Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2024, Vol. 19 Issue (5) : 54201    https://doi.org/10.1007/s11467-024-1398-3
Genuine tripartite entanglement and geometric quantum discord in entangled three-body Unruh−DeWitt detector system
Tingting Fan, Cuihong Wen, Jiliang Jing, Jieci Wang()
Department of Physics, and Collaborative Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China
 Download: PDF(4331 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We studied the quantum correlations of a three-body Unruh−DeWitt detector system using genuine tripartite entanglement (GTE) and geometric quantum discord (GQD). We considered two representative three-body initial entangled states, namely the GHZ state and the W state. We demonstrated that the quantum correlations of the tripartite system are completely destroyed at the limit of infinite acceleration. In particular, it is found that the GQD of the two initial states exhibits “sudden change” behavior with increasing acceleration. It is shown that the quantum correlations of the W state are more sensitive than those of the GHZ state under the effect of Unruh thermal noise. The GQD is a more robust quantum resource than the GTE, and we can achieve robustness in discord-type quantum correlations by selecting the smaller energy gap in the detector. These findings provide guidance for selecting appropriate quantum states and resources for quantum information processing tasks in a relativistic setting.

Keywords Unruh−DeWitt detector      Unruh effect      relativistic quantum information      geometric quantum discord     
Corresponding Author(s): Jieci Wang   
About author:

* These authors contributed equally.

Issue Date: 01 April 2024
 Cite this article:   
Tingting Fan,Cuihong Wen,Jiliang Jing, et al. Genuine tripartite entanglement and geometric quantum discord in entangled three-body Unruh−DeWitt detector system[J]. Front. Phys. , 2024, 19(5): 54201.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-024-1398-3
https://academic.hep.com.cn/fop/EN/Y2024/V19/I5/54201
Fig.1  The GTE and GQD of GHZ and W states as a function of the acceleration q. We set the fixed effective coupling parameter v = 0.2.
Fig.2  The GTE and GQD of GHZ and W state as a function of the effective coupling parameter v with the fixed acceleration q = 0.9.
Fig.3  The graph exhibits the GQD of the tripartite system for the GHZ state as functions of the interaction time duration Δ and the energy gap Ω, with ε2= 8π 2?10 6, κ=0.02 and q=0.9.
1 G. Unruh W.. Notes on black-hole evaporation. Phys. Rev. D, 1976, 14(4): 870
https://doi.org/10.1103/PhysRevD.14.870
2 S. DeWitt B., Quantum Gravity: The New Synthesis, Cambridge University Press, 1979
3 Birrell N.Davies P., Quantum Fields in Curved Space, Cambridge Monographs on Mathematical Physics, Cambridge University Press, 1984
4 S. DeWitt B., in General Relativity: An Einstein Centenary Survey, edited by S. W. Hawking and W. Israel, Cambridge University Press, Cambridge, England, 1980
5 Reznik B., Retzker A., Silman J.. Violating Bell’s inequalities in vacuum. Phys. Rev. A, 2005, 71(4): 042104
https://doi.org/10.1103/PhysRevA.71.042104
6 C. Céleri L., G. S. Landulfo A., M. Serra R., E. A. Matsas G.. Sudden change in quantum and classical correlations and the Unruh effect. Phys. Rev. A, 2010, 81(6): 062130
https://doi.org/10.1103/PhysRevA.81.062130
7 Wang J., Tian Z., Jing J., Fan H.. Irreversible degradation of quantum coherence under relativistic motion. Phys. Rev. A, 2016, 93(6): 062105
https://doi.org/10.1103/PhysRevA.93.062105
8 Liu Z., Zhang J., B. Mann R., Yu H.. Does acceleration assist entanglement harvesting?. Phys. Rev. D, 2022, 105(8): 085012
https://doi.org/10.1103/PhysRevD.105.085012
9 Wang J., Zhang L., Chen S., Jing J.. Estimating the Unruh effect via entangled many-body probes. Phys. Lett. B, 2020, 802: 135239
https://doi.org/10.1016/j.physletb.2020.135239
10 Wang J., Tian Z., Jing J., Fan H.. Quantum metrology and estimation of Unruh effect. Sci. Rep., 2014, 4(1): 7195
https://doi.org/10.1038/srep07195
11 G. S. Landulfo A., E. A. Matsas G.. Sudden death of entanglement and teleportation fidelity loss via the Unruh effect. Phys. Rev. A, 2009, 80(3): 032315
https://doi.org/10.1103/PhysRevA.80.032315
12 Fuentes-Schuller I., B. Mann R.. Alice falls into a black hole: Entanglement in noninertial frames. Phys. Rev. Lett., 2005, 95(12): 120404
https://doi.org/10.1103/PhysRevLett.95.120404
13 M. Alsing P., J. Milburn G.. Teleportation with a uniformly accelerated partner. Phys. Rev. Lett., 2003, 91(18): 180404
https://doi.org/10.1103/PhysRevLett.91.180404
14 Aspachs M., Adesso G., Fuentes I.. Optimal quantum estimation of the Unruh−Hawking effect. Phys. Rev. Lett., 2010, 105(15): 151301
https://doi.org/10.1103/PhysRevLett.105.151301
15 Martín-Martínez E., Aasen D., Kempf A.. Processing quantum information with relativistic motion of atoms. Phys. Rev. Lett., 2013, 110(16): 160501
https://doi.org/10.1103/PhysRevLett.110.160501
16 Friis N., R. Lee A., Truong K., Sabín C., Solano E., Johansson G., Fuentes I.. Relativistic quantum teleportation with superconducting circuits. Phys. Rev. Lett., 2013, 110(11): 113602
https://doi.org/10.1103/PhysRevLett.110.113602
17 Wang J., Jing J.. Quantum decoherence in noninertial frames. Phys. Rev. A, 2010, 82(3): 032324
https://doi.org/10.1103/PhysRevA.82.032324
18 Liu Q., M. Wu S., Wen C., Wang J.. Quantum properties of fermionic fields in multi-event horizon space-time. Sci. China Phys. Mech. Astron., 2023, 66(12): 120413
https://doi.org/10.1007/s11433-023-2246-8
19 C. M. Ostapchuk D., Y. Lin S., B. Mann R., L. Hu B.. Entanglement dynamics between inertial and non-uniformly accelerated detectors. J. High Energy Phys., 2012, 2012: 72
https://doi.org/10.1007/JHEP07(2012)072
20 Doukas J., Y. Lin S., L. Hu B., B. Mann R.. Unruh effect under non-equilibrium conditions: Oscillatory motion of an Unruh−DeWitt detector. J. High Energy Phys., 2013, 2013(11): 119
https://doi.org/10.1007/JHEP11(2013)119
21 Šoda B., Sudhir V., Kempf A.. Acceleration-induced effects in stimulated light−matter interactions. Phys. Rev. Lett., 2022, 128(16): 163603
https://doi.org/10.1103/PhysRevLett.128.163603
22 Q. Quach J., C. Ralph T., J. Munro W.. Berry phase from the entanglement of future and past light cones: Detecting the time-like Unruh effect. Phys. Rev. Lett., 2022, 129(16): 160401
https://doi.org/10.1103/PhysRevLett.129.160401
23 Lorek K., Pecak D., G. Brown E., Dragan A.. Extraction of genuine tripartite entanglement from the vacuum. Phys. Rev. A, 2014, 90(3): 032316
https://doi.org/10.1103/PhysRevA.90.032316
24 Mendez-Avalos D., J. Henderson L., Gallock-Yoshimura K., B. Mann R.. Entanglement harvesting of three Unruh−DeWitt detectors. Gen. Relativ. Gravit., 2022, 54(8): 87
https://doi.org/10.1007/s10714-022-02956-x
25 M. Avalos D.Gallock-Yoshimura K.J. Henderson L.B. Mann R., Instant extraction of non-perturbative tripartite entanglement, arXiv: 2204.02983 (2022)
26 J. Membrere I., Gallock-Yoshimura K., J. Henderson L., B. Mann R.. Tripartite entanglement extraction from the black hole vacuum. Adv. Quantum Technol., 2023, 6(9): 2300125
https://doi.org/10.1002/qute.202300125
27 Horodecki R., Horodecki P., Horodecki M., Horodecki K.. Quantum entanglement. Rev. Mod. Phys., 2009, 81(2): 865
https://doi.org/10.1103/RevModPhys.81.865
28 H. Bennett C., Popescu S., Rohrlich D., A. Smolin J., V. Thapliyal A.. Exact and asymptotic measures of multipartite pure-state entanglement. Phys. Rev. A, 2000, 63(1): 012307
https://doi.org/10.1103/PhysRevA.63.012307
29 Coffman V., Kundu J., K. Wootters W.. Distributed entanglement. Phys. Rev. A, 2000, 61(5): 052306
https://doi.org/10.1103/PhysRevA.61.052306
30 C. Ou Y., Fan H.. Monogamy inequality in terms of negativity for three-qubit states. Phys. Rev. A, 2007, 75(6): 062308
https://doi.org/10.1103/PhysRevA.75.062308
31 Laflamme R., Miquel C., P. Paz J., H. Zurek W.. Perfect quantum error correcting code. Phys. Rev. Lett., 1996, 77(1): 198
https://doi.org/10.1103/PhysRevLett.77.198
32 W. Chin A., F. Huelga S., B. Plenio M.. Quantum metrology in non-Markovian environments. Phys. Rev. Lett., 2012, 109(23): 233601
https://doi.org/10.1103/PhysRevLett.109.233601
33 Karlsson A., Bourennane M.. Quantum teleportation using three-particle entanglement. Phys. Rev. A, 1998, 58(6): 4394
https://doi.org/10.1103/PhysRevA.58.4394
34 Bombelli L., K. Koul R., Lee J., D. Sorkin R.. Quantum source of entropy for black holes. Phys. Rev. D, 1986, 34(2): 373
https://doi.org/10.1103/PhysRevD.34.373
35 W. Hawking S.. Breakdown of predictability in gravitational collapse. Phys. Rev. D, 1976, 14(10): 2460
https://doi.org/10.1103/PhysRevD.14.2460
36 Terashima H.. Entanglement entropy of the black hole horizon. Phys. Rev. D, 2000, 61(10): 104016
https://doi.org/10.1103/PhysRevD.61.104016
37 Headrick M., E. Hubeny V., Lawrence A., Rangamani M.. Causality & holographic entanglement entropy. J. High Energy Phys., 2014, 2014(12): 162
https://doi.org/10.1007/JHEP12(2014)162
38 R. Hwang M., Park D., Jung E.. Tripartite entanglement in a noninertial frame. Phys. Rev. A, 2011, 83: 012111
https://doi.org/10.1103/PhysRevA.83.012111
39 Tian Z., Wang J., Jing J., Dragan A.. Entanglement enhanced thermometry in the detection of the Unruh effect. Ann. Phys., 2017, 377: 1
https://doi.org/10.1016/j.aop.2017.01.011
40 Dai Y., Shen Z., Shi Y.. Quantum entanglement in three accelerating qubits coupled to scalar fields. Phys. Rev. D, 2016, 94(2): 025012
https://doi.org/10.1103/PhysRevD.94.025012
41 M. Wu S., S. Zeng H., H. Liu T.. Genuine multipartite entanglement subject to the Unruh and anti-Unruh effects. New J. Phys., 2022, 24(7): 073004
https://doi.org/10.1088/1367-2630/ac7acc
42 P. Lanyon B., Barbieri M., P. Almeida M., G. White A.. Experimental quantum computing without entanglement. Phys. Rev. Lett., 2008, 101(20): 200501
https://doi.org/10.1103/PhysRevLett.101.200501
43 Datta A., Shaji A., M. Caves C.. Quantum discord and the power of one qubit. Phys. Rev. Lett., 2008, 100(5): 050502
https://doi.org/10.1103/PhysRevLett.100.050502
44 Niset J., J. Cerf N.. Multipartite nonlocality without entanglement in many dimensions. Phys. Rev. A, 2006, 74(5): 052103
https://doi.org/10.1103/PhysRevA.74.052103
45 Ollivier H., H. Zurek W.. Quantum discord: A measure of the quantumness of correlations. Phys. Rev. Lett., 2001, 88(1): 017901
https://doi.org/10.1103/PhysRevLett.88.017901
46 Henderson L., Vedral V.. Classical, quantum and total correlations. J. Phys. Math. Gen., 2001, 34(35): 6899
https://doi.org/10.1088/0305-4470/34/35/315
47 Ali M., R. P. Rau A., Alber G.. Quantum discord for two-qubit X states. Phys. Rev. A, 2010, 81(4): 042105
https://doi.org/10.1103/PhysRevA.81.042105
48 H. Huang Y.. Quantum discord for two-qubit X states: Analytical formula with very small worst-case error. Phys. Rev. A, 2013, 88(1): 014302
https://doi.org/10.1103/PhysRevA.88.014302
49 H. Huang Y.. Computing quantum discord is NP-complete. New J. Phys., 2014, 16(3): 033027
https://doi.org/10.1088/1367-2630/16/3/033027
50 Dakić B., Vedral V., Brukner C.. Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett., 2010, 105(19): 190502
https://doi.org/10.1103/PhysRevLett.105.190502
51 Modi K., Paterek T., Son W., Vedral V., Williamson M.. Unified view of quantum and classical correlations. Phys. Rev. Lett., 2010, 104(8): 080501
https://doi.org/10.1103/PhysRevLett.104.080501
52 Zhou J., Guo H.. Dynamics of tripartite geometric quantifiers of correlations in a quantum spin system. Phys. Rev. A, 2013, 87(6): 062315
https://doi.org/10.1103/PhysRevA.87.062315
53 Brukner Č., Żukowski M., W. Pan J., Zeilinger A.. Bell’s inequalities and quantum communication complexity. Phys. Rev. Lett., 2004, 92(12): 127901
https://doi.org/10.1103/PhysRevLett.92.127901
54 A. Horn R.R. Johnson C., Matrix Analysis, Cambridge University Press, New York, 1985
55 C. Rulli C., S. Sarandy M.. Global quantum discord in multipartite systems. Phys. Rev. A, 2011, 84(4): 042109
https://doi.org/10.1103/PhysRevA.84.042109
56 Radhakrishnan C., Laurière M., Byrnes T.. Multipartite generalization of quantum discord. Phys. Rev. Lett., 2020, 124(11): 110401
https://doi.org/10.1103/PhysRevLett.124.110401
57 L. Luo S., S. Fu S.. Geometric measure of quantum discord. Phys. Rev. A, 2010, 82(3): 034302
https://doi.org/10.1103/PhysRevA.82.034302
58 Dür W., Vidal G., I. Cirac J.. Three qubits can be entangled in two inequivalent ways. Phys. Rev. A, 2000, 62(6): 062314
https://doi.org/10.1103/PhysRevA.62.062314
59 He J., Y. Ding Z., D. Shi J., Wu T.. Multipartite quantum coherence and distribution under the Unruh effect. Ann. Phys., 2018, 530(9): 1800167
https://doi.org/10.1002/andp.201800167
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed