|
|
Quantum secure direct communication with hybrid entanglement |
Peng Zhao1,2, Wei Zhong2, Ming-Ming Du1, Xi-Yun Li3, Lan Zhou3, Yu-Bo Sheng1,2( ) |
1. College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China 2. Institute of Quantum Information and Technology, Nanjing University of Posts and Telecommunications, Nanjing 210003, China 3. College of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China |
|
|
Abstract Quantum secure direct communication (QSDC) can transmit secret messages without keys, making it an important branch of quantum communication. We present a hybrid entanglement-based quantum secure direct communication (HE-QSDC) protocol with simple linear optical elements, combining the benefits of both continuous variables (CV) and discrete variables (DV) encoding. We analyze the security and find that the QSDC protocol has a positive security capacity when the bit error rate is less than 0.073. Compared with previous DV QSDC protocols, our protocol has higher communication efficiency due to performing nearly deterministic Bell-state measurement. On the other hand, compared with CV QSDC protocol, this protocol has higher fidelity with large . Based on these advantages, our protocol may provide an alternative approach to realize secure communication.
|
Keywords
quantum secure direct communication
hybrid entanglement, Bell-state measurement
|
Corresponding Author(s):
Yu-Bo Sheng
|
About author: * These authors contributed equally. |
Issue Date: 01 April 2024
|
|
1 |
Scarani V., Bechmann-Pasquinucci H., J. Cerf N., Dušek M., Lütkenhaus N., Peev M.. The security of practical quantum key distribution. Rev. Mod. Phys., 2009, 81(3): 1301
https://doi.org/10.1103/RevModPhys.81.1301
|
2 |
H. Xu F., F. Ma X., Zhang Q., K. Lo H., W. Pan J.. Secure quantum key distribution with realistic devices. Rev. Mod. Phys., 2020, 92(2): 025002
https://doi.org/10.1103/RevModPhys.92.025002
|
3 |
K. Ekert A.. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett., 1991, 67(6): 661
https://doi.org/10.1103/PhysRevLett.67.661
|
4 |
F. Ma X., Qi B., Zhao Y., K. Lo H.. Practical decoy state for quantum key distribution. Phys. Rev. A, 2005, 72(1): 012326
https://doi.org/10.1103/PhysRevA.72.012326
|
5 |
Ma X., H. F. Fung C., K. Lo H.. Quantum key distribution with entangled photon sources. Phys. Rev. A, 2007, 76(1): 012307
https://doi.org/10.1103/PhysRevA.76.012307
|
6 |
L. Su X.. Applying Gaussian quantum discord to quantum key distribution. Chin. Sci. Bull., 2014, 59(11): 1083
https://doi.org/10.1007/s11434-014-0193-x
|
7 |
Hillery M., Bužek V., Berthiaume A.. Quantum secret sharing. Phys. Rev. A, 1999, 59(3): 1829
https://doi.org/10.1103/PhysRevA.59.1829
|
8 |
Shen A., Y. Cao X., Wang Y., Fu Y., Gu J., B. Liu W., X. Weng C., L. Yin H., B. Chen Z.. Experimental quantum secret sharing based on phase encoding of coherent states. Sci. China Phys. Mech. Astron., 2023, 66(6): 260311
https://doi.org/10.1007/s11433-023-2105-7
|
9 |
L. Long G., S. Liu X.. Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A, 2002, 65(3): 032302
https://doi.org/10.1103/PhysRevA.65.032302
|
10 |
G. Deng F., L. Long G., S. Liu X.. Two-step quantum direct communication protocol using the Einstein‒Podolsky‒Rosen pair block. Phys. Rev. A, 2003, 68(4): 042317
https://doi.org/10.1103/PhysRevA.68.042317
|
11 |
G. Deng F., L. Long G.. Secure direct communication with a quantum one-time pad. Phys. Rev. A, 2004, 69(5): 052319
https://doi.org/10.1103/PhysRevA.69.052319
|
12 |
H. Niu P., R. Zhou Z., S. Lin Z., B. Sheng Y., G. Yin L., L. Long G.. Measurement-device-independent quantum communication without encryption. Sci. Bull. (Beijing), 2018, 63(20): 1345
https://doi.org/10.1016/j.scib.2018.09.009
|
13 |
R. Zhou Z., B. Sheng Y., H. Niu P., G. Yin L., L. Long G., Hanzo L.. Measurement-device-independent quantum secure direct communication. Sci. China Phys. Mech. Astron., 2020, 63(3): 230362
https://doi.org/10.1007/s11433-019-1450-8
|
14 |
Zhou L., B. Sheng Y., L. Long G.. Device-independent quantum secure direct communication against collective attacks. Sci. Bull. (Beijing), 2020, 65(1): 12
https://doi.org/10.1016/j.scib.2019.10.025
|
15 |
Zhou L., W. Xu B., Zhong W., B. Sheng Y.. Device-independent quantum secure direct communication with single-photon sources. Phys. Rev. Appl., 2023, 19(1): 014036
https://doi.org/10.1103/PhysRevApplied.19.014036
|
16 |
Zeng H.M. Du M.Zhong W.Zhou L.B. Sheng Y., High-capacity device-independent quantum secure direct communication based on hyper-encoding, Fundament. Res., doi: 10.1016/j.fmre.2023.11.006 (2023)
|
17 |
B. Sheng Y., Zhou L., L. Long G.. One-step quantum secure direct communication. Sci. Bull. (Beijing), 2022, 67(4): 367
https://doi.org/10.1016/j.scib.2021.11.002
|
18 |
Zhou L., B. Sheng Y.. One-step device-independent quantum secure direct communication. Sci. China Phys. Mech. Astron., 2022, 65(5): 250311
https://doi.org/10.1007/s11433-021-1863-9
|
19 |
W. Ying J., Zhou L., Zhong W., B. Sheng Y.. Measurement-device-independent one-step quantum secure direct communication. Chin. Phys. B, 2022, 31(12): 120303
https://doi.org/10.1088/1674-1056/ac8f37
|
20 |
R. Jin X., Ji X., Q. Zhang Y., Zhang S., K. Hong S., H. Yeon K., I. Um C.. Three-party quantum secure direct communication based on GHZ states. Phys. Lett. A, 2006, 354(1−2): 67
https://doi.org/10.1016/j.physleta.2006.01.035
|
21 |
Zhang Q.M. Du M.Zhong W.B. Sheng Y.Zhou L., Single-photon based three-party quantum secure direct communication with identity authentication, Ann. Phys. (Berlin), doi: 10.1002/andp.202300407 (2023)
|
22 |
P. Hong Y., Zhou L., Zhong W., B. Sheng Y.. Measurement-device-independent three-party quantum secure direct communication. Quantum Inform. Process., 2023, 22(2): 111
https://doi.org/10.1007/s11128-023-03853-1
|
23 |
X. Xiao Y., Zhou L., Zhong W., M. Du M., B. Sheng Y.. The hyperentanglement-based quantum secure direct communication protocol with single-photon measurement. Quantum Inform. Process., 2023, 22(9): 339
https://doi.org/10.1007/s11128-023-04097-9
|
24 |
D. Zhu A., Xia Y., B. Fan Q., Zhang S.. Secure direct communication based on secret transmitting order of particles. Phys. Rev. A, 2006, 73(2): 022338
https://doi.org/10.1103/PhysRevA.73.022338
|
25 |
W. Cao Z., Wang L., X. Liang K., Chai G., Y. Peng J.. Continuous-variable quantum secure direct communication based on Gaussian mapping. Phys. Rev. Appl., 2021, 16(2): 024012
https://doi.org/10.1103/PhysRevApplied.16.024012
|
26 |
W. Cao Z., Lu Y., Chai G., Yu H., X. Liang K., Wang L.. Realization of quantum secure direct communication with continuous variable. Research, 2023, 6: 0193
https://doi.org/10.34133/research.0193
|
27 |
Srikara S., Thapliyal K., Pathak A.. Continuous variable direct secure quantum communication using Gaussian states. Quantum Inform. Process., 2020, 19(4): 132
https://doi.org/10.1007/s11128-020-02627-3
|
28 |
X. Liang K., W. Cao Z., L. Chen X., Wang L., Chai G., Y. Peng J.. A quantum secure direct communication scheme based on intermediate-basis. Front. Phys., 2023, 18(5): 51301
https://doi.org/10.1007/s11467-023-1284-4
|
29 |
Li T., L. Long G.. Quantum secure direct communication based on single-photon Bell-state measurement. New J. Phys., 2020, 22(6): 063017
https://doi.org/10.1088/1367-2630/ab8ab5
|
30 |
D. Ye Z., Pan D., Sun Z., G. Du C., G. Yin L., L. Long G.. Generic security analysis framework for quantum secure direct communication. Front. Phys., 2021, 16(2): 21503
https://doi.org/10.1007/s11467-020-1025-x
|
31 |
Y. Hu J., Yu B., Y. Jing M., T. Xiao L., T. Jia S., Q. Qin G., L. Long G.. Experimental quantum secure direct communication with single photons. Light Sci. Appl., 2016, 5(9): e16144
https://doi.org/10.1038/lsa.2016.144
|
32 |
Zhang W., S. Ding D., B. Sheng Y., Zhou L., S. Shi B., C. Guo G.. Quantum secure direct communication with quantum memory. Phys. Rev. Lett., 2017, 118(22): 220501
https://doi.org/10.1103/PhysRevLett.118.220501
|
33 |
Zhu F., Zhang W., B. Sheng Y., D. Huang Y.. Experimental long-distance quantum secure direct communication. Sci. Bull. (Beijing), 2017, 62(22): 1519
https://doi.org/10.1016/j.scib.2017.10.023
|
34 |
Pan D., S. Lin Z., W. Wu J., R. Zhang H., Sun Z., Ruan D., G. Yin L., L. Long G.. Experimental free-space quantum secure direct communication and its security analysis. Photon. Res., 2020, 8(9): 1522
https://doi.org/10.1364/PRJ.388790
|
35 |
Qi Z., Li Y., W. Huang Y., Feng J., L. Zheng Y., F. Chen X.. A 15-user quantum secure direct communication network. Light Sci. Appl., 2021, 10(1): 183
https://doi.org/10.1038/s41377-021-00634-2
|
36 |
Liu X., Luo D., L. Lin G., H. Chen Z., F. Huang C., Z. Li S., X. Zhang C., R. Zhang Z., J. Wei K.. Fiber-based quantum secure direct communication without active polarization compensation. Sci. China Phys. Mech. Astron., 2022, 65(12): 120311
https://doi.org/10.1007/s11433-022-1976-0
|
37 |
Zhang H., Sun Z., Qi R., Yin L., L. Long G., Lu J.. Realization of quantum secure direct communication over 100 km fiber with time-bin and phase quantum states. Light Sci. Appl., 2022, 11(1): 83
https://doi.org/10.1038/s41377-022-00769-w
|
38 |
Paparelle I.Mousavi F.Scazza F.Bassi A.Paris M. Zavatta A., Practical quantum secure direct communication with squeezed states, arXiv: 2306.14322 (2023)
|
39 |
Fu Y., L. Yin H., Y. Chen T., B. Chen Z.. Long-distance measurement-device-independent multi-party quantum communication. Phys. Rev. Lett., 2015, 114(9): 090501
https://doi.org/10.1103/PhysRevLett.114.090501
|
40 |
Pramanik T., H. Lee D., W. Cho Y., Lim H., Han S., Jung H., Moon S., J. Lee K., Kim Y.. Equitable multiparty quantum communication without a trusted third party. Phys. Rev. Appl., 2020, 14(6): 064074
https://doi.org/10.1103/PhysRevApplied.14.064074
|
41 |
M. Lee S., W. Lee S., Jeong H., S. Park H.. Quantum teleportation of shared quantum secret. Phys. Rev. Lett., 2020, 124(6): 060501
https://doi.org/10.1103/PhysRevLett.124.060501
|
42 |
Muller A., Breguet J., Gisin N.. Experimental demonstration of quantum cryptography using polarized photons in optical fiber over more than 1 km. Europhys. Lett., 1993, 23(6): 383
https://doi.org/10.1209/0295-5075/23/6/001
|
43 |
D. Townsend P., A. Thompson I.. A quantum key distribution channel based on optical fibre. J. Mod. Opt., 1994, 41(12): 2425
https://doi.org/10.1080/09500349414552271
|
44 |
K. Lo H., Curty M., Qi B.. Measurement-device-independent quantum key distribution. Phys. Rev. Lett., 2012, 108(13): 130503
https://doi.org/10.1103/PhysRevLett.108.130503
|
45 |
Grosshans F., Van Assche G., Wenger J., Brouri R., J. Cerf N., Grangier P.. Quantum key distribution using Gaussian-modulated coherent states. Nature, 2003, 421(6920): 238
https://doi.org/10.1038/nature01289
|
46 |
Lodewyck J., Bloch M., García-Patrón R., Fossier S., Karpov E., Diamanti E., Debuisschert T., J. Cerf N., Tualle-Brouri R., W. McLaughlin S., Grangier P.. Quantum key distribution over 25 km with an all-fiber continuous-variable system. Phys. Rev. A, 2007, 76(4): 042305
https://doi.org/10.1103/PhysRevA.76.042305
|
47 |
Wang C., Huang D., Huang P., Lin D., Peng J., Zeng G.. 25 MHz clock continuous-variable quantum key distribution system over 50 km fiber channel. Sci. Rep., 2015, 5(1): 14607
https://doi.org/10.1038/srep14607
|
48 |
Zhang Y., Chen Z., Pirandola S., Wang X., Zhou C., Chu B., Zhao Y., Xu B., Yu S., Guo H.. Long-distance continuous-variable quantum key distribution over 202.81 km of fiber. Phys. Rev. Lett., 2020, 125(1): 010502
https://doi.org/10.1103/PhysRevLett.125.010502
|
49 |
B. Brask J., Rigas I., S. Polzik E., L. Andersen U., S. Sørensen A.. Hybrid long-distance entanglement distribution protocol. Phys. Rev. Lett., 2010, 105(16): 160501
https://doi.org/10.1103/PhysRevLett.105.160501
|
50 |
van Loock P.. Optical hybrid approaches to quantum information. Laser Photonics Rev., 2011, 5(2): 167
https://doi.org/10.1002/lpor.201000005
|
51 |
W. Lee S., Jeong H.. Near-deterministic quantum teleportation and resource-efficient quantum computation using linear optics and hybrid qubits. Phys. Rev. A, 2013, 87(2): 022326
https://doi.org/10.1103/PhysRevA.87.022326
|
52 |
Bose S., Jeong H.. Quantum teleportation of hybrid qubits and single-photon qubits using Gaussian resources. Phys. Rev. A, 2022, 105(3): 032434
https://doi.org/10.1103/PhysRevA.105.032434
|
53 |
W. Pan J., Daniell M., Gasparoni S., Weihs G., Zeilinger A.. Experimental demonstration of four-photon entanglement and high-fidelity teleportation. Phys. Rev. Lett., 2001, 86(20): 4435
https://doi.org/10.1103/PhysRevLett.86.4435
|
54 |
Calsamiglia J., Lütkenhaus N.. Maximum efficiency of a linear-optical Bell-state analyzer. Appl. Phys. B, 2001, 72(1): 67
https://doi.org/10.1007/s003400000484
|
55 |
Grosshans F., Grangier P.. Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett., 2002, 88(5): 057902
https://doi.org/10.1103/PhysRevLett.88.057902
|
56 |
Ourjoumtsev A., Jeong H., Tualle-Brouri R., Grangier P.. Generation of optical “Schrödinger cats” from photon number states. Nature, 2007, 448(7155): 784
https://doi.org/10.1038/nature06054
|
57 |
H. Li B., M. Xie Y., Li Z., X. Weng C., L. Li C., L. Yin H., B. Chen Z.. Long-distance twin-field quantum key distribution with entangled sources. Opt. Lett., 2021, 46(22): 5529
https://doi.org/10.1364/OL.443099
|
58 |
M. Xie Y., H. Li B., S. Lu Y., Y. Cao X., B. Liu W., L. Yin H., B. Chen Z.. Overcoming the rate-distance limit of device-independent quantum key distribution. Opt. Lett., 2021, 46(7): 1632
https://doi.org/10.1364/OL.417851
|
59 |
L. Braunstein S., van Loock P.. Quantum information with continuous variables. Rev. Mod. Phys., 2005, 77(2): 513
https://doi.org/10.1103/RevModPhys.77.513
|
60 |
Jeong H., Zavatta A., Kang M., W. Lee S., S. Costanzo L., Grandi S., C. Ralph T., Bellini M.. Generation of hybrid entanglement of light. Nat. Photonics, 2014, 8(7): 564
https://doi.org/10.1038/nphoton.2014.136
|
61 |
Morin O., Huang K., Liu J., Le Jeannic H., Fabre C., Laurat J.. Remote creation of hybrid entanglement between particle-like and wave-like optical qubits. Nat. Photonics, 2014, 8(7): 570
https://doi.org/10.1038/nphoton.2014.137
|
62 |
Kwon H., Jeong H.. Generation of hybrid entanglement between a single-photon polarization qubit and a coherent state. Phys. Rev. A, 2015, 91(1): 012340
https://doi.org/10.1103/PhysRevA.91.012340
|
63 |
H. Shapiro J.. Single-photon Kerr nonlinearities do not help quantum computation. Phys. Rev. A, 2006, 73(6): 062305
https://doi.org/10.1103/PhysRevA.73.062305
|
64 |
H. Shapiro J., Razavi M.. Continuous-time cross-phase modulation and quantum computation. New J. Phys., 2007, 9(1): 16
https://doi.org/10.1088/1367-2630/9/1/016
|
65 |
C. Luo C., Zhou L., Zhong W., B. Sheng Y.. Purification for hybrid logical qubit entanglement. Quantum Inform. Process., 2022, 21(8): 300
https://doi.org/10.1007/s11128-022-03646-y
|
66 |
van Loock P., D. Ladd T., Sanaka K., Yamaguchi F., Nemoto K., J. Munro W., Yamamoto Y.. Hybrid quantum repeater using bright coherent light. Phys. Rev. Lett., 2006, 96(24): 240501
https://doi.org/10.1103/PhysRevLett.96.240501
|
67 |
Bergmann M., van Loock P.. Hybrid quantum repeater for qudits. Phys. Rev. A, 2019, 99(3): 032349
https://doi.org/10.1103/PhysRevA.99.032349
|
68 |
Fujiwara M., Toyoshima M., Sasaki M., Yoshino K., Nambu Y., Tomita A.. Performance of hybrid entanglement photon pair source for quantum key distribution. Appl. Phys. Lett., 2009, 95(26): 261103
https://doi.org/10.1063/1.3276559
|
69 |
Fujiwara M., Yoshino K., Nambu Y., Yamashita T., Miki S., Terai H., Wang Z., Toyoshima M., Tomita A., Sasaki M.. Modified E91 protocol demonstration with hybrid entanglement photon source. Opt. Express, 2014, 22(11): 13616
https://doi.org/10.1364/OE.22.013616
|
70 |
X. Zhang C., H. Guo B., M. Cheng G., J. Guo J., H. Fan R.. Spin‒orbit hybrid entanglement quantum key distribution scheme. Sci. China Phys. Mech. Astron., 2014, 57(11): 2043
https://doi.org/10.1007/s11433-014-5557-3
|
71 |
L. Zhang S.. Improving long-distance distribution of en- tangled coherent state with the method of twin-field quantum key distribution. Opt. Express, 2019, 27(25): 37087
https://doi.org/10.1364/OE.27.037087
|
72 |
Bose S.Singh J.Cabello A.Jeong H., Long distance measurement-device-independent quantum key distribution using entangled states between continuous and discrete variables, arXiv: 2305.18906 (2023)
|
73 |
B. Sheng Y., Zhou L., L. Long G.. Hybrid entanglement purification for quantum repeaters. Phys. Rev. A, 2013, 88(2): 022302
https://doi.org/10.1103/PhysRevA.88.022302
|
74 |
Jeong H., S. Kim M.. Efficient quantum computation using coherent states. Phys. Rev. A, 2002, 65(4): 042305
https://doi.org/10.1103/PhysRevA.65.042305
|
75 |
V. Sychev D., E. Ulanov A., S. Tiunov E., A. Pushkina A., Kuzhamuratov A., Novikov V., I. Lvovsky A.. Entanglement and teleportation between polarization and wave-like encodings of an optical qubit. Nat. Commun., 2018, 9(1): 3672
https://doi.org/10.1038/s41467-018-06055-x
|
76 |
Jeong H., S. Kim M., Lee J.. Quantum-information processing for a coherent superposition state via a mixedentangled coherent channel. Phys. Rev. A, 2001, 64(5): 052308
https://doi.org/10.1103/PhysRevA.64.052308
|
77 |
W. Wu J., S. Lin Z., G. Yin L., L. Long G.. Security of quantum secure direct communication based on Wyner’s wiretap channel theory. Quantum Eng., 2019, 1(4): e26
https://doi.org/10.1002/que2.26
|
78 |
Y. Qi R., Sun Z., S. Lin Z., H. Niu P., T. Hao W., Y. Song L., Huang Q., C. Gao J., G. Yin L., L. Long G.. Implementation and security analysis of practical quantum secure direct communication. Light Sci. Appl., 2019, 8(1): 22
https://doi.org/10.1038/s41377-019-0132-3
|
79 |
S. Holevo A.. Bounds for the quantity of information transmitted by a quantum communication channel. Probl. Peredachi Inf., 1973, 9(3): 177
|
80 |
Jozsa R., Schlienz J.. Distinguishability of states and von Neumann entropy. Phys. Rev. A, 2000, 62(1): 012301
https://doi.org/10.1103/PhysRevA.62.012301
|
81 |
D. Wyner A.. The wire-tap channel. Bell Syst. Tech. J., 1975, 54(8): 1355
https://doi.org/10.1002/j.1538-7305.1975.tb02040.x
|
82 |
Deutsch D., Ekert A., Jozsa R., Macchiavello C., Popescu S., Sanpera A.. Quantum privacy amplification and the security of quantum cryptography over noisy channels. Phys. Rev. Lett., 1996, 77(13): 2818
https://doi.org/10.1103/PhysRevLett.77.2818
|
83 |
K. Lo H., F. Chau H.. Unconditional security of quantum key distribution over arbitrarily long distances. Science, 1999, 283(5410): 2050
https://doi.org/10.1126/science.283.5410.2050
|
84 |
W. Shor P., Preskill J.. Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett., 2000, 85(2): 441
https://doi.org/10.1103/PhysRevLett.85.441
|
85 |
H. Louisell W., Quantum Statistical Properties of Radiation, New York: Wiley, 1973
|
86 |
Kim H., Park J., Jeong H.. Transfer of different types of optical qubits over a lossy environment. Phys. Rev. A, 2014, 89(4): 042303
https://doi.org/10.1103/PhysRevA.89.042303
|
87 |
Kim H., W. Lee S., Jeong H.. Two different types of optical hybrid qubits for teleportation in a lossy environment. Quantum Inform. Process., 2016, 15(11): 4729
https://doi.org/10.1007/s11128-016-1408-7
|
88 |
J. D. Phoenix S.. Wave-packet evolution in the damped oscillator. Phys. Rev. A, 1990, 41(9): 5132
https://doi.org/10.1103/PhysRevA.41.5132
|
89 |
J. van Enk S., Hirota O.. Entangled coherent states: Teleportation and decoherence. Phys. Rev. A, 2001, 64(2): 022313
https://doi.org/10.1103/PhysRevA.64.022313
|
90 |
C. Ralph T., Gilchrist A., J. Milburn G., J. Munro W., Glancy S.. Quantum computation with optical coherent states. Phys. Rev. A, 2003, 68(4): 042319
https://doi.org/10.1103/PhysRevA.68.042319
|
91 |
van Loock P., Lütkenhaus N., J. Munro W., Nemoto K.. Quantum repeaters using coherent-state communication. Phys. Rev. A, 2008, 78(6): 062319
https://doi.org/10.1103/PhysRevA.78.062319
|
92 |
H. Bennett C., Brassard G., Popescu S., Schumacher B., A. Smolin J., K. Wootters W.. Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett., 1996, 76(5): 722
https://doi.org/10.1103/PhysRevLett.76.722
|
93 |
S. Yan P., Zhou L., Zhong W., B. Sheng Y.. Advances in quantum entanglement purification. Sci. China Phys. Mech. Astron., 2023, 66(5): 250301
https://doi.org/10.1007/s11433-022-2065-x
|
94 |
Q. Zhou Z., Liu C., F. Li C., C. Guo G., Oblak D., Lei M., Faraon A., Mazzera M., de Riedmatten H.. Photonic integrated quantum memory in rare-earth doped solids. Laser Photonics Rev., 2023, 17(10): 2300257
https://doi.org/10.1002/lpor.202300257
|
95 |
F. Wang Y., F. Li J., C. Zhang S., Y. Su K., R. Zhou Y., Y. Liao K., W. Du S., Yan H., L. Zhu S.. Efficient quantum memory for single-photon polarization qubits. Nat. Photonics, 2019, 13(5): 346
https://doi.org/10.1038/s41566-019-0368-8
|
96 |
X. Zhu T., Liu C., Jin M., X. Su M., P. Liu Y., J. Li W., Ye Y., Q. Zhou Z., F. Li C., C. Guo G.. On-demand integrated quantum memory for polarization qubits. Phys. Rev. Lett., 2022, 128(18): 180501
https://doi.org/10.1103/PhysRevLett.128.180501
|
97 |
Ma Y., Z. Ma Y., Q. Zhou Z., F. Li C., C. Guo G.. One-hour coherent optical storage in an atomic frequency comb memory. Nat. Commun., 2021, 12(1): 2381
https://doi.org/10.1038/s41467-021-22706-y
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|