Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2024, Vol. 19 Issue (5) : 53204    https://doi.org/10.1007/s11467-024-1401-z
Multi-terminal pectin/chitosan hybrid electrolyte gated oxide neuromorphic transistor with multi-mode cognitive activities
Yan Li1,2, You Jie Huang1, Xin Li Chen1,2, Wei Sheng Wang1,2, Xin Huang1, Hui Xiao2, Li Qiang Zhu1()
1. School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
2. Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
 Download: PDF(15442 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In order to fulfill the urgent requirements of functional products, circuit integration of different functional devices are commonly utilized. Thus, issues including production cycle, cost, and circuit crosstalk will get serious. Neuromorphic computing aims to break through the bottle neck of von Neumann architectures. Electronic devices with multi-operation modes, especially neuromorphic devices with multi-mode cognitive activities, would provide interesting solutions. Here, pectin/chitosan hybrid electrolyte gated oxide neuromorphic transistor was fabricated. With extremely strong proton related interfacial electric-double-layer coupling, the device can operate at low voltage of below 1 V. The device can also operate at multi-operation mode, including bottom gate mode, coplanar gate and pseudo-diode mode. Interestingly, the artificial synapse can work at low voltage of only 1 mV, exhibiting extremely low energy consumption of ~7.8 fJ, good signal-to-noise ratio of ~229.6 and sensitivity of ~23.6 dB. Both inhibitory and excitatory synaptic responses were mimicked on the pseudo-diode, demonstrating spike rate dependent plasticity activities. Remarkably, a linear classifier is proposed on the oxide neuromorphic transistor under synaptic metaplasticity mechanism. These results suggest great potentials of the oxide neuromorphic devices with multi-mode cognitive activities in neuromorphic platform.

Keywords pectin/chitosan hybrid electrolyte      pseudo-diode function      multi-mode cognitive activities      ultrasensitive oxide neuromorphic device      linear data classifier     
Corresponding Author(s): Li Qiang Zhu   
About author:

Li Liu and Yanqing Liu contributed equally to this work.

Issue Date: 22 April 2024
 Cite this article:   
Yan Li,You Jie Huang,Xin Li Chen, et al. Multi-terminal pectin/chitosan hybrid electrolyte gated oxide neuromorphic transistor with multi-mode cognitive activities[J]. Front. Phys. , 2024, 19(5): 53204.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-024-1401-z
https://academic.hep.com.cn/fop/EN/Y2024/V19/I5/53204
Fig.1  (a) Schematic diagram for depositing of ITO patterns on electrolyte. (b) Molecular structures of chitosan and pectin. FTIR spectra of (c) pectin, (d) chitosan and (e) double-layered pectin/chitosan composite electrolyte film. AFM surface topography image of (f) pectin film and (g) chitosan film. (h) Cross-sectional SEM image for the composite electrolyte film.
Fig.2  (a) Schematic diagram of a biological synapse. (b) Frequency-dependent specific capacitance for double-layered pectin/chitosan composite electrolyte. Inset: ITO/electrolyte/ITO capacitor. (c) Extracted EDL capacitances measured for ten times. (d) Comparison of the present EDL capacitance with those from the reported works. (e) Impedance data of the composite electrolyte film.
Fig.3  Schematic illustration of an oxide neuromorphic transistor worked at (a) bottom-gate mode (GB), (b) coplanar gate mode and (c) pseudo-diode operates at GS mode. (d) Transfer curves for GB mode. (e) Comparison of transfer curves for oxide neuromorphic transistor worked at bottom gate mode and coplanar gate mode. (f) I?V curve for pseudo-diode operates at GS mode.
Fig.4  Typical synaptic responses on GS mode. (a) Typical PSC response triggered with a pre-synaptic stimulus (1 V, 20 ms) loaded on the drain. (b) Peak PSC values and energy consumption (P) values as a function of spike amplitudes (U). (c) S/N and S values as a function of U values. Inset: Schematic diagram for estimate S/N. (d) Typical PSC current under paired pre-synaptic spikes.
Fig.5  (a?c) Synaptic responses on pseudo-diode with GD mode. (a) Typical PSC response triggered by a pre-synaptic spike (1 V, 30 ms) with a base voltage of 0.5 V. (b) PSC responses with successive spikes of (1 V, 100 ms). Spike interval time (ΔTpre) is 30 ms. (c) Peak PSC value as a function of spike numbers with different ΔTpre. The spike amplitude and spike duration are 1.5 V and 100 ms, respectively. (d?f) Synaptic responses on pseudo-diode with GS mode. (d) PSC response triggered by a pre-synaptic spike (1 V, 50 ms) with a base voltage of ?0.5 V. (e) PSC responses with successive spikes of (1 V, 100 ms). ΔTpre is 80 ms. (f) Peak PSC value as a function of spike numbers with different ΔTpre. The spike amplitude and duration time are 1 V and 50 ms, respectively. (g) Schematic diagram of dynamic proton gating effects on pseudo-diode. (h) Frequency dependent facilitation index (η) for GD mode. (i) Frequency dependent depression index (η) for GS mode.
Fig.6  (a) EPSC response on oxide neuromorphic transistor triggered with paired pre-synaptic spikes (1 V, 10 ms) with spike interval time (ΔT) of 20 ms. (b) PPF index (ξ) as a function of ΔT. (c) Schematically diagram of the spiking trains consisted of priming spike and main spike. (d) EPSC responses with the increased priming spike duration time. ΔT is fixed at 50 ms. (e) EPSC responses with the increased ΔT. The duration time of the priming spike is fixed at 1980 ms. (f) Gradient plot with different priming spike duration and spike ΔT.
1 Backus J. . Can programming be liberated from the von Neumann style? A function style and its algebra of programs. Commun. ACM, 1978, 21(8): 613
https://doi.org/10.1145/359576.359579
2 D. Godfrey M. , F. Hendry D. . The computer as von Neumann planned it. IEEE Ann. Hist. Comput., 1993, 15(1): 11
https://doi.org/10.1109/85.194088
3 Colom R. , Karama S. , E. Jung R. , J. Haier R. . Human intelligence and brain networks. Dialogues Clin. Neurosci., 2010, 12(4): 489
https://doi.org/10.31887/DCNS.2010.12.4/rcolom
4 F. Lohman D. . Human intelligence: An introduction to advances in theory and research. Rev. Educ. Res., 1989, 59(4): 333
https://doi.org/10.3102/00346543059004333
5 F. Abbott L. , G. Regehr W. . Synaptic computation. Nature, 2004, 431(7010): 796
https://doi.org/10.1038/nature03010
6 J. Fuller E. , T. Keene S. , Melianas A. , R. Wang Z. , Agarwal S. , Y. Li Y. , Tuchman Y. , D. James C. , J. Marinella M. , J. Yang J. , Salleo A. , A. Talin A. . Parallel programming of an ionic floating-gate memory array for scalable neuromorphic computing. Science, 2019, 364(6440): 570
https://doi.org/10.1126/science.aaw5581
7 M. Poo M. , L. Du J. , Y. Ip N. , Q. Xiong Z. , Xu B. , Tan T. . China brain project: Basic neuroscience, brain diseases, and brain-inspired computing. Neuron, 2016, 92(3): 591
https://doi.org/10.1016/j.neuron.2016.10.050
8 A. Zidan M. , P. Strachan J. , D. Lu W. . The future of electronics based on memristive systems. Nat. Electron., 2018, 1(1): 22
https://doi.org/10.1038/s41928-017-0006-8
9 Mead C. . Neuromorphic electronic systems. Proc. IEEE, 1990, 78(10): 1629
https://doi.org/10.1109/5.58356
10 K. Kim M. , S. Lee J. . Short-term plasticity and long-term potentiation in artificial biosynapses with diffusive dynamics. ACS Nano, 2018, 12(2): 1680
https://doi.org/10.1021/acsnano.7b08331
11 B. Chen J. , T. Guo T. , Y. Yang C. , W. Xu J. , Y. Gao L. , J. Jia S. , Zhang P. , T. Chen J. , Zhao Y. , Wang J. , Q. Zhang X. , Li Y. . Synaptic plasticity of a microfluidic memristor with a temporary memory function based on an ionic liquid in a capillary tube. J. Phys. Chem. C, 2023, 127(6): 3307
https://doi.org/10.1021/acs.jpcc.2c08328
12 H. Jo S. , Chang T. , Ebong I. , B. Bhadviya B. , Mazumder P. , Lu W. . Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett., 2010, 10(4): 1297
https://doi.org/10.1021/nl904092h
13 Chen H. , G. Tang X. , H. Shen Z. , T. Guo W. , J. Sun Q. , H. Tang Z. , P. Jiang Y. . Emerging memristors and applications in reservoir computing. Front. Phys., 2024, 19(1): 13401
https://doi.org/10.1007/s11467-023-1335-x
14 X. Liu S. , M. Zeng J. , L. Chen Q. , Liu G. . Recent advances in halide perovskite memristors: From materials to applications. Front. Phys., 2024, 19(2): 23501
https://doi.org/10.1007/s11467-023-1344-9
15 Q. Zhu L. , J. Wan C. , Q. Guo L. , Shi Y. , Wan Q. . Artificial synapse network on inorganic proton conductor for neuromorphic systems. Nat. Commun., 2014, 5(1): 3158
https://doi.org/10.1038/ncomms4158
16 Ge C.X. Liu C.L. Zhou Q.H. Zhang Q.Y. Du J.K. Li J.Wang C.Gu L.Z. Yang G.J. Jin K., A ferrite synaptic transistor with topotactic transformation, Adv. Mater. 31(19), 1900379 (2019)
17 L. Park H. , Kim H. , Lim D. , Zhou H. , H. Kim Y. , Lee Y. , Park S. , W. Lee T. . Retina-inspired carbon nitride-based photonic synapses for selective detection of UV light. Adv. Mater., 2020, 32(11): 1906899
https://doi.org/10.1002/adma.201906899
18 B. Guo Y. , Q. Zhu L. . Recent progress in optoelectronic neuromorphic devices. Chin. Phys. B, 2020, 29(7): 078502
https://doi.org/10.1088/1674-1056/ab99b6
19 C. Cai Y. , Yang J. , Wang F. , H. Li S. , R. Wang Y. , Y. Zhan X. , M. Wang F. , Q. Cheng R. , X. Wang Z. , He J. . Ultrasensitive solar-blind ultraviolet detection and optoelectronic neuromorphic computing using α-In2Se3 phototransistors. Front. Phys., 2023, 18(3): 33308
https://doi.org/10.1007/s11467-022-1241-7
20 Xia Q. , J. Yang J. . Memristive crossbar arrays for brain-inspired computing. Nat. Mater., 2019, 18(4): 309
https://doi.org/10.1038/s41563-019-0291-x
21 H. Kim S. , Hong K. , Xie W. , H. Lee K. , Zhang S. , P. Lodge T. , D. Frisbie C. . Electrolyte-gated transistors for organic and printed electronics. Adv. Mater., 2013, 25(13): 1822
https://doi.org/10.1002/adma.201202790
22 Li Y. , Zhang C. , L. Zhao X. , H. Tong Y. , X. Tang Q. , C. Liu Y. . Ultrasensitive and degradable ultra-flexible synaptic transistors based on natural pectin. ACS Appl. Electron. Mater., 2022, 4(1): 316
https://doi.org/10.1021/acsaelm.1c01021
23 W. Stoddart R. , J. Barrett A. , H. Northcote D. . Pectic polysaccharides of growing plant tissues. Biochem. J., 1967, 102(1): 194
https://doi.org/10.1042/bj1020194
24 Weymuth T.R. Jacob C.Reiher M., A local-mode model for understanding the dependence of the extended amide III vibrations on protein secondary structure, J. Phys. Chem. B 114(32), 10649 (2010)
25 J. Wan C. , H. Liu Y. , Feng P. , Wang W. , Q. Zhu L. , P. Liu Z. , Shi Y. , Wan Q. . Flexible metal oxide/graphene oxide hybrid neuromorphic transistors on flexible conducting graphene substrates. Adv. Mater., 2016, 28(28): 5878
https://doi.org/10.1002/adma.201600820
26 Han H. , Q. Zhu L. , Y. Ren Z. , Xiao H. , Q. Guo L. . Poly (vinyl alcohol)/graphene oxide hybrid electrolyte gated oxide neuron transistors for multifunctional logic applications. J. Phys. D Appl. Phys., 2020, 53(11): 115106
https://doi.org/10.1088/1361-6463/ab5eec
27 Q. Guo L. , Tao J. , Q. Zhu L. , Xiao H. , T. Gao W. , Yu F. , M. Fu Y. . Starch-based biopolymer electrolyte gated oxide synaptic transistors. Org. Electron., 2018, 61: 312
https://doi.org/10.1016/j.orgel.2018.06.009
28 J. Wan C. , Q. Zhu L. , Wan X. , Shi Y. , Wan Q. . Organic/inorganic hybrid synaptic transistors gated by proton conducting methylcellulose films. Appl. Phys. Lett., 2016, 108(4): 043508
https://doi.org/10.1063/1.4941080
29 Y. Li Z. , Q. Zhu L. , Q. Guo L. , Y. Ren Z. , Xiao H. , C. Cai J. . Mimicking neurotransmitter activity and realizing algebraic arithmetic on flexible protein-gated oxide neuromorphic transistors. ACS Appl. Mater. Interfaces, 2021, 13(6): 7784
https://doi.org/10.1021/acsami.0c22047
30 Y. Ren Z. , H. Kong Y. , Ai L. , Xiao H. , S. Wang W. , W. Shi Z. , Q. Zhu L. . Proton gated oxide neuromorphic transistors with bionic vision enhancement and information decoding. J. Mater. Chem. C, 2022, 10(18): 7241
https://doi.org/10.1039/D2TC00775D
31 S. Wang W. , W. Shi Z. , L. Chen X. , Li Y. , Xiao H. , H. Zeng Y. , D. Pi X. , Q. Zhu L. . Biodegradable oxide neuromorphic transistors for neuromorphic computing and anxiety disorder emulation. ACS Appl. Mater. Interfaces, 2023, 15(40): 47640
https://doi.org/10.1021/acsami.3c07671
32 S. Kim H. , Park H. , J. Cho W. . Biocompatible casein electrolyte-based electric-double-layer for artificial synaptic transistors. Nanomaterials (Basel), 2022, 12(15): 2596
https://doi.org/10.3390/nano12152596
33 H. Lee D. , Park H. , J. Cho W. . Synaptic transistors based on PVA: Chitosan biopolymer blended electric-double-layer with high ionic conductivity. Polymers (Basel), 2023, 15(4): 896
https://doi.org/10.3390/polym15040896
34 Y. Long T. , Q. Zhu L. , Y. Ren Z. , B. Guo Y. . Global modulatory heterosynaptic mechanisms in bio-polymer electrolyte gated oxide neuron transistors. J. Phys. D Appl. Phys., 2020, 53(43): 435105
https://doi.org/10.1088/1361-6463/ab9ad7
35 Dou W. , Hou W. , Y. Tan Y. , M. Gan X. , R. Xie Z. , Yuan X. , H. Lei L. , L. Zhang J. . Flexible transparent electric-double-layer junctionless thin film transistors with low operating voltage. ECS J. Solid State Sci. Technol., 2021, 10(11): 115003
https://doi.org/10.1149/2162-8777/ac3445
36 Ghoshal S. , Claassen J. . Spreading depolarization and acute ischaemia in subarachnoid haemorrhage: the role of mass depolarization waves. Brain, 2017, 140(10): 2527
https://doi.org/10.1093/brain/awx226
37 Li W. , X. Wu C. , W. Hou J. , Sun J. , S. Wang Q. , P. Zhang P. , Yu Y. , Yang M. , Chen M. , F. Mo B. , P. Wang Y. , G. Li Y. . Higher sodium channel excitability in cardiac purkinje fibers: Implications for multifocal ectopic purkinje-related premature contractions. JACC Clin. Electrophysiol., 2023, 9(12): 2477
https://doi.org/10.1016/j.jacep.2023.08.029
38 Debanne D. , C. Guerineau N. , H. Gahwiler B. , M. Thompson S. . Paired pulse facilitation and depression at unitary synapses in rat hippocampus quantal fluctuation affects subsequent release. J. Physiol., 1996, 491(1): 163
https://doi.org/10.1113/jphysiol.1996.sp021204
39 F. Waldeck R. , Pereda A. , S. Faber D. . Properties and plasticity of paired- pulse depression at a central synapse. J. Neurosci., 2000, 20(14): 5312
https://doi.org/10.1523/JNEUROSCI.20-14-05312.2000
40 A. Mukhamedyarov M. , N. Grishin S. , L. Zefirov A. , Palotas A. . The mechanisms of multi-component paired-pulse facilitation of neurotransmitter release at the frog neuromuscular junction. Pflugers Arch., 2009, 458(3): 563
https://doi.org/10.1007/s00424-009-0641-7
41 Sotiropoulos I. , L. Trejo J. . Brain metaplasticity. Neuroscience, 2021, 454: 1
https://doi.org/10.1016/j.neuroscience.2020.12.011
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed