Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2024, Vol. 19 Issue (6) : 64201    https://doi.org/10.1007/s11467-024-1422-7
Visualization for physics analysis improvement and applications in BESIII
Zhi-Jun Li1, Ming-Kuan Yuan2,1, Yun-Xuan Song3,4, Yan-Gu Li4, Jing-Shu Li1, Sheng-Sen Sun5,6, Xiao-Long Wang2, Zheng-Yun You1(), Ya-Jun Mao4
1. School of Physics, Sun Yat-sen University, Guangzhou 510275, China
2. Institute of Modern Physics, Fudan University, Shanghai 200433, China
3. Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
4. School of Physics, Peking University, Beijing 100871, China
5. Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
6. University of Chinese Academy of Sciences, Beijing 100049, China
 Download: PDF(8688 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Modern particle physics experiments usually rely on highly complex and large-scale spectrometer devices. In high energy physics experiments, visualization helps detector design, data quality monitoring, offline data processing, and has great potential for improving physics analysis. In addition to the traditional physics data analysis based on statistical methods, visualization provides unique intuitive advantages in searching for rare signal events and reducing background noises. By applying the event display tool to several physics analyses in the BESIII experiment, we demonstrate that visualization can benefit potential physics discovery and improve the signal significance. With the development of modern visualization techniques, it is expected to play a more important role in future data processing and physics analysis of particle physics experiments.

Keywords particle physics experiments      visualization      physics analysis      BESIII     
Corresponding Author(s): Zheng-Yun You   
Issue Date: 05 July 2024
 Cite this article:   
Zhi-Jun Li,Ming-Kuan Yuan,Yun-Xuan Song, et al. Visualization for physics analysis improvement and applications in BESIII[J]. Front. Phys. , 2024, 19(6): 64201.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-024-1422-7
https://academic.hep.com.cn/fop/EN/Y2024/V19/I6/64201
Characteristic Statistical cut-based analysis Visualization
Processing a large number of events ?
Quantifying the statistical features of multiple events ?
Relying on other software and experience ?
Highly intuitive ?
Comprehensive detailed information for a single event ?
Tab.1  The advantages and disadvantages of statistical cut-based and visualization analysis.
Fig.1  The steps in general statistical cut-based physics analysis (left part) and the supplement of visualization in each step (right part). The two methods can be combined to improve the physics analysis.
Fig.2  Visualization of BESIII detector, where the outermost red part interleaved with white layers is MUC, the blue part is EMC, the yellow part is TOF, the light grey part is MDC, and the central dark grey part is the beam pipe.
Fig.3  GUI of BesVis and display of an example event with 2D (a) and 3D (b) visualization, where the event is ψ(2S) π+πJ/ψ,J/ψγη c,ηcγ γ from simulation.
Fig.4  (a) An event display simulated for J /ψ Λ Λ¯ ,Λ¯p¯π+, Λ i nv is ib le. (b) A fake “dark matter signal” in observed data from statistical cut-based analysis. The blue region represents EMC, and the yellow region represents TOF. The inner red hits indicate p¯π+ tracks, while the red squares within the yellow region represent TOF hits. The outermost purple-red bars represent EMC clusters. In (b), the additional EMC hits on the opposite of p ¯π+ indicate that this event is a false signal, and the lack of TOF hits implies the reason for the fake signal.
Fig.5  (a) J/ψK+Kπ+π,K μ ν¯ μ background events, where the four charged tracks cannot intersect at a single point. (b) J /ψ D μ+νμ,D K+ππ signal events, where the four charged tracks can intersect at a single point, indicating they are from the same primary vertex. The display mode is called fisheye view, which amplifies the central region for better observation of the particles' vertices. The green and blue circles represent the stereo and straight wires in MDC, respectively.
Fig.6  Two background events in searching for ψ(2S) e±μ . The black lines represent the reconstructed charged tracks. (a) The particle has a cos θ0.85 and passes through the gap between the EMC barrel and endcap. (b) The particle has a cosθ0 and passes through a small gap between EMC crystals pointing to the collision vertex.
Fig.7  Comparison of reaction signals for n¯ (a) and Λ ¯ n¯ π0 (b) in the EMC. The blue part represents the EMC, and the red parts indicate the hits of neutral particles in the EMC. In (a) and (b), the large red hits in the lower half of the EMC are associated with anti-neutron, while the two smaller red hits in the upper half of the EMC in (b) come from π0γγ decay.
1 Aad G., [ATLAS Collaboration] .. et al.. The ATLAS experiment at the CERN Large Hadron Collider. J. Instrum., 2008, 3(8): S08003
https://doi.org/10.1088/1748-0221/3/08/S08003
2 Chatrchyan S., [CMS Collaboration] .. et al.. The CMS experiment at the CERN LHC. J. Instrum., 2008, 3(8): S08004
https://doi.org/10.1088/1748-0221/3/08/S08004
3 [LHCb Collaboration] Alves. et al.. The LHCb Detector at the LHC. J. Instrum., 2008, 3(8): S08005
https://doi.org/10.1088/1748-0221/3/08/S08005
4 Aaij R.. et al.. LHCb Detector performance. Int. J. Mod. Phys. A, 2015, 30(7): 1530022
https://doi.org/10.1142/S0217751X15300227
5 Ablikim M., et al.., Design and construction of the BESIII Detector, Nucl. Instrum. Meth. A 614, 345 (2010), arXiv: 0911.4960 [physics.ins-det]
6 Aubert B., et al.., The BaBar Detector, Nucl. Instrum. Meth. A 479, 1 (2002), arXiv: hep-ex/0105044
7 Abashian A.. et al.. The Belle Detector. Nucl. Instrum. Methods Phys. Res. A, 2002, 479(1): 117
https://doi.org/10.1016/S0168-9002(01)02013-7
8 Abe T., et al.., Belle II technical design report (2010), arXiv: 1011.0352 [physics.ins-det]
9 Bellis M., et al.., HEP Software Foundation Community White Paper Working Group – Visualization (2018), arXiv: 1811.10309 [physics.comp-ph]
10 Albrecht J., et al.., A roadmap for HEP software and computing R&D for the 2020s, Comput. Softw. Big Sci. 3(1), 7 (2019), arXiv: 1712.06982 [physics.comp-ph]
11 Yan L.. et al.. Lagrange multiplier method used in BESIII kinematic fitting. Chin. Phys. C, 2010, 34(2): 204
https://doi.org/10.1088/1674-1137/34/2/009
12 B. Fowler W., P. Shutt R., M. Thorndike A., L. Whittemore W.. Production of heavy unstable particles by negative pions. Phys. Rev., 1954, 93(4): 861
https://doi.org/10.1103/PhysRev.93.861
13 San-Tsiang T., Zah-Wei H., Vigneron L., Chastel R.. Ternary and quaternary fission of uranium nuclei. Nature, 1947, 159(4049): 773
https://doi.org/10.1038/159773a0
14 Yu C., et al.., BEPCII performance and beam dynamics studies on luminosity, in: 7th International Particle Accelerator Conference, p. 01 (2016)
15 Ablikim M., et al.., Future physics programme of BESIII, Chin. Phys. C 44(4), 040001 (2020), arXiv: 1912.05983 [hep-ex]
16 Liang Y., Zhu B., Y. You Z., Liu K., Ye H., Xu G., Wang S., Li W., Liu H., Mao Z., Mao Y.. A uniform geometry description for simulation, reconstruction and visualization in the BESIII experiment. Nucl. Instrum. Methods Phys. Res. A, 2009, 603(3): 325
https://doi.org/10.1016/j.nima.2009.02.036
17 Huang S., You Z.. Update of the BESIII event display system. J. Phys. Conf. Ser., 2018, 1085(4): 042027
https://doi.org/10.1088/1742-6596/1085/4/042027
18 Brun R., Rademakers F.. Root ‒ An object oriented data analysis framework. Nucl. Instrum. Methods Phys. Res. A, 1997, 389(1): 81
https://doi.org/10.1016/S0168-9002(97)00048-X
19 Wang Y.. Preface: Special topic on physics of the BESIII experiment. Natl. Sci. Rev., 2021, 8(11): nwab201
https://doi.org/10.1093/nsr/nwab201
20 Ablikim M., et al.., Number of J/ψ events at BESIII, Chin. Phys. C 46(7), 074001 (2022), arXiv: 2111.07571 [hep-ex]
21 Ablikim M.. et al.. Search for invisible decays of the Λ baryon. Phys. Rev. D, 2022, 105(7): L071101
https://doi.org/10.1103/PhysRevD.105.L071101
22 Ablikim M.. et al.. Search for the semi-muonic charmonium decay J/ψDµ+νµ+c.c.. J. High Energy Phys., 2024, 2024(1): 126
https://doi.org/10.1007/JHEP01(2024)126
23 Ablikim M., et al.., Search for the lepton flavor violating decay J/ψ → eµ, Sci. China Phys. Mech. Astron. 66(2), 221011 (2023)
24 Guan Y.R. Lü X.Zheng Y.F. Wang Y., Study of the efficiency of event start time determination at BESIII, Chin. Phys. C 38(1), 016201 (2014), arXiv: 1304.6177 [physics.ins-det]
25 M. Wang Y., Zou H., T. Wei Z., Q. Li X., D. Lu C.. The Transition form-factors for semi-leptonic weak decays of J/ψ in QCD sum rules. Eur. Phys. J. C, 2008, 54(1): 107
https://doi.org/10.1140/epjc/s10052-007-0498-x
26 L. Shen Y.M. Wang Y., J/ψ weak decays in the covariant light-front quark model, Phys. Rev. D 78(7), 074012 (2008)
27 Dhir R., C. Verma R., Sharma A.. Effects of flavor dependence on weak decays of J/ψ and ϒ. Adv. High Energy Phys., 2013, 2013: 706543
https://doi.org/10.1155/2013/706543
28 A. Ivanov M., T. Tran C.. Exclusive decays J/ψ→D(s ) (∗)−l+νl in a covariant constituent quark model with infrared confinement. Phys. Rev. D, 2015, 92(7): 074030
https://doi.org/10.1103/PhysRevD.92.074030
29 Wang T., Jiang Y., Yuan H., Chai K., L. Wang G.. Weak decays of J/ψ and ϒ(1S). J. Phys. G Nucl. Part. Phys., 2017, 44(4): 045004
https://doi.org/10.1088/1361-6471/aa5f68
30 Datta A., J. O’Donnell P., Pakvasa S., Zhang X.. Flavor changing processes in quarkonium decays. Phys. Rev. D, 1999, 60(1): 014011
https://doi.org/10.1103/PhysRevD.60.014011
31 B. Li H.H. Zhu S., Mini-review of rare charmonium decays at BESIII, Chin. Phys. C 36, 932 (2012), arXiv: 1202.2955 [hep-ex]
32 Wang D., New physics program of BES, in: 30 Years of BES Physics: Proceedings of the Symposium, pp 162–168, World Scientific, 2020
33 Chen S., L. Olsen S.. New physics searches at the BESIII experiment. Natl. Sci. Rev., 2021, 8(11): nwab189
https://doi.org/10.1093/nsr/nwab189
34 B. Li H., et al.., Physics in the τ-charm Region at BESIII, in: Snowmass 2021 (2022)
35 Fukuda Y.. et al.. Evidence for oscillation of atmospheric neutrinos. Phys. Rev. Lett., 1998, 81(8): 1562
https://doi.org/10.1103/PhysRevLett.81.1562
36 R. Ahmad Q.. et al.. Direct evidence for neutrino flavor transformation from neutral current interactions in the Sudbury Neutrino Observatory. Phys. Rev. Lett., 2002, 89: 011301
https://doi.org/10.1103/PhysRevLett.89.011301
37 H. Bernstein R.S. Cooper P., Charged lepton flavor violation: An experimenter’s guide, Phys. Rep. 532, 27 (2013), arXiv: 1307.5787 [hep-ex]
38 Cei F., Nicolo D.. Lepton flavour violation experiments. Adv. High Energy Phys., 2014, 2014: 282915
https://doi.org/10.1155/2014/282915
39 Love W.. et al.. Search for lepton flavor violation in upsilon decays. Phys. Rev. Lett., 2008, 101(20): 201601
https://doi.org/10.1103/PhysRevLett.101.201601
40 P. Lees J.. et al.. Search for Lepton Flavor Violation in ϒ(3S) → e±μ∓. Phys. Rev. Lett., 2022, 128(9): 091804
https://doi.org/10.1103/PhysRevLett.128.091804
41 Patra S., et al.., Search for charged lepton flavor violating decays of ϒ(1S), J. High Energy Phys. 05, 095 (2022), arXiv: 2201.09620 [hep-ex]
42 Ablikim M., et al.., Search for the lepton flavor violation processes J/ψ → µτ and , Phys. Lett. B 598, 172 (2004), arXiv: hep-ex/0406018
43 Ablikim M., et al.., Search for the lepton flavor violation process J/ψ → eµ at BESIII, Phys. Rev. D 87, 112007 (2013), arXiv: 1304.3205 [hep-ex]
44 Ablikim M., et al.., Search for the charged lepton flavor violating decay J/ψ → eτ, Phys. Rev. D 103(11), 112007 (2021), arXiv: 2103.11540 [hep-ex]
45 B. Li H., R. Lyu X.. Study of the standard model with weak decays of charmed hadrons at BESIII. Natl. Sci. Rev., 2021, 8(11): 181
https://doi.org/10.1093/nsr/nwab181
46 Cabibbo N.. Unitary symmetry and leptonic decays. Phys. Rev. Lett., 1963, 10(12): 531
https://doi.org/10.1103/PhysRevLett.10.531
47 Kobayashi M., Maskawa T.. CP violation in the renormalizable theory of weak interaction. Prog. Theor. Phys., 1973, 49: 652
https://doi.org/10.1143/PTP.49.652
48 Qu H., Gouskos L.. ParticleNet: Jet tagging via particle clouds. Phys. Rev. D, 2020, 101(5): 056019
https://doi.org/10.1103/PhysRevD.101.056019
49 Wang Y., Sun Y., Liu Z., E. Sarma S., M. Bronstein M., M. Solomon J.. Dynamic graph cnn for learning on point clouds. ACM Trans. Graph., 2019, 38(5): 1
https://doi.org/10.1145/3326362
50 Y. Li Z., Qian Z., H. He J., He W., X. Wu C., Y. Cai X., Y. You Z., M. Zhang Y., M. Luo W.. Improvement of machine learning-based vertex reconstruction for large liquid scintillator detectors with multiple types of PMTs. Nucl. Sci. Tech., 2022, 33(7): 93
https://doi.org/10.1007/s41365-022-01078-y
51 Qian Z., et al.., Vertex and energy reconstruction in JUNO with machine learning methods, Nucl. Instrum. Meth. A 1010, 165527 (2021), arXiv: 2101.04839 [physics.ins-det]
52 Ablikim M.. et al.. Evidence for ψ′ decays into γπ0 and γη. Phys. Rev. Lett., 2010, 105: 261801
https://doi.org/10.1103/PhysRevLett.105.261801
53 Ablikim M.. et al.. Search for the semi-leptonic decays Λc+→Λπ+π−e+νe and Λ c+→pKS 0π−e+νe. Phys. Lett. B, 2023, 843: 137993
https://doi.org/10.1016/j.physletb.2023.137993
54 Ablikim M.. et al.. Measurement of branching fractions of Λc+ decays to Σ+K+K−, Σ+ϕ and Σ+K+π−(π0). J. High Energy Phys., 2023, 2023(9): 125
https://doi.org/10.1007/JHEP09(2023)125
55 Ablikim M.. et al.. Search for the rare semi-leptonic decay J/ψDe+νe + c.c.. J. High Energy Phys., 2021, 2021(6): 157
https://doi.org/10.1007/JHEP06(2021)157
56 Abusleme A.. et al.. JUNO physics and detector. Prog. Part. Nucl. Phys., 2022, 123: 103927
https://doi.org/10.1016/j.ppnp.2021.103927
57 Achasov. et al.. STCF conceptual design report: Volume 1 – Physics & detector. Front. Phys., 2024, 19(1): 14701
https://doi.org/10.1007/s11467-023-1333-z
58 Dong M., et al.., CEPC conceptual design report: Volume 2 – Physics & detector, arXiv: 1811.10545 [hep-ex]
59 You Z., Li K., Zhang Y., Zhu J., Lin T., Li W.. A ROOT based event display software for JUNO. J. Instrum., 2018, 13(2): T02002
https://doi.org/10.1088/1748-0221/13/02/T02002
60 Zhu J., You Z., Zhang Y., Li Z., Zhang S., Lin T., Li W.. A method of detector and event visualization with Unity in JUNO. J. Instrum., 2019, 14(01): 01007
https://doi.org/10.1088/1748-0221/14/01/T01007
61 Zhang S., S. Li J., J. Su Y., M. Zhang Y., Y. Li Z., Y. You Z.. A method for sharing dynamic geometry information in studies on liquid-based detectors. Nucl. Sci. Tech., 2021, 32(2): 21
https://doi.org/10.1007/s41365-021-00852-8
62 Frank M.Gaede F.Petric M.Sailer A., AIDASoft/DD4hep, Webpage: dd4hep.cern.ch/ (2018)
63 X. Huang K., J. Li Z., Qian Z., Zhu J., Y. Li H., M. Zhang Y., S. Sun S., Y. You Z.. Method for detector description transformation to Unity and application in BESIII. Nucl. Sci. Tech., 2022, 33(11): 142
https://doi.org/10.1007/s41365-022-01133-8
64 EDM4hep. GitHub: github.com/key4hep/EDM4hep
[1] Hai-Bo Li. Prospects for rare and forbidden hyperon decays at BESIII[J]. Front. Phys. , 2017, 12(5): 121301-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed