|
|
Engineering multipartite steady entanglement of distant atoms via dissipation |
Zhao Jin1, S.-L. Su2, Ai-Dong Zhu3, Hong-Fu Wang3, Shou Zhang1,3( ) |
1. Department of Physics, Harbin Institute of Technology, Harbin 150001, China 2. School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001, China 3. Department of Physics, College of Science, Yanbian University, Yanji, Jilin 133002, China |
|
|
Abstract We propose a scheme for generating an entangled state for three atoms trapped in separate optical cavities that are coupled to each other through two optical fibers based on coherent driving and dissipation, which are induced by the classical fields and the decay of non-local bosonic modes, respectively. In our scheme, the interaction time need not be controlled strictly in the overall dynamics process, and the cavity field decay can be changed into a vital resource. The numerical simulation shows that the fidelity of the target state is insensitive to atomic spontaneous emission, and our scheme is good enough to generate the W state of distant atoms with a high fidelity and purity. In addition, the present scheme can also be generalized to prepare the N-partite W state of distant atoms.
|
Keywords
steady-state entanglement
dissipative dynamics
laser manipulation
|
Corresponding Author(s):
Shou Zhang
|
Just Accepted Date: 08 August 2018
Issue Date: 10 September 2018
|
|
1 |
A. Einstein, B. Podolsky, and N. Rosen, Can quantummechanical description of physical reality be considered complete? Phys. Rev. 47(10), 777 (1935)
https://doi.org/10.1103/PhysRev.47.777
|
2 |
D. Bohm, Quantum Theory, Prentice-Hall, Englewood Cliffs, NJ, 1951
|
3 |
J. I. Cirac and P. Zoller, Quantum computations with cold trapped ions, Phys. Rev. Lett. 74(20), 4091 (1995)
https://doi.org/10.1103/PhysRevLett.74.4091
|
4 |
I. E. Protsenko, G. Reymond, N. Schlosser, and P. Grangier, Conditional quantum logic using two atomic qubits, Phys. Rev. A 66(6), 062306 (2002)
https://doi.org/10.1103/PhysRevA.66.062306
|
5 |
N. A. Gershenfeld and I. L. Chuang, Bulk spinresonance quantum computation, Science 275(5298), 350 (1997)
https://doi.org/10.1126/science.275.5298.350
|
6 |
P. Domokos, J. M. Raimond, M. Brune, and S. Haroche, Simple cavity-QED two-bit universal quantum logic gate: The principle and expected performances, Phys. Rev. A 52(5), 3554 (1995)
https://doi.org/10.1103/PhysRevA.52.3554
|
7 |
Y. Makhlin, G. Schön, and A. Shnirman, Quantumstate engineering with Josephson-junction devices, Rev. Mod. Phys. 73(2), 357 (2001)
https://doi.org/10.1103/RevModPhys.73.357
|
8 |
D. Loss and D. P. DiVincenzo, Quantum computation with quantum dots, Phys. Rev. A 57(1), 120 (1998)
https://doi.org/10.1103/PhysRevA.57.120
|
9 |
N. D. Mermin, Extreme quantum entanglement in a superposition of macroscopically distinct states, Phys. Rev. Lett. 65(15), 1838 (1990)
https://doi.org/10.1103/PhysRevLett.65.1838
|
10 |
D. Collins, N. Gisin, S. Popescu, D. Roberts, and V. Scarani, Bell-type inequalities to detect true n-body nonseparability, Phys. Rev. Lett. 88(17), 170405 (2002)
https://doi.org/10.1103/PhysRevLett.88.170405
|
11 |
M. D. Reid, Q. Y. He, and P. D. Drummond, Entanglement and nonlocality in multi-particle systems, Front. Phys. 7(1), 72 (2012)
https://doi.org/10.1007/s11467-011-0233-9
|
12 |
M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, 2000
|
13 |
A. Karlsson and M. Bourennane, Quantum teleportation using three-particle entanglement, Phys. Rev. A 58(6), 4394 (1998)
https://doi.org/10.1103/PhysRevA.58.4394
|
14 |
P. Y. Xiong, X. T. Yu, H. T. Zhan, and Z. C. Zhang, Multiple teleportation via partially entangled GHZ state, Front. Phys. 11(4), 110303 (2016)
https://doi.org/10.1007/s11467-016-0553-x
|
15 |
M. D. G. Ramírez, B. J. Falaye, G. H. Sun, M. Cruz-Irisson, and S. H. Dong, Quantum teleportation and information splitting via four-qubit cluster state and a Bell state, Front. Phys. 12(5), 120306 (2017)
https://doi.org/10.1007/s11467-017-0684-8
|
16 |
R. Cleve, D. Gottesman, and H. K. Lo, How to share a quantum secret, Phys. Rev. Lett. 83(3), 648 (1999)
https://doi.org/10.1103/PhysRevLett.83.648
|
17 |
M. Hillery, V. Bužek, and A. Berthiaume, Quantum secret sharing, Phys. Rev. A 59(3), 1829 (1999)
https://doi.org/10.1103/PhysRevA.59.1829
|
18 |
D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, Bell’s theorem without inequalities, Am. J. Phys. 58(12), 1131 (1990)
https://doi.org/10.1119/1.16243
|
19 |
W. Dür, G. Vidal, and J. I. Cirac, Three qubits can be entangled in two inequivalent ways, Phys. Rev. A 62(6), 062314 (2000)
https://doi.org/10.1103/PhysRevA.62.062314
|
20 |
A. Cabello, Two qubits of a W state violate Bell’s inequality beyond Cirel’son’s bound, Rev. Rev. A 66(4), 042114 (2002)
https://doi.org/10.1103/PhysRevA.66.042114
|
21 |
S. L. Su, Y. Z. Tian, H. Z. Shen, H. P. Zang, E. J. Liang, and S. Zhang, Applications of the modified Rydberg antiblockade regime with simultaneous driving, Phys. Rev. A 96(4), 042335 (2017)
https://doi.org/10.1103/PhysRevA.96.042335
|
22 |
S. L. Su, Y. Gao, E. J. Liang, and S. Zhang, Fast Rydberg antiblockade regime and its applications in quantum logic gates, Phys. Rev. A 95(2), 022319 (2017)
https://doi.org/10.1103/PhysRevA.95.022319
|
23 |
S. L. Su, E. J. Liang, S. Zhang, J. J. Wen, L. L. Sun, Z. Jin, and A. D. Zhu, One-step implementation of the Rydberg–Rydberg-interaction gate, Phys. Rev. A 93(1), 012306 (2016)
https://doi.org/10.1103/PhysRevA.93.012306
|
24 |
M. B. Plenio, S. F. Huelga, A. Beige, and P. L. Knight, Cavity-loss-induced generation of entangled atoms, Phys. Rev. A 59(3), 2468 (1999)
https://doi.org/10.1103/PhysRevA.59.2468
|
25 |
S. Clark, A. Peng, M. Gu, and S. Parkins, unconditional preparation of entanglement between atoms in cascaded optical cavities, Phys. Rev. Lett. 91(17), 177901 (2003)
https://doi.org/10.1103/PhysRevLett.91.177901
|
26 |
J. Busch, S. De, S. S. Ivanov, B. T. Torosov, T. P. Spiller, and A. Beige, Cooling atom-cavity systems into entangled states, Phys. Rev. A 84(2), 022316 (2011)
https://doi.org/10.1103/PhysRevA.84.022316
|
27 |
M. J. Kastoryano, F. Reiter, and A. S. Sørensen, Dissipative preparation of entanglement in optical cavities, Phys. Rev. Lett. 106(9), 090502 (2011)
https://doi.org/10.1103/PhysRevLett.106.090502
|
28 |
F. Reiter, M. J. Kastoryano, and A. S. Sørensen, Driving two atoms in an optical cavity into an entangled steady state using engineered decay, New J. Phys. 14(5), 053022 (2012)
https://doi.org/10.1088/1367-2630/14/5/053022
|
29 |
L. T. Shen, X. Y. Chen, Z. B. Yang, H. Z. Wu, and S. B. Zheng, Steady-state entanglement for distant atoms by dissipation in coupled cavities, Phys. Rev. A 84(6), 064302 (2011)
https://doi.org/10.1103/PhysRevA.84.064302
|
30 |
L. T. Shen, X. Y. Chen, Z. B. Yang, H. Z. Wu, and S. B. Zheng, Distributed entanglement induced by dissipative bosonic media, Europhys. Lett. 99(2), 20003 (2012)
https://doi.org/10.1209/0295-5075/99/20003
|
31 |
L. T. Shen, X. Y. Chen, Z. B. Yang, H. Z. Wu, and S. B. Zheng, Cooling distant atoms into steady entanglement via coupled cavities, Quantum Inf. Comput. 13, 281 (2013)
|
32 |
L. T. Shen, X. Y. Chen, Z. B. Yang, H. Z. Wu, and S. B. Zheng, Preparation of two-qubit steady entanglement through driving a single qubit, Opt. Lett. 39(20), 6046 (2014)
https://doi.org/10.1364/OL.39.006046
|
33 |
S. L. Su, X. Q. Shao, H. F. Wang, and S. Zhang, Scheme for entanglement generation in an atom-cavity system via dissipation, Phys. Rev. A 90(5), 054302 (2014)
https://doi.org/10.1103/PhysRevA.90.054302
|
34 |
S. L. Su, Q. Guo, H. F. Wang, and S. Zhang, Simplified scheme for entanglement preparation with Rydberg pumping via dissipation, Phys. Rev. A 92(2), 022328 (2015)
https://doi.org/10.1103/PhysRevA.92.022328
|
35 |
S. B. Zheng and L. T. Shen, Generation and stabilization of maximal entanglement between two atomic qubits coupled to a decaying resonator, J. Phys. At. Mol. Opt. Phys. 47(5), 055502 (2014)
https://doi.org/10.1088/0953-4075/47/5/055502
|
36 |
X. Q. Shao, T. Y. Zheng, C. H. Oh, and S. Zhang, Dissipative creation of three-dimensional entangled state in optical cavity via spontaneous emission, Phys. Rev. A 89(1), 012319 (2014)
https://doi.org/10.1103/PhysRevA.89.012319
|
37 |
X. Q. Shao, J. B. You, T. Y. Zheng, C. H. Oh, and S. Zhang, Stationary three-dimensional entanglement via dissipative Rydberg pumping, Phys. Rev. A 89(5), 052313 (2014)
https://doi.org/10.1103/PhysRevA.89.052313
|
38 |
J. Song, X. D. Sun, Q. X. Mu, L. L. Zhang, Y. Xia, and H. S. Song, Direct conversion of a four-atom Wstate to a Greenberger–Horne–Zeilinger state via a dissipative process, Phys. Rev. A 88(2), 024305 (2013)
https://doi.org/10.1103/PhysRevA.88.024305
|
39 |
P. B. Li, S. Y. Gao, H. R. Li, S. L. Ma, and F. L. Li, Dissipative preparation of entangled states between two spatially separated nitrogen-vacancy centers, Phys. Rev. A 85(4), 042306 (2012)
https://doi.org/10.1103/PhysRevA.85.042306
|
40 |
C. Li, S. Yang, J. Song, Y. Xia, and W. Q. Ding, Generation of long-living entanglement between two distant three-level atoms in non-Markovian environments, Opt. Express 25(10), 10961 (2017)
https://doi.org/10.1364/OE.25.010961
|
41 |
S. L. Ma, Z. Y. Liao, F. L. Li, and M. S. Zubairy, Dissipative production of controllable steady-state entanglement of two superconducting qubits in separated resonators, Europhys. Lett. 110(4), 40004 (2015)
https://doi.org/10.1209/0295-5075/110/40004
|
42 |
A. S. Parkins, E. Solano, and J. I. Cirac, Unconditional two-mode squeezing of separated atomic ensembles, Phys. Rev. Lett. 96(5), 053602 (2006)
https://doi.org/10.1103/PhysRevLett.96.053602
|
43 |
C. A. Muschik, E. S. Polzik, and J. I. Cirac, Dissipatively driven entanglement of two macroscopic atomic ensembles, Phys. Rev. A 83(5), 052312 (2011)
https://doi.org/10.1103/PhysRevA.83.052312
|
44 |
E. G. Dalla Torre, J. Otterbach, E. Demler, V. Vuletic, and M. D. Lukin, Dissipative preparation of spin squeezed atomic ensembles in a steady state, Phys. Rev. Lett. 110(12), 120402 (2013)
https://doi.org/10.1103/PhysRevLett.110.120402
|
45 |
J. F. Poyatos, J. I. Cirac, and P. Zoller, Quantum reservoir engineering with laser cooled trapped ions, Phys. Rev. Lett. 77(23), 4728 (1996)
https://doi.org/10.1103/PhysRevLett.77.4728
|
46 |
J. Cho, S. Bose, and M. S. Kim, Optical pumping into manybody entanglement, Phys. Rev. Lett. 106(2), 020504 (2011)
https://doi.org/10.1103/PhysRevLett.106.020504
|
47 |
J. T. Barreiro, M. Muller, P. Schindler, D. Nigg, T. Monz, M. Chwalla, M. Hennrich, C. F. Roos, P. Zoller, and R. Blatt, An open-system quantum simulator with trapped ions, Nature 470(7335), 486 (2011)
https://doi.org/10.1038/nature09801
|
48 |
A. Gonzalez-Tudela, D. Martín-Cano, E. Moreno, L. Martin-Moreno, C. Tejedor, and F. J. Garcia-Vidal, Entanglement of two qubits mediated by one-dimensional plasmonic waveguides, Phys. Rev. Lett. 106(2), 020501 (2011)
https://doi.org/10.1103/PhysRevLett.106.020501
|
49 |
M. Gullans, T. G. Tiecke, D. E. Chang, J. Feist, J. D. Thompson, J. I. Cirac, P. Zoller, and M. D. Lukin, Nanoplasmonic lattices for ultracold atoms, Phys. Rev. Lett. 109(23), 235309 (2012)
https://doi.org/10.1103/PhysRevLett.109.235309
|
50 |
A. González-Tudela and D. Porras, Mesoscopic entanglement induced by spontaneous emission in solid-state quantum optics, Phys. Rev. Lett. 110(8), 080502 (2013)
https://doi.org/10.1103/PhysRevLett.110.080502
|
51 |
S. Diehl, A. Micheli, A. Kantian, B. Kraus, H. P. Büchler, and P. Zoller, Quantum states and phases in driven open quantum systems with cold atoms, Nat. Phys. 4(11), 878 (2008)
|
52 |
M. Foss-Feig, A. J. Daley, J. K. Thompson, and A. M. Rey, Steady-state many-body entanglement of hot reactive fermions, Phys. Rev. Lett. 109(23), 230501 (2012)
https://doi.org/10.1103/PhysRevLett.109.230501
|
53 |
D. X. Li, X. Q. Shao, J. H. Wu, and X. X. Yi, Dissipation-induced W state in a Rydberg-atom-cavity system, Opt. Lett. 43(8), 1639 (2018)
https://doi.org/10.1364/OL.43.001639
|
54 |
F. Reiter, D. Reeb, and A. S. Sørensen, Scalable dissipative preparation of many-body entanglement, Phys. Rev. Lett. 117(4), 040501 (2016)
https://doi.org/10.1103/PhysRevLett.117.040501
|
55 |
X. Q. Shao, J. H. Wu, X. X. Yi, and G. L. Long, Dissipative preparation of steady Greenberger–Horne–Zeilinger states for Rydberg atoms with quantum Zeno dynamics, Phys. Rev. A 96(6), 062315 (2017)
https://doi.org/10.1103/PhysRevA.96.062315
|
56 |
G. D. de Moraes Neto, V. F. Teizen, V. Montenegro, and E. Vernek, Steady many-body entanglements in dissipative systems, Phys. Rev. A 96(6), 062313 (2017)
https://doi.org/10.1103/PhysRevA.96.062313
|
57 |
J. Song, C. Li, Z. J. Zhang, Y. Y. Jiang, and Y. Xia, Implementing stabilizer codes in noisy environments? Phys. Rev. A 96(3), 032336 (2017)
https://doi.org/10.1103/PhysRevA.96.032336
|
58 |
I. Cohen and K. Mølmer, Deterministic quantum network for distributed entanglement and quantum computation, arXiv: 1802.08124 (2018)
|
59 |
J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, Quantum state transfer and entanglement distribution among distant nodes in a quantum network, Phys. Rev. Lett. 78(16), 3221 (1997)
https://doi.org/10.1103/PhysRevLett.78.3221
|
60 |
T. Pellizzari, Quantum networking with optical fibres, Phys. Rev. Lett. 79(26), 5242 (1997)
https://doi.org/10.1103/PhysRevLett.79.5242
|
61 |
G. W. Lin, X. B. Zou, X. M. Lin, and G. C. Guo, Scalable, high-speed one-way quantum computer in coupledcavity arrays, Appl. Phys. Lett. 95(22), 224102 (2009)
https://doi.org/10.1063/1.3269600
|
62 |
K. Zhang and Z. Y. Li, Transfer behavior of quantum states between atoms in photonic crystal coupled cavities, Phys. Rev. A 81(3), 033843 (2010)
https://doi.org/10.1103/PhysRevA.81.033843
|
63 |
M. Notomi, E. Kuramochi, and T. Tanabe, Large-scale arrays of ultrahigh-Qcoupled nanocavities, Nat. Photonics 2(12), 741 (2008)
https://doi.org/10.1038/nphoton.2008.226
|
64 |
S. B. Zheng, Generation of Greenberger–Horne– Zeilinger states for multiple atoms trapped in separated cavities, Eur. Phys. J. D 54(3), 719 (2009)
https://doi.org/10.1140/epjd/e2009-00190-9
|
65 |
S. B. Zheng, C. P. Yang, and F. Nori, Arbitrary control of coherent dynamics for distant qubits in a quantum network, Phys. Rev. A 82(4), 042327 (2010)
https://doi.org/10.1103/PhysRevA.82.042327
|
66 |
H. F. Wang, A. D. Zhu, and S. Zhang, One-step implementation of a multiqubit phase gate with one control qubit and multiple target qubits in coupled cavities, Opt. Lett. 39(6), 1489 (2014)
https://doi.org/10.1364/OL.39.001489
|
67 |
X. Q. Shao, Z. H. Wang, H. D. Liu, and X. X. Yi, Dissipative preparation of a tripartite singlet state in coupled arrays of cavities via quantum feedback control, Phys. Rev. A 94(3), 032307 (2016)
https://doi.org/10.1103/PhysRevA.94.032307
|
68 |
M. J. Hartmann, F. G. S. L. Brandão, and M. B. Plenio, Strongly interacting polaritons in coupled arrays of cavities, Nat. Phys. 2(12), 849 (2006)
|
69 |
D. Daems and S. Guérin, Adiabatic quantum search scheme with atoms in a cavity driven by lasers, Phys. Rev. Lett. 99(17), 170503 (2007)
https://doi.org/10.1103/PhysRevLett.99.170503
|
70 |
S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics, Phys. Rev. Lett. 91(4), 043902 (2003)
https://doi.org/10.1103/PhysRevLett.91.043902
|
71 |
P. E. Barclay, K. Srinivasan, O. Painter, B. Lev, and H. Mabuchi, Integration of fiber-coupled high-Q SiNx microdisks with atom chips, Appl. Phys. Lett. 89(13), 131108 (2006)
https://doi.org/10.1063/1.2356892
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|