|
|
Visualization for physics analysis improvement and applications in BESIII |
Zhi-Jun Li1, Ming-Kuan Yuan2,1, Yun-Xuan Song3,4, Yan-Gu Li4, Jing-Shu Li1, Sheng-Sen Sun5,6, Xiao-Long Wang2, Zheng-Yun You1( ), Ya-Jun Mao4 |
1. School of Physics, Sun Yat-sen University, Guangzhou 510275, China 2. Institute of Modern Physics, Fudan University, Shanghai 200433, China 3. Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland 4. School of Physics, Peking University, Beijing 100871, China 5. Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China 6. University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract Modern particle physics experiments usually rely on highly complex and large-scale spectrometer devices. In high energy physics experiments, visualization helps detector design, data quality monitoring, offline data processing, and has great potential for improving physics analysis. In addition to the traditional physics data analysis based on statistical methods, visualization provides unique intuitive advantages in searching for rare signal events and reducing background noises. By applying the event display tool to several physics analyses in the BESIII experiment, we demonstrate that visualization can benefit potential physics discovery and improve the signal significance. With the development of modern visualization techniques, it is expected to play a more important role in future data processing and physics analysis of particle physics experiments.
|
Keywords
particle physics experiments
visualization
physics analysis
BESIII
|
Corresponding Author(s):
Zheng-Yun You
|
Issue Date: 05 July 2024
|
|
1 |
Aad G., [ATLAS Collaboration] .. et al.. The ATLAS experiment at the CERN Large Hadron Collider. J. Instrum., 2008, 3(8): S08003
https://doi.org/10.1088/1748-0221/3/08/S08003
|
2 |
Chatrchyan S., [CMS Collaboration] .. et al.. The CMS experiment at the CERN LHC. J. Instrum., 2008, 3(8): S08004
https://doi.org/10.1088/1748-0221/3/08/S08004
|
3 |
[LHCb Collaboration] Alves. et al.. The LHCb Detector at the LHC. J. Instrum., 2008, 3(8): S08005
https://doi.org/10.1088/1748-0221/3/08/S08005
|
4 |
Aaij R.. et al.. LHCb Detector performance. Int. J. Mod. Phys. A, 2015, 30(7): 1530022
https://doi.org/10.1142/S0217751X15300227
|
5 |
Ablikim M., et al.., Design and construction of the BESIII Detector, Nucl. Instrum. Meth. A 614, 345 (2010), arXiv: 0911.4960 [physics.ins-det]
|
6 |
Aubert B., et al.., The BaBar Detector, Nucl. Instrum. Meth. A 479, 1 (2002), arXiv: hep-ex/0105044
|
7 |
Abashian A.. et al.. The Belle Detector. Nucl. Instrum. Methods Phys. Res. A, 2002, 479(1): 117
https://doi.org/10.1016/S0168-9002(01)02013-7
|
8 |
Abe T., et al.., Belle II technical design report (2010), arXiv: 1011.0352 [physics.ins-det]
|
9 |
Bellis M., et al.., HEP Software Foundation Community White Paper Working Group – Visualization (2018), arXiv: 1811.10309 [physics.comp-ph]
|
10 |
Albrecht J., et al.., A roadmap for HEP software and computing R&D for the 2020s, Comput. Softw. Big Sci. 3(1), 7 (2019), arXiv: 1712.06982 [physics.comp-ph]
|
11 |
Yan L.. et al.. Lagrange multiplier method used in BESIII kinematic fitting. Chin. Phys. C, 2010, 34(2): 204
https://doi.org/10.1088/1674-1137/34/2/009
|
12 |
B. Fowler W., P. Shutt R., M. Thorndike A., L. Whittemore W.. Production of heavy unstable particles by negative pions. Phys. Rev., 1954, 93(4): 861
https://doi.org/10.1103/PhysRev.93.861
|
13 |
San-Tsiang T., Zah-Wei H., Vigneron L., Chastel R.. Ternary and quaternary fission of uranium nuclei. Nature, 1947, 159(4049): 773
https://doi.org/10.1038/159773a0
|
14 |
Yu C., et al.., BEPCII performance and beam dynamics studies on luminosity, in: 7th International Particle Accelerator Conference, p. 01 (2016)
|
15 |
Ablikim M., et al.., Future physics programme of BESIII, Chin. Phys. C 44(4), 040001 (2020), arXiv: 1912.05983 [hep-ex]
|
16 |
Liang Y., Zhu B., Y. You Z., Liu K., Ye H., Xu G., Wang S., Li W., Liu H., Mao Z., Mao Y.. A uniform geometry description for simulation, reconstruction and visualization in the BESIII experiment. Nucl. Instrum. Methods Phys. Res. A, 2009, 603(3): 325
https://doi.org/10.1016/j.nima.2009.02.036
|
17 |
Huang S., You Z.. Update of the BESIII event display system. J. Phys. Conf. Ser., 2018, 1085(4): 042027
https://doi.org/10.1088/1742-6596/1085/4/042027
|
18 |
Brun R., Rademakers F.. Root ‒ An object oriented data analysis framework. Nucl. Instrum. Methods Phys. Res. A, 1997, 389(1): 81
https://doi.org/10.1016/S0168-9002(97)00048-X
|
19 |
Wang Y.. Preface: Special topic on physics of the BESIII experiment. Natl. Sci. Rev., 2021, 8(11): nwab201
https://doi.org/10.1093/nsr/nwab201
|
20 |
Ablikim M., et al.., Number of J/ψ events at BESIII, Chin. Phys. C 46(7), 074001 (2022), arXiv: 2111.07571 [hep-ex]
|
21 |
Ablikim M.. et al.. Search for invisible decays of the Λ baryon. Phys. Rev. D, 2022, 105(7): L071101
https://doi.org/10.1103/PhysRevD.105.L071101
|
22 |
Ablikim M.. et al.. Search for the semi-muonic charmonium decay J/ψ → D−µ+νµ+c.c.. J. High Energy Phys., 2024, 2024(1): 126
https://doi.org/10.1007/JHEP01(2024)126
|
23 |
Ablikim M., et al.., Search for the lepton flavor violating decay J/ψ → eµ, Sci. China Phys. Mech. Astron. 66(2), 221011 (2023)
|
24 |
Guan Y.R. Lü X.Zheng Y.F. Wang Y., Study of the efficiency of event start time determination at BESIII, Chin. Phys. C 38(1), 016201 (2014), arXiv: 1304.6177 [physics.ins-det]
|
25 |
M. Wang Y., Zou H., T. Wei Z., Q. Li X., D. Lu C.. The Transition form-factors for semi-leptonic weak decays of J/ψ in QCD sum rules. Eur. Phys. J. C, 2008, 54(1): 107
https://doi.org/10.1140/epjc/s10052-007-0498-x
|
26 |
L. Shen Y.M. Wang Y., J/ψ weak decays in the covariant light-front quark model, Phys. Rev. D 78(7), 074012 (2008)
|
27 |
Dhir R., C. Verma R., Sharma A.. Effects of flavor dependence on weak decays of J/ψ and ϒ. Adv. High Energy Phys., 2013, 2013: 706543
https://doi.org/10.1155/2013/706543
|
28 |
A. Ivanov M., T. Tran C.. Exclusive decays J/ψ→D(s ) (∗)−l+νl in a covariant constituent quark model with infrared confinement. Phys. Rev. D, 2015, 92(7): 074030
https://doi.org/10.1103/PhysRevD.92.074030
|
29 |
Wang T., Jiang Y., Yuan H., Chai K., L. Wang G.. Weak decays of J/ψ and ϒ(1S). J. Phys. G Nucl. Part. Phys., 2017, 44(4): 045004
https://doi.org/10.1088/1361-6471/aa5f68
|
30 |
Datta A., J. O’Donnell P., Pakvasa S., Zhang X.. Flavor changing processes in quarkonium decays. Phys. Rev. D, 1999, 60(1): 014011
https://doi.org/10.1103/PhysRevD.60.014011
|
31 |
B. Li H.H. Zhu S., Mini-review of rare charmonium decays at BESIII, Chin. Phys. C 36, 932 (2012), arXiv: 1202.2955 [hep-ex]
|
32 |
Wang D., New physics program of BES, in: 30 Years of BES Physics: Proceedings of the Symposium, pp 162–168, World Scientific, 2020
|
33 |
Chen S., L. Olsen S.. New physics searches at the BESIII experiment. Natl. Sci. Rev., 2021, 8(11): nwab189
https://doi.org/10.1093/nsr/nwab189
|
34 |
B. Li H., et al.., Physics in the τ-charm Region at BESIII, in: Snowmass 2021 (2022)
|
35 |
Fukuda Y.. et al.. Evidence for oscillation of atmospheric neutrinos. Phys. Rev. Lett., 1998, 81(8): 1562
https://doi.org/10.1103/PhysRevLett.81.1562
|
36 |
R. Ahmad Q.. et al.. Direct evidence for neutrino flavor transformation from neutral current interactions in the Sudbury Neutrino Observatory. Phys. Rev. Lett., 2002, 89: 011301
https://doi.org/10.1103/PhysRevLett.89.011301
|
37 |
H. Bernstein R.S. Cooper P., Charged lepton flavor violation: An experimenter’s guide, Phys. Rep. 532, 27 (2013), arXiv: 1307.5787 [hep-ex]
|
38 |
Cei F., Nicolo D.. Lepton flavour violation experiments. Adv. High Energy Phys., 2014, 2014: 282915
https://doi.org/10.1155/2014/282915
|
39 |
Love W.. et al.. Search for lepton flavor violation in upsilon decays. Phys. Rev. Lett., 2008, 101(20): 201601
https://doi.org/10.1103/PhysRevLett.101.201601
|
40 |
P. Lees J.. et al.. Search for Lepton Flavor Violation in ϒ(3S) → e±μ∓. Phys. Rev. Lett., 2022, 128(9): 091804
https://doi.org/10.1103/PhysRevLett.128.091804
|
41 |
Patra S., et al.., Search for charged lepton flavor violating decays of ϒ(1S), J. High Energy Phys. 05, 095 (2022), arXiv: 2201.09620 [hep-ex]
|
42 |
Ablikim M., et al.., Search for the lepton flavor violation processes J/ψ → µτ and eτ, Phys. Lett. B 598, 172 (2004), arXiv: hep-ex/0406018
|
43 |
Ablikim M., et al.., Search for the lepton flavor violation process J/ψ → eµ at BESIII, Phys. Rev. D 87, 112007 (2013), arXiv: 1304.3205 [hep-ex]
|
44 |
Ablikim M., et al.., Search for the charged lepton flavor violating decay J/ψ → eτ, Phys. Rev. D 103(11), 112007 (2021), arXiv: 2103.11540 [hep-ex]
|
45 |
B. Li H., R. Lyu X.. Study of the standard model with weak decays of charmed hadrons at BESIII. Natl. Sci. Rev., 2021, 8(11): 181
https://doi.org/10.1093/nsr/nwab181
|
46 |
Cabibbo N.. Unitary symmetry and leptonic decays. Phys. Rev. Lett., 1963, 10(12): 531
https://doi.org/10.1103/PhysRevLett.10.531
|
47 |
Kobayashi M., Maskawa T.. CP violation in the renormalizable theory of weak interaction. Prog. Theor. Phys., 1973, 49: 652
https://doi.org/10.1143/PTP.49.652
|
48 |
Qu H., Gouskos L.. ParticleNet: Jet tagging via particle clouds. Phys. Rev. D, 2020, 101(5): 056019
https://doi.org/10.1103/PhysRevD.101.056019
|
49 |
Wang Y., Sun Y., Liu Z., E. Sarma S., M. Bronstein M., M. Solomon J.. Dynamic graph cnn for learning on point clouds. ACM Trans. Graph., 2019, 38(5): 1
https://doi.org/10.1145/3326362
|
50 |
Y. Li Z., Qian Z., H. He J., He W., X. Wu C., Y. Cai X., Y. You Z., M. Zhang Y., M. Luo W.. Improvement of machine learning-based vertex reconstruction for large liquid scintillator detectors with multiple types of PMTs. Nucl. Sci. Tech., 2022, 33(7): 93
https://doi.org/10.1007/s41365-022-01078-y
|
51 |
Qian Z., et al.., Vertex and energy reconstruction in JUNO with machine learning methods, Nucl. Instrum. Meth. A 1010, 165527 (2021), arXiv: 2101.04839 [physics.ins-det]
|
52 |
Ablikim M.. et al.. Evidence for ψ′ decays into γπ0 and γη. Phys. Rev. Lett., 2010, 105: 261801
https://doi.org/10.1103/PhysRevLett.105.261801
|
53 |
Ablikim M.. et al.. Search for the semi-leptonic decays Λc+→Λπ+π−e+νe and Λ c+→pKS 0π−e+νe. Phys. Lett. B, 2023, 843: 137993
https://doi.org/10.1016/j.physletb.2023.137993
|
54 |
Ablikim M.. et al.. Measurement of branching fractions of Λc+ decays to Σ+K+K−, Σ+ϕ and Σ+K+π−(π0). J. High Energy Phys., 2023, 2023(9): 125
https://doi.org/10.1007/JHEP09(2023)125
|
55 |
Ablikim M.. et al.. Search for the rare semi-leptonic decay J/ψ → D−e+νe + c.c.. J. High Energy Phys., 2021, 2021(6): 157
https://doi.org/10.1007/JHEP06(2021)157
|
56 |
Abusleme A.. et al.. JUNO physics and detector. Prog. Part. Nucl. Phys., 2022, 123: 103927
https://doi.org/10.1016/j.ppnp.2021.103927
|
57 |
Achasov. et al.. STCF conceptual design report: Volume 1 – Physics & detector. Front. Phys., 2024, 19(1): 14701
https://doi.org/10.1007/s11467-023-1333-z
|
58 |
Dong M., et al.., CEPC conceptual design report: Volume 2 – Physics & detector, arXiv: 1811.10545 [hep-ex]
|
59 |
You Z., Li K., Zhang Y., Zhu J., Lin T., Li W.. A ROOT based event display software for JUNO. J. Instrum., 2018, 13(2): T02002
https://doi.org/10.1088/1748-0221/13/02/T02002
|
60 |
Zhu J., You Z., Zhang Y., Li Z., Zhang S., Lin T., Li W.. A method of detector and event visualization with Unity in JUNO. J. Instrum., 2019, 14(01): 01007
https://doi.org/10.1088/1748-0221/14/01/T01007
|
61 |
Zhang S., S. Li J., J. Su Y., M. Zhang Y., Y. Li Z., Y. You Z.. A method for sharing dynamic geometry information in studies on liquid-based detectors. Nucl. Sci. Tech., 2021, 32(2): 21
https://doi.org/10.1007/s41365-021-00852-8
|
62 |
Frank M.Gaede F.Petric M.Sailer A., AIDASoft/DD4hep, Webpage: dd4hep.cern.ch/ (2018)
|
63 |
X. Huang K., J. Li Z., Qian Z., Zhu J., Y. Li H., M. Zhang Y., S. Sun S., Y. You Z.. Method for detector description transformation to Unity and application in BESIII. Nucl. Sci. Tech., 2022, 33(11): 142
https://doi.org/10.1007/s41365-022-01133-8
|
64 |
EDM4hep. GitHub: github.com/key4hep/EDM4hep
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|