697(2): 153
https://doi.org/10.1016/j.physletb.2011.01.045
30 Ling Y., Niu C., Wu J., Xian Z., B. Zhang H.. Metal−insulator transition by holographic charge density waves. Phys. Rev. Lett., 2014, 113(9): 091602
https://doi.org/10.1103/PhysRevLett.113.091602
31 G. Cai R., Li L., F. Li L., Q. Yang R.. Introduction to holographic superconductor models. Sci. China Phys. Mech. Astron., 2015, 58(6): 060401
https://doi.org/10.1007/s11433-015-5676-5
32 X. Zeng X., Zhang H., F. Li L.. Phase transition of holographic entanglement entropy in massive gravity. Phys. Lett. B, 2016, 756: 170
https://doi.org/10.1016/j.physletb.2016.03.013
33 Kusuki Y., Kudler-Flam J., Ryu S.. Derivation of holographic negativity in AdS3/CFT2. Phys. Rev. Lett., 2019, 123(13): 131603
https://doi.org/10.1103/PhysRevLett.123.131603
34 Akers C., Engelhardt N., Harlow D.. Simple holographic models of black hole evaporation. J. High Energy Phys., 2020, 08: 032
https://doi.org/10.1007/JHEP08(2020)032
35 Bhattacharya A., Bhattacharyya A., Nandy P., K. Patra A.. Islands and complexity of eternal black hole and radiation subsystems for a doubly holographic model. J. High Energy Phys., 2021, 2021(5): 135
https://doi.org/10.1007/JHEP05(2021)135
36 Nojiri S., D. Odintsov S., Faraoni V.. From nonextensive statistics and black hole entropy to the holographic dark universe. Phys. Rev. D, 2022, 105(4): 044042
https://doi.org/10.1103/PhysRevD.105.044042
37 Karndumri P.. Holographic RG flows and symplectic deformations of N=4 gauged supergravity. Phys. Rev. D, 2022, 105(8): 086009
https://doi.org/10.1103/PhysRevD.105.086009
38 K. Yan Y., Lan S., Tian Y., Yang P., Yao S., Zhang H.. Holographic dissipation prefers the Landau over the Keldysh form. Phys. Rev. D, 2023, 107: L121901
https://doi.org/10.1103/PhysRevD.107.L121901
39 Lan S., Li X., Mo J., Tian Y., K. Yan Y., Yang P., Zhang H.. Splitting of doubly quantized vortices in holographic superfluid of finite temperature. J. High Energy Phys., 2023, 2023(5): 223
https://doi.org/10.1007/JHEP05(2023)223
40 Yao S., Tian Y., Yang P., Zhang H.. Baby skyrmion in two-component holographic superfluids. J. High Energy Phys., 2023, 08: 055
https://doi.org/10.1007/JHEP08(2023)055
41 P. Abbott B., Abbott R., D. Abbott T., R. Abernathy M., Acernese F.. et al.. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett., 2016, 116(6): 061102
https://doi.org/10.1103/PhysRevLett.116.061102
42 Akiyama K., Alberdi A., Alef W., Asada K., Azulay R., [Event Horizon Telescope Collaboration] .. et al.. First M87 event horizon telescope results. I. The shadow of the supermassive black hole. Astrophys. J. Lett., 2019, 875(1): L1
https://doi.org/10.3847/2041-8213/ab0ec7
43 Akiyama K., [Event Horizon Telescope Collaboration] .. et al.. First sagittarius A* event horizon telescope results. I. The shadow of the supermassive black hole in the center of the Milky Way. Astrophys. J. Lett., 2022, 930(2): L12
https://doi.org/10.3847/2041-8213/ac6674
44 W. Wei S., Cheng P., Zhong Y., N. Zhou X.. Shadow of noncommutative geometry inspired black hole. J. Cosmol. Astropart. Phys., 2015, 08: 004
45 Guo M., A. Obers N., Yan H.. Observational signatures of near-extremal Kerr-like black holes in a modified gravity theory at the Event Horizon Telescope. Phys. Rev. D, 2018, 98(8): 084063
https://doi.org/10.1103/PhysRevD.98.084063
46 W. Wei S., C. Zou Y., X. Liu Y., B. Mann R.. Curvature radius and Kerr black hole shadow. J. Cosmol. Astropart. Phys., 2019, 08: 030
https://doi.org/10.1088/1475-7516/2019/08/030
47 M. Wang H., M. Xu Y., W. Wei S.. Shadows of Kerr-like black holes in a modified gravity theory. J. Cosmol. Astropart. Phys., 2019, 03: 046
https://doi.org/10.1088/1475-7516/2019/03/046
48 Guo M., C. Li P.. Innermost stable circular orbit and shadow of the 4D Einstein‒Gauss‒Bonnet black hole. Eur. Phys. J. C, 2020, 80(6): 588
https://doi.org/10.1140/epjc/s10052-020-8164-7
49 Long F., Wang J., Chen S., Jing J.. Shadow of a rotating squashed Kaluza‒Klein black hole. J. High Energy Phys., 2019, 2019(10): 269
https://doi.org/10.1007/JHEP10(2019)269
50 Hu Z.Zhong Z. C. Li P.Guo M.Chen B., QED effect on a black hole shadow, Phys. Rev. D 103(4), 044057 (2021)
51 Chen Y., Wang P., Wu H., Yang H.. Observational appearance of a freely-falling star in an asymmetric thin-shell wormhole. Eur. Phys. J. C, 2023, 83(5): 361
https://doi.org/10.1140/epjc/s10052-023-11486-y
52 Hou Y., Zhang Z., Yan H., Guo M., Chen B.. Image of a Kerr‒Melvin black hole with a thin accretion disk. Phys. Rev. D, 2022, 106(6): 064058
https://doi.org/10.1103/PhysRevD.106.064058
53 Gan Q., Wang P., Wu H., Yang H.. Photon spheres and spherical accretion image of a hairy black hole. Phys. Rev. D, 2021, 104(2): 024003
https://doi.org/10.1103/PhysRevD.104.024003
54 E. Gralla S., E. Holz D., M. Wald R.. Black hole shadows, photon rings, and lensing rings. Phys. Rev. D, 2019, 100(2): 024018
https://doi.org/10.1103/PhysRevD.100.024018
55 X. Zeng X., Q. Zhang H.. Influence of quintessence dark energy on the shadow of black hole. Eur. Phys. J. C, 2020, 80(11): 1058
https://doi.org/10.1140/epjc/s10052-020-08656-7
56 X. Zeng X., Zhang H., Q. Zhang H.. Shadows and photon spheres with spherical accretions in the four-dimensional Gauss‒Bonnet black hole. Eur. Phys. J. C, 2020, 80(9): 872
https://doi.org/10.1140/epjc/s10052-020-08449-y
57 P. Li G., J. He K.. Shadows and rings of the Kehagias‒Sfetsos black hole surrounded by thin disk accretion. J. Cosmol. Astropart. Phys., 2021, 06: 037
https://doi.org/10.1088/1475-7516/2021/06/037
58 P. Li G., J. He K.. Observational appearances of a f(R) global monopole black hole illuminated by various accretions. Eur. Phys. J. C, 2021, 81(11): 1018
https://doi.org/10.1140/epjc/s10052-021-09817-y
59 J. He K., C. Tan S., P. Li G.. Influence of torsion charge on shadow and observation signature of black hole surrounded by various profiles of accretions. Eur. Phys. J. C, 2022, 82(1): 81
https://doi.org/10.1140/epjc/s10052-022-10032-6
60 J. He K., Guo S., C. Tan S., P. Li G.. Shadow images and observed luminosity of the Bardeen black hole surrounded by different accretions. Chin. Phys. C, 2021, 46: 085106
https://doi.org/10.1088/1674-1137/ac67fe
61 X. Zeng X., J. He K., P. Li G.. Effects of dark matter on shadows and rings of brane-world black holes illuminated by various accretions. Sci. China Phys. Mech. Astron., 2022, 65(9): 290411
https://doi.org/10.1007/s11433-022-1896-0
62 Peng J., Guo M., H. Feng X.. Influence of quantum correction on the black hole shadows, photon rings and lensing rings. Chin. Phys. C, 2021, 45: 085103
https://doi.org/10.1088/1674-1137/ac06bb
63 X. Zeng X., P. Li G., J. He K.. The shadows and observational appearance of a noncommutative black hole surrounded by various profiles of accretions. Nucl. Phys. B, 2022, 974: 115639
https://doi.org/10.1016/j.nuclphysb.2021.115639
64 M. Wang H., C. Lin Z., W. Wei S.. Optical appearance of Einstein‒Æther black hole surrounded by thin disk. Nucl. Phys. B, 2022, 985: 116026
https://doi.org/10.1016/j.nuclphysb.2022.116026
65 Lapi A., Negrello M., González-Nuevo J., Y. Cai Z., De Zotti G., Danese L.. Effective models for statistical studies of galaxy-scale gravitational lensing. Astrophys. J., 2012, 755(1): 46
https://doi.org/10.1088/0004-637X/755/1/46
66 J. Lagattuta D.Vegetti S.D. Fassnacht C.W. Auger M.V. E. Koopmans L.P. McKean J., SHARP-I. A high-resolution multi-band view of the infra-red Einstein ring of JVAS B1938+666, Mon. Not. R. Astron. Soc. 424(4), 2800 (2012)
67 Sahu S., Patil M., Narasimha D., S. Joshi P.. Can strong gravitational lensing distinguish naked singularities from black holes. Phys. Rev. D, 2012, 86(6): 063010
https://doi.org/10.1103/PhysRevD.86.063010
68 L. Kelly P., A. Rodney S., Treu T., J. Foley R., Brammer G.. et al.. Multiple images of a highly magnified supernova formed by an early-type cluster galaxy lens. Science, 2015, 347(6226): 1123
https://doi.org/10.1126/science.aaa3350
69 Goobar A.Amanullah R.R. Kulkarni S.E. Nugent P.Johansson J., et al.., iPTF16geu: A multiply imaged, gravitationally lensed type Ia supernova, Science 356(6335), 291 (2017)
70 Li R., S. Frenk C., Cole S., Wang Q., Gao L.. Projection effects in the strong lensing study of subhaloes. Mon. Not. R. Astron. Soc., 2017, 468(2): 1426
https://doi.org/10.1093/mnras/stx554
71 B. Metcalf R., Meneghetti M., Avestruz C., Bellagamba F., R. Bom C.. et al.. The strong gravitational lens finding challenge. Astron. Astrophys., 2019, 625: A119
https://doi.org/10.1051/0004-6361/201832797
72 Tamburini F., Thidé B., Della Valle M.. Measurement of the spin of the M87 black hole from its observed twisted light. Mon. Not. R. Astron. Soc., 2020, 492(1): L22
https://doi.org/10.1093/mnrasl/slz176
73 Hashimoto K., Kinoshita S., Murata K.. Einstein rings in holography. Phys. Rev. Lett., 2019, 123(3): 031602
https://doi.org/10.1103/PhysRevLett.123.031602
74 Hashimoto K., Kinoshita S., Murata K.. Imaging black holes through the AdS/CFT correspondence. Phys. Rev. D, 2020, 101(6): 066018
https://doi.org/10.1103/PhysRevD.101.066018
75 Kaku Y., Murata K., Tsujimura J.. Observing black holes through superconductors. J. High Energy Phys., 2021, 2021(9): 138
https://doi.org/10.1007/JHEP09(2021)138
76 Liu Y., Chen Q., X. Zeng X., Zhang H., Zhang W.. Holographic Einstein ring of a charged AdS black hole. J. High Energy Phys., 2022, 2022(10): 189
https://doi.org/10.1007/JHEP10(2022)189
77 X. Zeng X., J. He K., Pu J., P. Li G., Q. Jiang Q.. Holographic Einstein rings of a Gauss‒Bonnet AdS black hole. Eur. Phys. J. C, 2023, 83(10): 897
https://doi.org/10.1140/epjc/s10052-023-12079-5
78 X. Zeng X.F. Li L.Xu P., Holographic Einstein rings of a black hole with a global monopole, arXiv: 2307.01973 (2023)
79 Y. Hu X.I. Aslam M.Saleem R.X. Zeng X., Holographic Einstein rings of an AdS black hole in massive gravity, J. Cosmol. Astropart. Phys. 11, 013 (2023), arXiv: 2308.05132v2
80 Y. Hu X.X. Zeng X.F. Li L.Xu P., Holographic Einstein rings of non-commutative black holes, arXiv: 2309.07404 (2023)
81 X. Zeng X.Israr Aslam M.Saleem R.Y. Hu X., Holographic Einstein rings of black holes in scalar-tensor-vector gravity, arXiv: 2311.04680 (2023)
82 M. Will C.. The confrontation between general relativity and experiment. Living Rev. Relativ., 2014, 17(1): 4
https://doi.org/10.12942/lrr-2014-4
83 De Felice A., Tsujikawa S.. Excluding static and spherically symmetric black holes in Einsteinian cubic gravity with unsuppressed higher-order curvature terms. Phys. Lett. B, 2023, 843: 138047
https://doi.org/10.1016/j.physletb.2023.138047
84 A. Buchdahl H.. Non-linear Lagrangians and cosmological theory. Mon. Not. R. Astron. Soc., 1970, 150(1): 1
https://doi.org/10.1093/mnras/150.1.1
85 Nojiri S., D. Odintsov S.. Modified gravity with negative and positive powers of curvature: Unification of inflation and cosmic acceleration. Phys. Rev. D, 2003, 68(12): 123512
https://doi.org/10.1103/PhysRevD.68.123512
86 M. Carroll S., Duvvuri V., Trodden M., S. Turner M.. Is cosmic speed-up due to new gravitational physics. Phys. Rev. D, 2004, 70(4): 043528
https://doi.org/10.1103/PhysRevD.70.043528
87 Fay S.Tavakol R.Tsujikawa S., f(R) gravity theories in Palatini formalism: Cosmological dynamics and observational constraints? Phys. Rev. D 75(6), 063509 (2007)
88 R. P. Caramês T., R. Bezerra De Mello E., E. X. Guimarães M.. Gravitational field of a global monopole in a modified gravity. Int. J. Mod. Phys. Conf. Ser., 2011, 3: 446
https://doi.org/10.1142/S2010194511000961
89 Man J., Cheng H.. Thermodynamic quantities of a black hole with an f(R) global monopole. Phys. Rev. D, 2013, 87(4): 044002
https://doi.org/10.1103/PhysRevD.87.044002
90 P. Morais Graça J., P. Lobo I., G. Salako I.. Cloud of strings in f(R) gravity. Chin. Phys. C, 2018, 42(6): 063105
https://doi.org/10.1088/1674-1137/42/6/063105
91 R. Nascimento J., J. Olmo G., J. Porfirio P., Yu. Petrov A., R. Soares A.. Global monopole in palatini f(R) gravity. Phys. Rev. D, 2019, 99(6): 064053
https://doi.org/10.1103/PhysRevD.99.064053
92 Man J., Cheng H.. Analytical discussion on strong gravitational lensing for a massive source with a f(R) global monopole. Phys. Rev. D, 2015, 92(2): 024004
https://doi.org/10.1103/PhysRevD.92.024004
93 B. Lustosa F., E. X. Guimarães M., N. Ferreira C., L. Neto J., A. Helayel-Neto J.. On the thermodynamical black hole stability in the space-time of a global monopole in f(R) gravity. J. High Energy Phys., 2019, 5: 587
94 S. Matos I., O. Calvão M., Waga I.. Gravitational wave propagation in f(R) models: New parametrizations and observational constraints. Phys. Rev. D, 2021, 103(10): 104059
https://doi.org/10.1103/PhysRevD.103.104059
95 Karakasis T., Papantonopoulos E., Y. Tang Z., Wang B.. Black holes of (2+1)-dimensional f(R) gravity coupled to a scalar field. Phys. Rev. D, 2021, 103(6): 064063
https://doi.org/10.1103/PhysRevD.103.064063
96 Guo S., Han Y., P. Li G.. Joule‒Thomson expansion of a specific black hole in f(R) gravity coupled with Yang‒Mills field. Class. Quantum Gravity, 2020, 37(8): 085016
https://doi.org/10.1088/1361-6382/ab77ec
97 J. He K., P. Li G., Y. Hu X.. Violations of the weak cosmic censorship conjecture in the higher dimensional f(R) black holes with pressure. Eur. Phys. J. C, 2020, 80(3): 209
https://doi.org/10.1140/epjc/s10052-020-7669-4
98 P. Sotiriou T.Faraoni V., f(R) theories of gravity, Rev. Mod. Phys. 82(1), 451 (2010)
99 De Felice A.Tsujikawa S., f(R) theories, Living Rev. Relativ. 13(1), 3 (2010)
100 R. P. Caramês T.C. Fabris J.R. Bezerra de Mello E.Belich H., f(R) global monopole revisited, Eur. Phys. J. C 77(7), 496 (2017)
101 S. Vieira H.. On the Schwarzschild‒anti-de Sitter black hole with an f(R) global monopole. Eur. Phys. J. C, 2021, 81(12): 1143
https://doi.org/10.1140/epjc/s10052-021-09961-5
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed