Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2024, Vol. 19 Issue (5) : 51203    https://doi.org/10.1007/s11467-024-1397-4
Lecture notes on quantum entanglement: From stabilizer states to stabilizer channels
Amir R. Arab1,2()
1. Steklov Mathematical Institute of Russian Academy of Sciences, Gubkina Str., 8, Moscow 119991, Russia
2. Moscow Institute of Physics and Technology, 9 Institutskiy Per., Dolgoprudny, Moscow Region, 141701, Russia
 Download: PDF(4101 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We study mathematical, physical and computational aspects of the stabilizer formalism arising in quantum information and quantum computation. The measurement process of Pauli observables with its algorithm is given. It is shown that to detect genuine entanglement we need a full set of stabilizer generators and the stabilizer witness is coarser than the GHZ (Greenberger–Horne–Zeilinger) witness. We discuss stabilizer codes and construct a stabilizer code from a given linear code. We also discuss quantum error correction, error recovery criteria and syndrome extraction. The symplectic structure of the stabilizer formalism is established and it is shown that any stabilizer code is unitarily equivalent to a trivial code. The structure of graph codes as stabilizer codes is identified by obtaining the respective stabilizer generators. The distance of embeddable stabilizer codes in lattices is obtained. We discuss the Knill−Gottesman theorem, tableau representation and frame representation. The runtime of simulating stabilizer gates is obtained by applying stabilizer matrices. Furthermore, an algorithm for updating global phases is given. Resolution of quantum channels into stabilizer channels is shown. We discuss capacity achieving codes to obtain the capacity of the quantum erasure channel. Finally, we discuss the shadow tomography problem and an algorithm for constructing classical shadow is given.

Keywords Pauli product      stabilizer state      measurement process      entanglement detection      stabilizer code      stabilizer circuit      quantum channel      tomography     
Corresponding Author(s): Amir R. Arab   
About author:

Li Liu and Yanqing Liu contributed equally to this work.

Issue Date: 15 April 2024
 Cite this article:   
Amir R. Arab. Lecture notes on quantum entanglement: From stabilizer states to stabilizer channels[J]. Front. Phys. , 2024, 19(5): 51203.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-024-1397-4
https://academic.hep.com.cn/fop/EN/Y2024/V19/I5/51203
Fig.1  Toric code.
Fig.2  Applying the cleaning lemma.
Fig.3  
Fig.4  Quantum information transfer using a code has a rate kn of 34.
1 Gottesman D., Stabilizer codes and quantum error correction, arXiv: quant-ph/9705052, Caltech Ph.D thesis, 1997
2 Fujii K., Stabilizer formalism and its applications, in: Quantum Computation with Topological Codes, Springer Briefs in Mathematical Physics, Vol. 8, Singapore: Springer, 2015
3 Gottesman D., The Heisenberg representation of quantum computers, arXiv: quant-ph/9807006 (1998)
4 R. F. Pereira F. , Mancini S. , G. La Guardia G. . Stabilizer codes for open quantum systems. Sci. Rep., 2023, 13(1): 10540
https://doi.org/10.1038/s41598-023-37434-0
5 Dymarsky A. , Shapere A. . Quantum stabilizer codes, lattices, and CFTs. J. High Energy Phys., 2021, 2021(3): 160
https://doi.org/10.1007/JHEP03(2021)160
6 Schlingemann D. , F. Werner R. . Quantum error-correcting codes associated with graphs. Phys. Rev. A, 2001, 65(1): 012308
https://doi.org/10.1103/PhysRevA.65.012308
7 Dahlberg A. , Wehner S. . Transforming graph states using single-qubit operations. Philos. Trans. Royal Soc. A, 2018, 376(2123): 20170325
https://doi.org/10.1098/rsta.2017.0325
8 Markham D. , C. Sanders B. . Graph states for quantum secret sharing. Phys. Rev. A, 2008, 78(4): 042309
https://doi.org/10.1103/PhysRevA.78.042309
9 Ribeiro J. , Murta G. , Wehner S. . Fully device-independent conference key agreement. Phys. Rev. A, 2018, 97(2): 022307
https://doi.org/10.1103/PhysRevA.97.022307
10 Christandl M.Wehner S., Quantum anonymous transmissions, in: Advances in Cryptology – ASIACRYPT (Ed. R. Bimal), pp 217–235, Berlin: Springer, 2005
11 Jozsa R. , S. Abrams D. , P. Dowling J. , P. Williams C. . Quantum clock synchronization based on shared prior entanglement. Phys. Rev. Lett., 2000, 85(9): 2010
https://doi.org/10.1103/PhysRevLett.85.2010
12 Veitch V. , A. Hamed Mousavian S. , Gottesman D. , Emerson J. . The resource theory of stabilizer quantum computation. New J. Phys., 2014, 16(1): 013009
https://doi.org/10.1088/1367-2630/16/1/013009
13 H. Bennett C. , J. Wiesner S. . Communication via one- and two-particle operators on Einstein‒Podolsky‒Rosen states. Phys. Rev. Lett., 1992, 69(20): 2881
https://doi.org/10.1103/PhysRevLett.69.2881
14 M. Greenberger D.A. Horne M.Zeilinger A., Bell’s Theorem, Quantum Theory, and Conceptions of the Universe, Kluwer, 1989
15 H. Bennett C. , Brassard G. , Crepeau C. , Jozsa R. , Peres A. , Wootters W. . Teleporting an unknown quantum state via dual classical and Einstein‒Podolsky‒Rosen channels. Phys. Rev. Lett., 1993, 70(13): 1895
https://doi.org/10.1103/PhysRevLett.70.1895
16 Aaronson S. , Gottesman D. . Improved simulation of stabilizer circuits. Phys. Rev. A, 2004, 70(5): 052328
https://doi.org/10.1103/PhysRevA.70.052328
17 Selinger P. . Generators and relations for n-qubit Clifford operators. Log. Methods Comput. Sci., 2015, 11(2): 1
https://doi.org/10.2168/LMCS-11%282%3A10%292015
18 Horodecki M. , Horodecki P. , Horodecki R. . Asymptotic manipulations of entanglement can exhibit genuine irreversibility. Phys. Rev. Lett., 2001, 86(25): 5844
https://doi.org/10.1103/PhysRevLett.86.5844
19 A. Sackett C. , Kielpinski D. , E. King B. , Langer C. , Meyer V. , J. Myatt C. , Rowe M. , A. Turchette Q. , M. Itano W. , J. Wineland D. , Monroe C. . Experimental entanglement of four particles. Nature, 2000, 404(6775): 256
https://doi.org/10.1038/35005011
20 Tóth G. , Gühne O. . Entanglement detection in the stabilizer formalism. Phys. Rev. A, 2005, 72(2): 022340
https://doi.org/10.1103/PhysRevA.72.022340
21 Dieks D. . Communication by EPR devices. Phys. Lett. A, 1982, 92(6): 271
https://doi.org/10.1016/0375-9601(82)90084-6
22 Knill E.Laflamme R.Viola L., A theory of quantum error correcting codes, Phys. Rev. Lett. 84(11), 2525 (2000)
23 Preskill J., Lecture Notes for Physics 229: Quantum Information and Computation, Create Space Independent Publishing Platform, 2015
24 Hein M.Dür W.Eisert J.Raussendorf R.Van den Nest M.J. Briegel H., Entanglement in graph states and its applications, arXiv: quant-ph/0602096 (2006)
25 Schlingemann D. . Stabilizer codes can be realized as graph codes. Quantum Inf. Comput., 2002, 2(4): 307
https://doi.org/10.26421/QIC2.4-4
26 J. Bell T. , A. Pettersson L. , Paesani S. . Optimizing graph codes for measurement-based loss tolerance. PRX Quantum, 2023, 4(2): 020328
https://doi.org/10.1103/PRXQuantum.4.020328
27 Haah J. , Preskill J. . Logical operator tradeoff for local quantum codes. Phys. Rev. A, 2012, 86(3): 032308
https://doi.org/10.1103/PhysRevA.86.032308
28 Bravyi S.Terhal B., A no‒go theorem for a two-dimensional self-correcting quantum memory based on stabilizer codes, New J. Phys. 11(4), 043029 (2009)
29 R. Arab A. . On states of quantum theory. Int. J. Geom. Methods Mod. Phys., 2022, 19(14): 2250221
https://doi.org/10.1142/S0219887822502218
30 A. Nielsen M.L. Chuang I., Quantum Computation and Quantum Information, 10th Anniversary Edition, Cambridge University Press, 2010
31
32 J. García H. , L. Markov I. . Simulation of quantum circuits via stabilizer frames. IEEE Trans. Comput., 2015, 64(8): 2323
https://doi.org/10.1109/TC.2014.2360532
33 R. Arab A. . On diagonal quantum channels. Rep. Math. Phys., 2021, 88(1): 59
https://doi.org/10.1016/S0034-4877(21)00056-2
34 S. Bennink R. , M. Ferragut E. , S. Humble T. , A. Laska J. , J. Nutaro J. , G. Pleszkoch M. , C. Pooser R. . Unbiased simulation of near-Clifford quantum circuits. Phys. Rev. A, 2017, 95(6): 062337
https://doi.org/10.1103/PhysRevA.95.062337
35 Wigner E. . On the quantum correction for thermodynamic equilibrium. Phys. Rev., 1932, 40(5): 749
https://doi.org/10.1103/PhysRev.40.749
36 Delfosse N.Zémor G., Upper bounds on the rate of low density stabilizer codes for the quantum erasure channel, Quantum Inf. Comput. 13(9‒10), 793 (2013)
37 H. Bennett C. , P. DiVincenzo D. , A. Smolin J. . Capacities of quantum erasure channels. Phys. Rev. Lett., 1997, 78: 3217
https://doi.org/10.1103/PhysRevLett.78.3217
38 Kang M. , C. Campbell W. , R. Brown K. . Quantum error correction with metastable states of trapped ions using erasure conversion. PRX Quantum, 2023, 4(2): 020358
https://doi.org/10.1103/PRXQuantum.4.020358
39 Aaronson S., Shadow tomography of quantum states, arXiv: 1711.01053 (2017)
40 Y. Huang H. , Kueng R. , Preskill J. . Predicting many properties of a quantum system from very few measurements. Nat. Phys., 2020, 16(10): 1050
https://doi.org/10.1038/s41567-020-0932-7
41 Koenig R. , A. Smolin J. . How to efficiently select an arbitrary Clifford group element. J. Math. Phys., 2014, 55(12): 122202
https://doi.org/10.1063/1.4903507
42 M. Steane A., A Tutorial on Quantum Error Correction, Quantum Computers, Algorithms and Chaos, pp 1–32, Amsterdam: IOS Press, 2006
43 G. Gallager R. . Low-density parity-check codes. IRE Trans. Inf. Theory, 1962, 8(1): 21
https://doi.org/10.1109/TIT.1962.1057683
44 Eldar L. , Ozols M. , Thompson K. . The need for structure in quantum LDPC codes. IEEE Trans. Inf. Theory, 2020, 66(3): 1460
https://doi.org/10.1109/TIT.2019.2952366
45 P. Breuckmann N. , N. Eberhardt J. . Quantum low-density parity-check codes. PRX Quantum, 2021, 2(4): 040101
https://doi.org/10.1103/PRXQuantum.2.040101
46 A. Webster M. , J. Brown B. , D. Bartlett S. . The XP stabiliser formalism: A generalisation of the Pauli stabiliser formalism with arbitrary phases. Quantum, 2022, 6: 815
https://doi.org/10.22331/q-2022-09-22-815
47 L. Grimsmo A. , Puri S. . Quantum error correction with the Gottesman‒Kitaev‒Preskill code. PRX Quantum, 2021, 2(2): 020101
https://doi.org/10.1103/PRXQuantum.2.020101
[1] Peng Wang, Chang-Qi Yu, Zi-Xu Wang, Rui-Yang Yuan, Fang-Fang Du, Bao-Cang Ren. Hyperentanglement-assisted hyperdistillation for hyper-encoding photon system[J]. Front. Phys. , 2022, 17(3): 31501-.
[2] Daniele P. Anderle, Valerio Bertone, Xu Cao, Lei Chang, Ningbo Chang, Gu Chen, Xurong Chen, Zhuojun Chen, Zhufang Cui, Lingyun Dai, Weitian Deng, Minghui Ding, Xu Feng, Chang Gong, Longcheng Gui, Feng-Kun Guo, Chengdong Han, Jun He, Tie-Jiun Hou, Hongxia Huang, Yin Huang, KrešImir KumeričKi, L. P. Kaptari, Demin Li, Hengne Li, Minxiang Li, Xueqian Li, Yutie Liang, Zuotang Liang, Chen Liu, Chuan Liu, Guoming Liu, Jie Liu, Liuming Liu, Xiang Liu, Tianbo Liu, Xiaofeng Luo, Zhun Lyu, Boqiang Ma, Fu Ma, Jianping Ma, Yugang Ma, Lijun Mao, Cédric Mezrag, Hervé Moutarde, Jialun Ping, Sixue Qin, Hang Ren, Craig D. Roberts, Juan Rojo, Guodong Shen, Chao Shi, Qintao Song, Hao Sun, Paweł Sznajder, Enke Wang, Fan Wang, Qian Wang, Rong Wang, Ruiru Wang, Taofeng Wang, Wei Wang, Xiaoyu Wang, Xiaoyun Wang, Jiajun Wu, Xinggang Wu, Lei Xia, Bowen Xiao, Guoqing Xiao, Ju-Jun Xie, Yaping Xie, Hongxi Xing, Hushan Xu, Nu Xu, Shusheng Xu, Mengshi Yan, Wenbiao Yan, Wencheng Yan, Xinhu Yan, Jiancheng Yang, Yi-Bo Yang, Zhi Yang, Deliang Yao, Zhihong Ye, Peilin Yin, C.-P. Yuan, Wenlong Zhan, Jianhui Zhang, Jinlong Zhang, Pengming Zhang, Yifei Zhang, Chao-Hsi Chang, Zhenyu Zhang, Hongwei Zhao, Kuang-Ta Chao, Qiang Zhao, Yuxiang Zhao, Zhengguo Zhao, Liang Zheng, Jian Zhou, Xiang Zhou, Xiaorong Zhou, Bingsong Zou, Liping Zou. Electron-ion collider in China[J]. Front. Phys. , 2021, 16(6): 64701-.
[3] Ming Li, Ming-Jing Zhao, Shao-Ming Fei, Zhi-Xi Wang. Experimental detection of quantum entanglement[J]. Front. Phys. , 2013, 8(4): 357-374.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed