|
|
Multi-terminal pectin/chitosan hybrid electrolyte gated oxide neuromorphic transistor with multi-mode cognitive activities |
Yan Li1,2, You Jie Huang1, Xin Li Chen1,2, Wei Sheng Wang1,2, Xin Huang1, Hui Xiao2, Li Qiang Zhu1( ) |
1. School of Physical Science and Technology, Ningbo University, Ningbo 315211, China 2. Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China |
|
|
Abstract In order to fulfill the urgent requirements of functional products, circuit integration of different functional devices are commonly utilized. Thus, issues including production cycle, cost, and circuit crosstalk will get serious. Neuromorphic computing aims to break through the bottle neck of von Neumann architectures. Electronic devices with multi-operation modes, especially neuromorphic devices with multi-mode cognitive activities, would provide interesting solutions. Here, pectin/chitosan hybrid electrolyte gated oxide neuromorphic transistor was fabricated. With extremely strong proton related interfacial electric-double-layer coupling, the device can operate at low voltage of below 1 V. The device can also operate at multi-operation mode, including bottom gate mode, coplanar gate and pseudo-diode mode. Interestingly, the artificial synapse can work at low voltage of only 1 mV, exhibiting extremely low energy consumption of ~7.8 fJ, good signal-to-noise ratio of ~229.6 and sensitivity of ~23.6 dB. Both inhibitory and excitatory synaptic responses were mimicked on the pseudo-diode, demonstrating spike rate dependent plasticity activities. Remarkably, a linear classifier is proposed on the oxide neuromorphic transistor under synaptic metaplasticity mechanism. These results suggest great potentials of the oxide neuromorphic devices with multi-mode cognitive activities in neuromorphic platform.
|
Keywords
pectin/chitosan hybrid electrolyte
pseudo-diode function
multi-mode cognitive activities
ultrasensitive oxide neuromorphic device
linear data classifier
|
Corresponding Author(s):
Li Qiang Zhu
|
About author: Li Liu and Yanqing Liu contributed equally to this work. |
Issue Date: 22 April 2024
|
|
1 |
Backus J. . Can programming be liberated from the von Neumann style? A function style and its algebra of programs. Commun. ACM, 1978, 21(8): 613
https://doi.org/10.1145/359576.359579
|
2 |
D. Godfrey M. , F. Hendry D. . The computer as von Neumann planned it. IEEE Ann. Hist. Comput., 1993, 15(1): 11
https://doi.org/10.1109/85.194088
|
3 |
Colom R. , Karama S. , E. Jung R. , J. Haier R. . Human intelligence and brain networks. Dialogues Clin. Neurosci., 2010, 12(4): 489
https://doi.org/10.31887/DCNS.2010.12.4/rcolom
|
4 |
F. Lohman D. . Human intelligence: An introduction to advances in theory and research. Rev. Educ. Res., 1989, 59(4): 333
https://doi.org/10.3102/00346543059004333
|
5 |
F. Abbott L. , G. Regehr W. . Synaptic computation. Nature, 2004, 431(7010): 796
https://doi.org/10.1038/nature03010
|
6 |
J. Fuller E. , T. Keene S. , Melianas A. , R. Wang Z. , Agarwal S. , Y. Li Y. , Tuchman Y. , D. James C. , J. Marinella M. , J. Yang J. , Salleo A. , A. Talin A. . Parallel programming of an ionic floating-gate memory array for scalable neuromorphic computing. Science, 2019, 364(6440): 570
https://doi.org/10.1126/science.aaw5581
|
7 |
M. Poo M. , L. Du J. , Y. Ip N. , Q. Xiong Z. , Xu B. , Tan T. . China brain project: Basic neuroscience, brain diseases, and brain-inspired computing. Neuron, 2016, 92(3): 591
https://doi.org/10.1016/j.neuron.2016.10.050
|
8 |
A. Zidan M. , P. Strachan J. , D. Lu W. . The future of electronics based on memristive systems. Nat. Electron., 2018, 1(1): 22
https://doi.org/10.1038/s41928-017-0006-8
|
9 |
Mead C. . Neuromorphic electronic systems. Proc. IEEE, 1990, 78(10): 1629
https://doi.org/10.1109/5.58356
|
10 |
K. Kim M. , S. Lee J. . Short-term plasticity and long-term potentiation in artificial biosynapses with diffusive dynamics. ACS Nano, 2018, 12(2): 1680
https://doi.org/10.1021/acsnano.7b08331
|
11 |
B. Chen J. , T. Guo T. , Y. Yang C. , W. Xu J. , Y. Gao L. , J. Jia S. , Zhang P. , T. Chen J. , Zhao Y. , Wang J. , Q. Zhang X. , Li Y. . Synaptic plasticity of a microfluidic memristor with a temporary memory function based on an ionic liquid in a capillary tube. J. Phys. Chem. C, 2023, 127(6): 3307
https://doi.org/10.1021/acs.jpcc.2c08328
|
12 |
H. Jo S. , Chang T. , Ebong I. , B. Bhadviya B. , Mazumder P. , Lu W. . Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett., 2010, 10(4): 1297
https://doi.org/10.1021/nl904092h
|
13 |
Chen H. , G. Tang X. , H. Shen Z. , T. Guo W. , J. Sun Q. , H. Tang Z. , P. Jiang Y. . Emerging memristors and applications in reservoir computing. Front. Phys., 2024, 19(1): 13401
https://doi.org/10.1007/s11467-023-1335-x
|
14 |
X. Liu S. , M. Zeng J. , L. Chen Q. , Liu G. . Recent advances in halide perovskite memristors: From materials to applications. Front. Phys., 2024, 19(2): 23501
https://doi.org/10.1007/s11467-023-1344-9
|
15 |
Q. Zhu L. , J. Wan C. , Q. Guo L. , Shi Y. , Wan Q. . Artificial synapse network on inorganic proton conductor for neuromorphic systems. Nat. Commun., 2014, 5(1): 3158
https://doi.org/10.1038/ncomms4158
|
16 |
Ge C.X. Liu C.L. Zhou Q.H. Zhang Q.Y. Du J.K. Li J.Wang C.Gu L.Z. Yang G.J. Jin K., A ferrite synaptic transistor with topotactic transformation, Adv. Mater. 31(19), 1900379 (2019)
|
17 |
L. Park H. , Kim H. , Lim D. , Zhou H. , H. Kim Y. , Lee Y. , Park S. , W. Lee T. . Retina-inspired carbon nitride-based photonic synapses for selective detection of UV light. Adv. Mater., 2020, 32(11): 1906899
https://doi.org/10.1002/adma.201906899
|
18 |
B. Guo Y. , Q. Zhu L. . Recent progress in optoelectronic neuromorphic devices. Chin. Phys. B, 2020, 29(7): 078502
https://doi.org/10.1088/1674-1056/ab99b6
|
19 |
C. Cai Y. , Yang J. , Wang F. , H. Li S. , R. Wang Y. , Y. Zhan X. , M. Wang F. , Q. Cheng R. , X. Wang Z. , He J. . Ultrasensitive solar-blind ultraviolet detection and optoelectronic neuromorphic computing using α-In2Se3 phototransistors. Front. Phys., 2023, 18(3): 33308
https://doi.org/10.1007/s11467-022-1241-7
|
20 |
Xia Q. , J. Yang J. . Memristive crossbar arrays for brain-inspired computing. Nat. Mater., 2019, 18(4): 309
https://doi.org/10.1038/s41563-019-0291-x
|
21 |
H. Kim S. , Hong K. , Xie W. , H. Lee K. , Zhang S. , P. Lodge T. , D. Frisbie C. . Electrolyte-gated transistors for organic and printed electronics. Adv. Mater., 2013, 25(13): 1822
https://doi.org/10.1002/adma.201202790
|
22 |
Li Y. , Zhang C. , L. Zhao X. , H. Tong Y. , X. Tang Q. , C. Liu Y. . Ultrasensitive and degradable ultra-flexible synaptic transistors based on natural pectin. ACS Appl. Electron. Mater., 2022, 4(1): 316
https://doi.org/10.1021/acsaelm.1c01021
|
23 |
W. Stoddart R. , J. Barrett A. , H. Northcote D. . Pectic polysaccharides of growing plant tissues. Biochem. J., 1967, 102(1): 194
https://doi.org/10.1042/bj1020194
|
24 |
Weymuth T.R. Jacob C.Reiher M., A local-mode model for understanding the dependence of the extended amide III vibrations on protein secondary structure, J. Phys. Chem. B 114(32), 10649 (2010)
|
25 |
J. Wan C. , H. Liu Y. , Feng P. , Wang W. , Q. Zhu L. , P. Liu Z. , Shi Y. , Wan Q. . Flexible metal oxide/graphene oxide hybrid neuromorphic transistors on flexible conducting graphene substrates. Adv. Mater., 2016, 28(28): 5878
https://doi.org/10.1002/adma.201600820
|
26 |
Han H. , Q. Zhu L. , Y. Ren Z. , Xiao H. , Q. Guo L. . Poly (vinyl alcohol)/graphene oxide hybrid electrolyte gated oxide neuron transistors for multifunctional logic applications. J. Phys. D Appl. Phys., 2020, 53(11): 115106
https://doi.org/10.1088/1361-6463/ab5eec
|
27 |
Q. Guo L. , Tao J. , Q. Zhu L. , Xiao H. , T. Gao W. , Yu F. , M. Fu Y. . Starch-based biopolymer electrolyte gated oxide synaptic transistors. Org. Electron., 2018, 61: 312
https://doi.org/10.1016/j.orgel.2018.06.009
|
28 |
J. Wan C. , Q. Zhu L. , Wan X. , Shi Y. , Wan Q. . Organic/inorganic hybrid synaptic transistors gated by proton conducting methylcellulose films. Appl. Phys. Lett., 2016, 108(4): 043508
https://doi.org/10.1063/1.4941080
|
29 |
Y. Li Z. , Q. Zhu L. , Q. Guo L. , Y. Ren Z. , Xiao H. , C. Cai J. . Mimicking neurotransmitter activity and realizing algebraic arithmetic on flexible protein-gated oxide neuromorphic transistors. ACS Appl. Mater. Interfaces, 2021, 13(6): 7784
https://doi.org/10.1021/acsami.0c22047
|
30 |
Y. Ren Z. , H. Kong Y. , Ai L. , Xiao H. , S. Wang W. , W. Shi Z. , Q. Zhu L. . Proton gated oxide neuromorphic transistors with bionic vision enhancement and information decoding. J. Mater. Chem. C, 2022, 10(18): 7241
https://doi.org/10.1039/D2TC00775D
|
31 |
S. Wang W. , W. Shi Z. , L. Chen X. , Li Y. , Xiao H. , H. Zeng Y. , D. Pi X. , Q. Zhu L. . Biodegradable oxide neuromorphic transistors for neuromorphic computing and anxiety disorder emulation. ACS Appl. Mater. Interfaces, 2023, 15(40): 47640
https://doi.org/10.1021/acsami.3c07671
|
32 |
S. Kim H. , Park H. , J. Cho W. . Biocompatible casein electrolyte-based electric-double-layer for artificial synaptic transistors. Nanomaterials (Basel), 2022, 12(15): 2596
https://doi.org/10.3390/nano12152596
|
33 |
H. Lee D. , Park H. , J. Cho W. . Synaptic transistors based on PVA: Chitosan biopolymer blended electric-double-layer with high ionic conductivity. Polymers (Basel), 2023, 15(4): 896
https://doi.org/10.3390/polym15040896
|
34 |
Y. Long T. , Q. Zhu L. , Y. Ren Z. , B. Guo Y. . Global modulatory heterosynaptic mechanisms in bio-polymer electrolyte gated oxide neuron transistors. J. Phys. D Appl. Phys., 2020, 53(43): 435105
https://doi.org/10.1088/1361-6463/ab9ad7
|
35 |
Dou W. , Hou W. , Y. Tan Y. , M. Gan X. , R. Xie Z. , Yuan X. , H. Lei L. , L. Zhang J. . Flexible transparent electric-double-layer junctionless thin film transistors with low operating voltage. ECS J. Solid State Sci. Technol., 2021, 10(11): 115003
https://doi.org/10.1149/2162-8777/ac3445
|
36 |
Ghoshal S. , Claassen J. . Spreading depolarization and acute ischaemia in subarachnoid haemorrhage: the role of mass depolarization waves. Brain, 2017, 140(10): 2527
https://doi.org/10.1093/brain/awx226
|
37 |
Li W. , X. Wu C. , W. Hou J. , Sun J. , S. Wang Q. , P. Zhang P. , Yu Y. , Yang M. , Chen M. , F. Mo B. , P. Wang Y. , G. Li Y. . Higher sodium channel excitability in cardiac purkinje fibers: Implications for multifocal ectopic purkinje-related premature contractions. JACC Clin. Electrophysiol., 2023, 9(12): 2477
https://doi.org/10.1016/j.jacep.2023.08.029
|
38 |
Debanne D. , C. Guerineau N. , H. Gahwiler B. , M. Thompson S. . Paired pulse facilitation and depression at unitary synapses in rat hippocampus quantal fluctuation affects subsequent release. J. Physiol., 1996, 491(1): 163
https://doi.org/10.1113/jphysiol.1996.sp021204
|
39 |
F. Waldeck R. , Pereda A. , S. Faber D. . Properties and plasticity of paired- pulse depression at a central synapse. J. Neurosci., 2000, 20(14): 5312
https://doi.org/10.1523/JNEUROSCI.20-14-05312.2000
|
40 |
A. Mukhamedyarov M. , N. Grishin S. , L. Zefirov A. , Palotas A. . The mechanisms of multi-component paired-pulse facilitation of neurotransmitter release at the frog neuromuscular junction. Pflugers Arch., 2009, 458(3): 563
https://doi.org/10.1007/s00424-009-0641-7
|
41 |
Sotiropoulos I. , L. Trejo J. . Brain metaplasticity. Neuroscience, 2021, 454: 1
https://doi.org/10.1016/j.neuroscience.2020.12.011
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|