|
|
Genuine tripartite entanglement and geometric quantum discord in entangled three-body Unruh−DeWitt detector system |
Tingting Fan, Cuihong Wen, Jiliang Jing, Jieci Wang( ) |
Department of Physics, and Collaborative Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China |
|
|
Abstract We studied the quantum correlations of a three-body Unruh−DeWitt detector system using genuine tripartite entanglement (GTE) and geometric quantum discord (GQD). We considered two representative three-body initial entangled states, namely the GHZ state and the W state. We demonstrated that the quantum correlations of the tripartite system are completely destroyed at the limit of infinite acceleration. In particular, it is found that the GQD of the two initial states exhibits “sudden change” behavior with increasing acceleration. It is shown that the quantum correlations of the W state are more sensitive than those of the GHZ state under the effect of Unruh thermal noise. The GQD is a more robust quantum resource than the GTE, and we can achieve robustness in discord-type quantum correlations by selecting the smaller energy gap in the detector. These findings provide guidance for selecting appropriate quantum states and resources for quantum information processing tasks in a relativistic setting.
|
Keywords
Unruh−DeWitt detector
Unruh effect
relativistic quantum information
geometric quantum discord
|
Corresponding Author(s):
Jieci Wang
|
About author: * These authors contributed equally. |
Issue Date: 01 April 2024
|
|
1 |
G. Unruh W.. Notes on black-hole evaporation. Phys. Rev. D, 1976, 14(4): 870
https://doi.org/10.1103/PhysRevD.14.870
|
2 |
S. DeWitt B., Quantum Gravity: The New Synthesis, Cambridge University Press, 1979
|
3 |
Birrell N.Davies P., Quantum Fields in Curved Space, Cambridge Monographs on Mathematical Physics, Cambridge University Press, 1984
|
4 |
S. DeWitt B., in General Relativity: An Einstein Centenary Survey, edited by S. W. Hawking and W. Israel, Cambridge University Press, Cambridge, England, 1980
|
5 |
Reznik B., Retzker A., Silman J.. Violating Bell’s inequalities in vacuum. Phys. Rev. A, 2005, 71(4): 042104
https://doi.org/10.1103/PhysRevA.71.042104
|
6 |
C. Céleri L., G. S. Landulfo A., M. Serra R., E. A. Matsas G.. Sudden change in quantum and classical correlations and the Unruh effect. Phys. Rev. A, 2010, 81(6): 062130
https://doi.org/10.1103/PhysRevA.81.062130
|
7 |
Wang J., Tian Z., Jing J., Fan H.. Irreversible degradation of quantum coherence under relativistic motion. Phys. Rev. A, 2016, 93(6): 062105
https://doi.org/10.1103/PhysRevA.93.062105
|
8 |
Liu Z., Zhang J., B. Mann R., Yu H.. Does acceleration assist entanglement harvesting?. Phys. Rev. D, 2022, 105(8): 085012
https://doi.org/10.1103/PhysRevD.105.085012
|
9 |
Wang J., Zhang L., Chen S., Jing J.. Estimating the Unruh effect via entangled many-body probes. Phys. Lett. B, 2020, 802: 135239
https://doi.org/10.1016/j.physletb.2020.135239
|
10 |
Wang J., Tian Z., Jing J., Fan H.. Quantum metrology and estimation of Unruh effect. Sci. Rep., 2014, 4(1): 7195
https://doi.org/10.1038/srep07195
|
11 |
G. S. Landulfo A., E. A. Matsas G.. Sudden death of entanglement and teleportation fidelity loss via the Unruh effect. Phys. Rev. A, 2009, 80(3): 032315
https://doi.org/10.1103/PhysRevA.80.032315
|
12 |
Fuentes-Schuller I., B. Mann R.. Alice falls into a black hole: Entanglement in noninertial frames. Phys. Rev. Lett., 2005, 95(12): 120404
https://doi.org/10.1103/PhysRevLett.95.120404
|
13 |
M. Alsing P., J. Milburn G.. Teleportation with a uniformly accelerated partner. Phys. Rev. Lett., 2003, 91(18): 180404
https://doi.org/10.1103/PhysRevLett.91.180404
|
14 |
Aspachs M., Adesso G., Fuentes I.. Optimal quantum estimation of the Unruh−Hawking effect. Phys. Rev. Lett., 2010, 105(15): 151301
https://doi.org/10.1103/PhysRevLett.105.151301
|
15 |
Martín-Martínez E., Aasen D., Kempf A.. Processing quantum information with relativistic motion of atoms. Phys. Rev. Lett., 2013, 110(16): 160501
https://doi.org/10.1103/PhysRevLett.110.160501
|
16 |
Friis N., R. Lee A., Truong K., Sabín C., Solano E., Johansson G., Fuentes I.. Relativistic quantum teleportation with superconducting circuits. Phys. Rev. Lett., 2013, 110(11): 113602
https://doi.org/10.1103/PhysRevLett.110.113602
|
17 |
Wang J., Jing J.. Quantum decoherence in noninertial frames. Phys. Rev. A, 2010, 82(3): 032324
https://doi.org/10.1103/PhysRevA.82.032324
|
18 |
Liu Q., M. Wu S., Wen C., Wang J.. Quantum properties of fermionic fields in multi-event horizon space-time. Sci. China Phys. Mech. Astron., 2023, 66(12): 120413
https://doi.org/10.1007/s11433-023-2246-8
|
19 |
C. M. Ostapchuk D., Y. Lin S., B. Mann R., L. Hu B.. Entanglement dynamics between inertial and non-uniformly accelerated detectors. J. High Energy Phys., 2012, 2012: 72
https://doi.org/10.1007/JHEP07(2012)072
|
20 |
Doukas J., Y. Lin S., L. Hu B., B. Mann R.. Unruh effect under non-equilibrium conditions: Oscillatory motion of an Unruh−DeWitt detector. J. High Energy Phys., 2013, 2013(11): 119
https://doi.org/10.1007/JHEP11(2013)119
|
21 |
Šoda B., Sudhir V., Kempf A.. Acceleration-induced effects in stimulated light−matter interactions. Phys. Rev. Lett., 2022, 128(16): 163603
https://doi.org/10.1103/PhysRevLett.128.163603
|
22 |
Q. Quach J., C. Ralph T., J. Munro W.. Berry phase from the entanglement of future and past light cones: Detecting the time-like Unruh effect. Phys. Rev. Lett., 2022, 129(16): 160401
https://doi.org/10.1103/PhysRevLett.129.160401
|
23 |
Lorek K., Pecak D., G. Brown E., Dragan A.. Extraction of genuine tripartite entanglement from the vacuum. Phys. Rev. A, 2014, 90(3): 032316
https://doi.org/10.1103/PhysRevA.90.032316
|
24 |
Mendez-Avalos D., J. Henderson L., Gallock-Yoshimura K., B. Mann R.. Entanglement harvesting of three Unruh−DeWitt detectors. Gen. Relativ. Gravit., 2022, 54(8): 87
https://doi.org/10.1007/s10714-022-02956-x
|
25 |
M. Avalos D.Gallock-Yoshimura K.J. Henderson L.B. Mann R., Instant extraction of non-perturbative tripartite entanglement, arXiv: 2204.02983 (2022)
|
26 |
J. Membrere I., Gallock-Yoshimura K., J. Henderson L., B. Mann R.. Tripartite entanglement extraction from the black hole vacuum. Adv. Quantum Technol., 2023, 6(9): 2300125
https://doi.org/10.1002/qute.202300125
|
27 |
Horodecki R., Horodecki P., Horodecki M., Horodecki K.. Quantum entanglement. Rev. Mod. Phys., 2009, 81(2): 865
https://doi.org/10.1103/RevModPhys.81.865
|
28 |
H. Bennett C., Popescu S., Rohrlich D., A. Smolin J., V. Thapliyal A.. Exact and asymptotic measures of multipartite pure-state entanglement. Phys. Rev. A, 2000, 63(1): 012307
https://doi.org/10.1103/PhysRevA.63.012307
|
29 |
Coffman V., Kundu J., K. Wootters W.. Distributed entanglement. Phys. Rev. A, 2000, 61(5): 052306
https://doi.org/10.1103/PhysRevA.61.052306
|
30 |
C. Ou Y., Fan H.. Monogamy inequality in terms of negativity for three-qubit states. Phys. Rev. A, 2007, 75(6): 062308
https://doi.org/10.1103/PhysRevA.75.062308
|
31 |
Laflamme R., Miquel C., P. Paz J., H. Zurek W.. Perfect quantum error correcting code. Phys. Rev. Lett., 1996, 77(1): 198
https://doi.org/10.1103/PhysRevLett.77.198
|
32 |
W. Chin A., F. Huelga S., B. Plenio M.. Quantum metrology in non-Markovian environments. Phys. Rev. Lett., 2012, 109(23): 233601
https://doi.org/10.1103/PhysRevLett.109.233601
|
33 |
Karlsson A., Bourennane M.. Quantum teleportation using three-particle entanglement. Phys. Rev. A, 1998, 58(6): 4394
https://doi.org/10.1103/PhysRevA.58.4394
|
34 |
Bombelli L., K. Koul R., Lee J., D. Sorkin R.. Quantum source of entropy for black holes. Phys. Rev. D, 1986, 34(2): 373
https://doi.org/10.1103/PhysRevD.34.373
|
35 |
W. Hawking S.. Breakdown of predictability in gravitational collapse. Phys. Rev. D, 1976, 14(10): 2460
https://doi.org/10.1103/PhysRevD.14.2460
|
36 |
Terashima H.. Entanglement entropy of the black hole horizon. Phys. Rev. D, 2000, 61(10): 104016
https://doi.org/10.1103/PhysRevD.61.104016
|
37 |
Headrick M., E. Hubeny V., Lawrence A., Rangamani M.. Causality & holographic entanglement entropy. J. High Energy Phys., 2014, 2014(12): 162
https://doi.org/10.1007/JHEP12(2014)162
|
38 |
R. Hwang M., Park D., Jung E.. Tripartite entanglement in a noninertial frame. Phys. Rev. A, 2011, 83: 012111
https://doi.org/10.1103/PhysRevA.83.012111
|
39 |
Tian Z., Wang J., Jing J., Dragan A.. Entanglement enhanced thermometry in the detection of the Unruh effect. Ann. Phys., 2017, 377: 1
https://doi.org/10.1016/j.aop.2017.01.011
|
40 |
Dai Y., Shen Z., Shi Y.. Quantum entanglement in three accelerating qubits coupled to scalar fields. Phys. Rev. D, 2016, 94(2): 025012
https://doi.org/10.1103/PhysRevD.94.025012
|
41 |
M. Wu S., S. Zeng H., H. Liu T.. Genuine multipartite entanglement subject to the Unruh and anti-Unruh effects. New J. Phys., 2022, 24(7): 073004
https://doi.org/10.1088/1367-2630/ac7acc
|
42 |
P. Lanyon B., Barbieri M., P. Almeida M., G. White A.. Experimental quantum computing without entanglement. Phys. Rev. Lett., 2008, 101(20): 200501
https://doi.org/10.1103/PhysRevLett.101.200501
|
43 |
Datta A., Shaji A., M. Caves C.. Quantum discord and the power of one qubit. Phys. Rev. Lett., 2008, 100(5): 050502
https://doi.org/10.1103/PhysRevLett.100.050502
|
44 |
Niset J., J. Cerf N.. Multipartite nonlocality without entanglement in many dimensions. Phys. Rev. A, 2006, 74(5): 052103
https://doi.org/10.1103/PhysRevA.74.052103
|
45 |
Ollivier H., H. Zurek W.. Quantum discord: A measure of the quantumness of correlations. Phys. Rev. Lett., 2001, 88(1): 017901
https://doi.org/10.1103/PhysRevLett.88.017901
|
46 |
Henderson L., Vedral V.. Classical, quantum and total correlations. J. Phys. Math. Gen., 2001, 34(35): 6899
https://doi.org/10.1088/0305-4470/34/35/315
|
47 |
Ali M., R. P. Rau A., Alber G.. Quantum discord for two-qubit X states. Phys. Rev. A, 2010, 81(4): 042105
https://doi.org/10.1103/PhysRevA.81.042105
|
48 |
H. Huang Y.. Quantum discord for two-qubit X states: Analytical formula with very small worst-case error. Phys. Rev. A, 2013, 88(1): 014302
https://doi.org/10.1103/PhysRevA.88.014302
|
49 |
H. Huang Y.. Computing quantum discord is NP-complete. New J. Phys., 2014, 16(3): 033027
https://doi.org/10.1088/1367-2630/16/3/033027
|
50 |
Dakić B., Vedral V., Brukner C.. Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett., 2010, 105(19): 190502
https://doi.org/10.1103/PhysRevLett.105.190502
|
51 |
Modi K., Paterek T., Son W., Vedral V., Williamson M.. Unified view of quantum and classical correlations. Phys. Rev. Lett., 2010, 104(8): 080501
https://doi.org/10.1103/PhysRevLett.104.080501
|
52 |
Zhou J., Guo H.. Dynamics of tripartite geometric quantifiers of correlations in a quantum spin system. Phys. Rev. A, 2013, 87(6): 062315
https://doi.org/10.1103/PhysRevA.87.062315
|
53 |
Brukner Č., Żukowski M., W. Pan J., Zeilinger A.. Bell’s inequalities and quantum communication complexity. Phys. Rev. Lett., 2004, 92(12): 127901
https://doi.org/10.1103/PhysRevLett.92.127901
|
54 |
A. Horn R.R. Johnson C., Matrix Analysis, Cambridge University Press, New York, 1985
|
55 |
C. Rulli C., S. Sarandy M.. Global quantum discord in multipartite systems. Phys. Rev. A, 2011, 84(4): 042109
https://doi.org/10.1103/PhysRevA.84.042109
|
56 |
Radhakrishnan C., Laurière M., Byrnes T.. Multipartite generalization of quantum discord. Phys. Rev. Lett., 2020, 124(11): 110401
https://doi.org/10.1103/PhysRevLett.124.110401
|
57 |
L. Luo S., S. Fu S.. Geometric measure of quantum discord. Phys. Rev. A, 2010, 82(3): 034302
https://doi.org/10.1103/PhysRevA.82.034302
|
58 |
Dür W., Vidal G., I. Cirac J.. Three qubits can be entangled in two inequivalent ways. Phys. Rev. A, 2000, 62(6): 062314
https://doi.org/10.1103/PhysRevA.62.062314
|
59 |
He J., Y. Ding Z., D. Shi J., Wu T.. Multipartite quantum coherence and distribution under the Unruh effect. Ann. Phys., 2018, 530(9): 1800167
https://doi.org/10.1002/andp.201800167
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|