|
|
Majorana zero mode assisted spin pumping |
Mingzhou Cai1, Zhaoqi Chu1, Zhen-Hua Wang2, Yunjing Yu1, Bin Wang1( ), Jian Wang1,3( ) |
1. State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China 2. College of Physics and Electronic Engineering, and Center for Computational Sciences, Sichuan Normal University, Chengdu 610068, China 3. Department of Physics, The University of Hong Kong, Hong Kong, China |
|
|
Abstract We present a theoretical investigation of Majorana zero mode (MZM) assisted spin pumping which consists of a quantum dot (QD) and two normal leads. When the coupling between the MZM and the QD is absent, d.c. pure spin current can be excited by a rotating magnetic field where low energy spin down electrons are flipped to high energy spin up electrons by absorbing photons. However, when the coupling is turned on, the d.c. pure spin current vanishes, and an a.c. charge current emerges with its magnitude independent of the coupling strength. We reveal that this change is due to the formation of a highly localized MZM assisted topological Andreev state at the Fermi level, which allows only the injection of electron pairs with opposite spin into the QD. By absorbing or emitting photons, the electron pairs are separated to opposite spin electrons, and then return back to the lead again, generating an a.c. charge current without spin polarization. We demonstrate the switching from d.c. pure spin current to a.c. charge current based on both Kitaev model and a more realistic topological superconductor nanowire. Although this switching can also be induced by partially separated Andreev bound state (ps-ABS) in the topological trivial phase, it is extremely unstable and highly sensitive to the Zeeman field, which is different from the switching induced by MZM. Our result suggests that quantum spin pumping may be a feasible local transport method for detecting the presence of MZMs at the ends of a superconducting nanowire.
|
Keywords
Majorana zero mode
spin pumping
|
Corresponding Author(s):
Bin Wang,Jian Wang
|
Issue Date: 22 May 2024
|
|
1 |
Wilczek F. . Majorana returns. Nat. Phys., 2009, 5(9): 614
https://doi.org/10.1038/nphys1380
|
2 |
Alicea J. . New directions in the pursuit of Majorana fermions in solid state systems. Rep. Prog. Phys., 2012, 75(7): 076501
https://doi.org/10.1088/0034-4885/75/7/076501
|
3 |
W. J. Beenakker C. . Search for Majorana fermions in superconductors. Annu. Rev. Condens. Matter Phys., 2013, 4(1): 113
https://doi.org/10.1146/annurev-conmatphys-030212-184337
|
4 |
M. Guo H., A brief review on one-dimensional topological insulators and superconductors, Sci. China Phys. Mech. Astron. 59(3), 637401 (2016)
|
5 |
Sato M. , Ando Y. . Topological superconductors: A review. Rep. Prog. Phys., 2017, 80(7): 076501
https://doi.org/10.1088/1361-6633/aa6ac7
|
6 |
Culcer D. , C. Keser A. , Li Y. , Tkachov G. . Transport in two-dimensional topological materials: Recent developments in experiment and theory. 2D Mater., 2020, 7: 022007
https://doi.org/10.1088/2053-1583/ab6ff7
|
7 |
Zhang Q. , Wu B. . Majorana modes in solid state systems and its dynamics. Front. Phys., 2018, 13(2): 137101
https://doi.org/10.1007/s11467-017-0715-5
|
8 |
He M. , Sun H. , L. He Q. . Topological insulator: Spintronics and quantum computations. Front. Phys., 2019, 14(4): 43401
https://doi.org/10.1007/s11467-019-0893-4
|
9 |
Aoki D. , P. Brison J. , Flouquet J. , Ishida K. , Knebel G. , Tokunaga Y. , Yanase Y. . Unconventional Superconductivity in UTe2. J. Phys.: Condens. Matter, 2022, 34(24): 243002
https://doi.org/10.1088/1361-648X/ac5863
|
10 |
K. Ghosh S. , Smidman M. , Shang T. , F. Annett J. , D. Hillier A. , Quintanilla J. , Q. Yuan H. . Recent progress on superconductors with time-reversal symmetry breaking. J. Phys.: Condens. Matter, 2021, 33(3): 033001
https://doi.org/10.1088/1361-648X/abaa06
|
11 |
Prada E. , San-Jose P. , W. A. de Moor M. , Geresdi A. , J. H. Lee E. , Klinovaja J. , Loss D. , Nygard J. , Aguado R. , P. Kouwenhoven L. . From Andreev to Majorana bound states in hybrid superconductor−semiconductor nanowires. Nat. Rev. Phys., 2020, 2(10): 575
https://doi.org/10.1038/s42254-020-0228-y
|
12 |
H. Wang Z. , Xu F. , Li L. , H. Xu D. , Wang B. . Topological superconductors and exact mobility edges in non-Hermitian quasicrystals. Phys. Rev. B, 2022, 105(2): 024514
https://doi.org/10.1103/PhysRevB.105.024514
|
13 |
H. Wang Z. , Xu F. , Li L. , H. Xu D. , Q. Chen W. , Wang B. . Majorana polarization in non-Hermitian topological superconductors. Phys. Rev. B, 2021, 103(13): 134507
https://doi.org/10.1103/PhysRevB.103.134507
|
14 |
Y. Kitaev A. . Unpaired Majorana fermions in quantum wires. Phys. Uspekhi, 2001, 44(10S): 131
https://doi.org/10.1070/1063-7869/44/10S/S29
|
15 |
A. Ivanov D. . Non-Abelian statistics of half-quantum vortices in p-wave superconductors. Phys. Rev. Lett., 2001, 86(2): 268
https://doi.org/10.1103/PhysRevLett.86.268
|
16 |
Ran S. , Eckberg C. , P. Ding Q. , Furukawa Y. , Metz T. , R. Saha S. , L. Liu I. , Zic M. , Kim H. , Paglione J. , P. Butch N. . Nearly ferromagnetic spin-triplet superconductivity. Science, 2019, 365(6454): 684
https://doi.org/10.1126/science.aav8645
|
17 |
Novak M.Sasaki S.Kriener M.Segawa K.Ando Y., Unusual nature of fully gapped superconductivity in In-doped SnTe, Phys. Rev. B 88, 140502(R) (2013)
|
18 |
Fu L. , L. Kane C. . Superconducting proximity effect and majorana fermions at the surface of a topological insulator. Phys. Rev. Lett., 2008, 100(9): 096407
https://doi.org/10.1103/PhysRevLett.100.096407
|
19 |
M. Lutchyn R. , D. Sau J. , Das Sarma S. . Majorana fermions and a topological phase transition in semiconductor−superconductor heterostructures. Phys. Rev. Lett., 2010, 105(7): 077001
https://doi.org/10.1103/PhysRevLett.105.077001
|
20 |
Oreg Y. , Refael G. , von Oppen F. . Helical liquids and Majorana bound states in quantum wires. Phys. Rev. Lett., 2010, 105(17): 177002
https://doi.org/10.1103/PhysRevLett.105.177002
|
21 |
Mourik V. , Zuo K. , M. Frolov S. , R. Plissard S. , P. A. M. Bakkers E. , P. Kouwenhoven L. . Signatures of Majorana fermions in hybrid superconductor−semiconductor nanowire devices. Science, 2012, 336(6084): 1003
https://doi.org/10.1126/science.1222360
|
22 |
Deng M. , Yu C. , Huang G. , Larsson M. , Caroff P. , Xu H. . Anomalous zero-bias conductance peak in a NbCInSb nanowire−Nb hybrid device. Nano Lett., 2012, 12(12): 6414
https://doi.org/10.1021/nl303758w
|
23 |
Das A. , Ronen Y. , Most Y. , Oreg Y. , Heiblum M. , Shtrikman H. . Zero-bias peaks and splitting in an AlCInAs nanowire topological superconductor as a signature of Majorana fermions. Nat. Phys., 2012, 8(12): 887
https://doi.org/10.1038/nphys2479
|
24 |
P. Rokhinson L. , Liu X. , K. Furdyna J. . The fractional a.c. Josephson effect in a semiconductor−superconductor nanowire as a signature of Majorana particles. Nat. Phys., 2012, 8(11): 795
https://doi.org/10.1038/nphys2429
|
25 |
O. H. Churchill H. , Fatemi V. , Grove-Rasmussen K. , T. Deng M. , Caroff P. , Q. Xu H. , M. Marcus C. . Superconductor−nanowire devices from tunneling to the multichannel regime: Zero-bias oscillations and magnetoconductance crossover. Phys. Rev. B, 2013, 87(24): 241401
https://doi.org/10.1103/PhysRevB.87.241401
|
26 |
D. K. Finck A. , J. Van Harlingen D. , K. Mohseni P. , Jung K. , Li X. . Anomalous modulation of a zero-bias peak in a hybrid nanowire−superconductor device. Phys. Rev. Lett., 2013, 110(12): 126406
https://doi.org/10.1103/PhysRevLett.110.126406
|
27 |
M. Albrecht S. , P. Higginbotham A. , Madsen M. , Kuemmeth F. , S. Jespersen T. , Nygard J. , Krogstrup P. , M. Marcus C. . Exponential protection of zero modes in Majorana islands. Nature, 2016, 531(7593): 206
https://doi.org/10.1038/nature17162
|
28 |
Nadj-Perge S. , K. Drozdov I. , Li J. , Chen H. , Jeon S. , Seo J. , H. MacDonald A. , A. Bernevig B. , Yazdani A. . Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor. Science, 2014, 346(6209): 602
https://doi.org/10.1126/science.1259327
|
29 |
Pawlak R. , Kisiel M. , Klinovaja J. , Meier T. , Kawai S. , Glatzel T. , Loss D. , Meyer E. . Probing atomic structure and Majorana wavefunctions in mono-atomic Fe chains on superconducting Pb surface. npj Quantum Inf., 2016, 2: 16035
https://doi.org/10.1038/npjqi.2016.35
|
30 |
H. Wang Z. , Xu F. , Li L. , H. Xu D. , Q. Chen W. , Wang B. , Guo H. . Spin−orbit proximity effect and topological superconductivity in graphene/transition-metal dichalcogenide nanoribbons. New J. Phys., 2021, 23(12): 123002
https://doi.org/10.1088/1367-2630/ac33f5
|
31 |
H. Wang Z. , Xu F. , Li L. , H. Xu D. , Q. Chen W. , Wang B. . Majorana polarization in non-Hermitian topological superconductors. Phys. Rev. B, 2021, 103(13): 134507
https://doi.org/10.1103/PhysRevB.103.134507
|
32 |
H. Wang Z. , Xu F. , Li L. , Lü R. , Wang B. , Q. Chen W. . One-dimensional topological superconductivity at the edges of twisted bilayer graphene nanoribbons. Phys. Rev. B, 2019, 100(9): 094531
https://doi.org/10.1103/PhysRevB.100.094531
|
33 |
T. Law K. , A. Lee P. , K. Ng T. . Majorana fermion induced resonant Andreev reflection. Phys. Rev. Lett., 2009, 103(23): 237001
https://doi.org/10.1103/PhysRevLett.103.237001
|
34 |
P. Xu J. , X. Wang M. , L. Liu Z. , F. Ge J. , Yang X. , Liu C. , A. Xu Z. , Guan D. , L. Gao C. , Qian D. , Liu Y. , H. Wang Q. , C. Zhang F. , K. Xue Q. , F. Jia J. . Experimental detection of a Majorana mode in the core of a magnetic vortex inside a topological insulator−superconductor Bi2Te3/NbSe2 heterostructure. Phys. Rev. Lett., 2015, 114(1): 017001
https://doi.org/10.1103/PhysRevLett.114.017001
|
35 |
DeGottardi W. , Sen D. , Vishveshwara S. . Majorana fermions in superconducting 1D systems having periodic, quasiperiodic, and disordered potentials. Phys. Rev. Lett., 2013, 110(14): 146404
https://doi.org/10.1103/PhysRevLett.110.146404
|
36 |
Adagideli I. , Wimmer M. , Teker A. . Effects of electron scattering on the topological properties of nanowires: Majorana fermions from disorder and superlattices. Phys. Rev. B, 2014, 89(14): 144506
https://doi.org/10.1103/PhysRevB.89.144506
|
37 |
Liu J. , C. Potter A. , T. Law K. , A. Lee P. . Zero-bias peaks in the tunneling conductance of spin−orbit-coupled superconducting wires with and without majorana end-states. Phys. Rev. Lett., 2012, 109(26): 267002
https://doi.org/10.1103/PhysRevLett.109.267002
|
38 |
I. Pikulin D.P. Dahlhaus J.Wimmer M.Schomerus H.W. J. Beenakker C., A zero-voltage conductance peak from weak antilocalization in a Majorana nanowire, New J. Phys. 14(12), 125011 (2012)
|
39 |
E. Liu D.U. Baranger H., Detecting a Majorana-fermion zero mode using a quantum dot, Phys. Rev. B 84, 201308(R) (2011)
|
40 |
Leijnse M.Flensberg K., Scheme to measure Majorana fermion lifetimes using a quantum dot, Phys. Rev. B 84, 140501(R) (2011)
|
41 |
Zhang H. , X. Liu C. , Gazibegovic S. , Xu D. , A. Logan J. , Wang G. , van Loo N. , D. S. Bommer J. , W. A. de Moor M. , Car D. , L. M. Op het Veld R. , J. van Veldhoven P. , Koelling S. , A. Verheijen M. , Pendharkar M. , J. Pennachio D. , Shojaei B. , S. Lee J. , J. Palmstrøm C. , P. A. M. Bakkers E. , D. Sarma S. , P. Kouwenhoven L. . Retracted article: Quantized Majorana conductance. Nature, 2018, 556(7699): 74
https://doi.org/10.1038/nature26142
|
42 |
Moore C. , D. Stanescu T. , Tewari S. . Two-terminal charge tunneling: Disentangling Majorana zero modes from partially separated Andreev bound states in semiconductor−superconductor heterostructures. Phys. Rev. B, 2018, 97(16): 165302
https://doi.org/10.1103/PhysRevB.97.165302
|
43 |
Moore C. , C. Zeng C. , D. Stanescu T. , Tewari S. . Quantized zero-bias conductance plateau in semiconductor−superconductor heterostructures without topological Majorana zero modes. Phys. Rev. B, 2018, 98(15): 155314
https://doi.org/10.1103/PhysRevB.98.155314
|
44 |
Mao Y. , F. Sun Q. . Charge and spin transport through a normal lead coupled to an s-wave superconductor and a Majorana zero mode. Phys. Rev. B, 2021, 103(11): 115411
https://doi.org/10.1103/PhysRevB.103.115411
|
45 |
K. Watson S. , M. Potok R. , M. Marcus C. , Umansky V. . Experimental realization of a quantum spin pump. Phys. Rev. Lett., 2003, 91(25): 258301
https://doi.org/10.1103/PhysRevLett.91.258301
|
46 |
Tserkovnyak Y. , Brataas A. , E. W. Bauer G. . Enhanced Gilbert damping in thin ferromagnetic films. Phys. Rev. Lett., 2002, 88(11): 117601
https://doi.org/10.1103/PhysRevLett.88.117601
|
47 |
Dushenko S. , Ago H. , Kawahara K. , Tsuda T. , Kuwabata S. , Takenobu T. , Shinjo T. , Ando Y. , Shiraishi M. . Gate-tunable spin-charge conversion and the role of spin−orbit interaction in graphene. Phys. Rev. Lett., 2016, 116(16): 166102
https://doi.org/10.1103/PhysRevLett.116.166102
|
48 |
Uchida K. , Adachi H. , An T. , Ota T. , Toda M. , Hillebrands B. , Maekawa S. , Saitoh E. . Long-range spin Seebeck effect and acoustic spin pumping. Nat. Mater., 2011, 10(10): 737
https://doi.org/10.1038/nmat3099
|
49 |
Weiler M. , Althammer M. , D. Czeschka F. , Huebl H. , S. Wagner M. , Opel M. , Imort I. , Reiss G. , Thomas A. , Gross R. , T. B. Goennenwein S. . Local charge and spin currents in magnetothermal landscapes. Phys. Rev. Lett., 2012, 108(10): 106602
https://doi.org/10.1103/PhysRevLett.108.106602
|
50 |
Adachi H. , Maekawa S. . Theory of the acoustic spin pumping. Solid State Commun., 2014, 198: 22
https://doi.org/10.1016/j.ssc.2014.02.030
|
51 |
Mosendz O. , E. Pearson J. , Y. Fradin F. , E. W. Bauer G. , D. Bader S. , Hoffmann A. . Quantifying spin Hall angles from spin pumping: Experiments and theory. Phys. Rev. Lett., 2010, 104(4): 046601
https://doi.org/10.1103/PhysRevLett.104.046601
|
52 |
W. Sandweg C. , Kajiwara Y. , V. Chumak A. , A. Serga A. , I. Vasyuchka V. , B. Jungfleisch M. , Saitoh E. , Hillebrands B. . Spin pumping by parametrically excited exchange magnons. Phys. Rev. Lett., 2011, 106(21): 216601
https://doi.org/10.1103/PhysRevLett.106.216601
|
53 |
D. Czeschka F. , Dreher L. , S. Brandt M. , Weiler M. , Althammer M. , M. Imort I. , Reiss G. , Thomas A. , Schoch W. , Limmer W. , Huebl H. , Gross R. , T. B. Goennenwein S. . Scaling behavior of the spin pumping effect in ferromagnet-platinum bilayers. Phys. Rev. Lett., 2011, 107(4): 046601
https://doi.org/10.1103/PhysRevLett.107.046601
|
54 |
Dushenko S. , Koike M. , Ando Y. , Shinjo T. , Myronov M. , Shiraishi M. . Experimental demonstration of room-temperature spin transport in n-type germanium epilayers. Phys. Rev. Lett., 2015, 114(19): 196602
https://doi.org/10.1103/PhysRevLett.114.196602
|
55 |
Ando K. , Takahashi S. , Ieda J. , Kurebayashi H. , Trypiniotis T. , H. W. Barnes C. , Maekawa S. , Saitoh E. . Electrically tunable spin injector free from the impedance mismatch problem. Nat. Mater., 2011, 10(9): 655
https://doi.org/10.1038/nmat3052
|
56 |
Tang Z. , Shikoh E. , Ago H. , Kawahara K. , Ando Y. , Shinjo T. , Shiraishi M. . Dynamically generated pure spin current in single-layer graphene. Phys. Rev. B, 2013, 87(14): 140401
https://doi.org/10.1103/PhysRevB.87.140401
|
57 |
B. S. Mendes J. , Aparecido-Ferreira A. , Holanda J. , Azevedo A. , M. Rezende S. . Efficient spin to charge current conversion in the 2D semiconductor MoS2 by spin pumping from yttrium iron garnet. Appl. Phys. Lett., 2018, 112(24): 242407
https://doi.org/10.1063/1.5030643
|
58 |
A. Zvyagin A. . Longitudinal spin pumping and topological superconductivity: Search for Majorana edge states. Phys. Rev. B, 2014, 89(21): 214420
https://doi.org/10.1103/PhysRevB.89.214420
|
59 |
A. Zvyagin A. . Dynamics of the Kitaev chain model under parametric pumping. Phys. Rev. B, 2014, 90(1): 014507
https://doi.org/10.1103/PhysRevB.90.014507
|
60 |
A. Zvyagin A. . Modulation of the longitudinal pumping in quantum spin systems. Phys. Rev. B, 2020, 101(17): 174408
https://doi.org/10.1103/PhysRevB.101.174408
|
61 |
F. Becerra V. , Trif M. , Hyart T. . Quantized spin pumping in topological ferromagnetic-superconducting nanowires. Phys. Rev. Lett., 2023, 130(23): 237002
https://doi.org/10.1103/PhysRevLett.130.237002
|
62 |
G. Wang B. , Wang J. , Guo H. . Quantum spin field effect transistor. Phys. Rev. B, 2003, 67(9): 092408
https://doi.org/10.1103/PhysRevB.67.092408
|
63 |
Prada E. , Aguado R. , San-Jose P. . Measuring Majorana nonlocality and spin structure with a quantum dot. Phys. Rev. B, 2017, 96(8): 085418
https://doi.org/10.1103/PhysRevB.96.085418
|
64 |
M. Aksoy Ö. , R. Tolsma J. . Majorana zero modes in a quantum wire platform without Rashba spin−orbit coupling. Phys. Rev. B, 2020, 101(19): 195127
https://doi.org/10.1103/PhysRevB.101.195127
|
65 |
Büttiker M. . Role of quantum coherence in series resistors. Phys. Rev. B, 1986, 33(5): 3020
https://doi.org/10.1103/PhysRevB.33.3020
|
66 |
G. Wang B. , Wang J. , Guo H. . Shot noise of spin current. Phys. Rev. B, 2004, 69(15): 153301
https://doi.org/10.1103/PhysRevB.69.153301
|
67 |
Dong B. , L. Cui H. , L. Lei X. . Pumped spin-current and shot-noise spectra of a single quantum dot. Phys. Rev. Lett., 2005, 94(6): 066601
https://doi.org/10.1103/PhysRevLett.94.066601
|
68 |
Matsuo M. , Ohnuma Y. , Kato T. , Maekawa S. . Spin current noise of the spin Seebeck effect and spin pumping. Phys. Rev. Lett., 2018, 120(3): 037201
https://doi.org/10.1103/PhysRevLett.120.037201
|
69 |
K. Watson S. , M. Potok R. , M. Marcus C. , Umansky V. . Experimental realization of a quantum spin pump. Phys. Rev. Lett., 2003, 91(25): 258301
https://doi.org/10.1103/PhysRevLett.91.258301
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|