|
|
Relation between gravitational mass and baryonic mass for non-rotating and rapidly rotating neutron stars |
He Gao1( ), Shun-Ke Ai2,1, Zhou-Jian Cao1, Bing Zhang2, Zhen-Yu Zhu3,4, Ang Li3, Nai-Bo Zhang5, Andreas Bauswein6 |
1. Department of Astronomy, Beijing Normal University, Beijing 100875, China 2. Department of Physics and Astronomy, University of Nevada Las Vegas, NV 89154, USA 3. Department of Astronomy, Xiamen University, Xiamen 361005, China 4. Institute for Theoretical Physics, Max-von-Laue-Strasse 1, 60438 Frankfurt, Germany 5. Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, School of Space Science and Physics, Institute of Space Sciences, Shandong University, Weihai 264209, China 6. GSI Helmholtzzentrum für Schwerionenforschung, Planckstraβe 1, 64291 Darmstadt, Germany |
|
|
Abstract With a selected sample of neutron star (NS) equations of state (EOSs) that are consistent with the current observations and have a range of maximum masses, we investigate the relations between NS gravitational mass Mg and baryonic mass Mb, and the relations between the maximum NS mass supported through uniform rotation (Mmax) and that of nonrotating NSs (MTOV). We find that for an EOS-independent quadratic, universal transformation formula (), the best-fit A value is 0.080 for non-rotating NSs, 0.064 for maximally rotating NSs, and 0.073 when NSs with arbitrary rotation are considered. The residual error of the transformation is ~0.1M⊙ for non-spin or maximum-spin, but is as large as ~0.2M⊙ for all spins. For different EOSs, we find that the parameter A for non-rotating NSs is proportional to (where R1.4 is NS radius for 1.4M⊙ in units of km). For a particular EOS, if one adopts the best-fit parameters for different spin periods, the residual error of the transformation is smaller, which is of the order of 0.01 M⊙ for the quadratic form and less than 0.01M⊙ for the cubic form (). We also find a very tight and general correlation between the normalized mass gain due to spin and the spin period normalized to the Keplerian period , i.e., , which is independent of EOS models. These empirical relations are helpful to study NS-NS mergers with a long-lived NS merger product using multi-messenger data. The application of our results to GW170817 is discussed.
|
Keywords
gravitational waves
|
Corresponding Author(s):
He Gao
|
Issue Date: 08 January 2020
|
|
1 |
J. M. Lattimer, The nuclear equation of state and neutron star masses, Annu. Rev. Nucl. Part. Sci. 62(1), 485 (2012)
https://doi.org/10.1146/annurev-nucl-102711-095018
|
2 |
A. K. Harding, The neutron star zoo, Front. Phys. 8(6), 679 (2013)
https://doi.org/10.1007/s11467-013-0285-0
|
3 |
J. Antoniadis, P. C. C. Freire, N. Wex, T. M. Tauris, R. S. Lynch, M. H. van Kerkwijk, M. Kramer, C. Bassa, V. S. Dhillon, T. Driebe, J. W. T. Hessels, V. M. Kaspi, V. I. Kondratiev, N. Langer, T. R. Marsh, M. A. McLaughlin, T. T. Pennucci, S. M. Ransom, I. H. Stairs, J. van Leeuwen, J. P. W. Verbiest, and D. G. Whelan, A massive pulsar in a compact relativistic binary, Science 340(6131), 1233232 (2013)
https://doi.org/10.1126/science.1233232
|
4 |
S. Lawrence, J. G. Tervala, P. F. Bedaque, and M. C. Miller, An upper bound on neutron star masses from models of short gamma-ray bursts, Astrophys. J. 808(2), 186 (2015)
https://doi.org/10.1088/0004-637X/808/2/186
|
5 |
C. L. Fryer, K. Belczynski, E. Ramirez-Ruiz, S. Rosswog, G. Shen, and A. W. Steiner, The fate of the compact remnant in neutron star mergers, Astrophys. J. 812(1), 24 (2015)
https://doi.org/10.1088/0004-637X/812/1/24
|
6 |
B. Margalit and B. D. Metzger, Constraining the maximum mass of neutron stars from multi-messenger observations of GW170817, Astrophys. J. 850(2), L19 (2017)
https://doi.org/10.3847/2041-8213/aa991c
|
7 |
L. Rezzolla, E. R. Most, and L. R. Weih, Using gravitational-wave observations and quasi-universal relations to constrain the maximum mass of neutron stars, Astrophys. J. 852(2), L25 (2018)
https://doi.org/10.3847/2041-8213/aaa401
|
8 |
M. Ruiz, S. L. Shapiro, and A. Tsokaros, GW170817, general relativistic magnetohydrodynamic simulations, and the neutron star maximum mass, Phys. Rev. D 97(2), 021501 (2018)
https://doi.org/10.1103/PhysRevD.97.021501
|
9 |
A. Rowlinson, P. T. O’Brien, N. R. Tanvir, B. Zhang, P. A. Evans, N. Lyons, A. J. Levan, R. Willingale, K. L. Page, O. Onal, D. N. Burrows, A. P. Beardmore, T. N. Ukwatta, E. Berger, J. Hjorth, A. S. Fruchter, R. L. Tunnicliffe, D. B. Fox, and A. Cucchiara, The unusual X-ray emission of the short Swift GRB 090515: Evidence for the formation of a magnetar? Mon. Not. R. Astron. Soc. 409(2), 531 (2010)
https://doi.org/10.1111/j.1365-2966.2010.17354.x
|
10 |
A. Rowlinson, P. T. O’Brien, B. D. Metzger, N. R. Tanvir, and A. J. Levan, Signatures of magnetar central engines in short GRB light curves, Mon. Not. R. Astron. Soc. 430(2), 1061 (2013)
https://doi.org/10.1093/mnras/sts683
|
11 |
H. J. Lü, B. Zhang, W. H. Lei, Y. Li, and P. Lasky, The millisecond magnetar central engine in short GRBs, Astrophys. J. 805(2), 89 (2015)
https://doi.org/10.1088/0004-637X/805/2/89
|
12 |
P. D. Lasky, B. Haskell, V. Ravi, E. J. Howell, and D. M. Coward, Nuclear equation of state from observations of short gamma-ray burst remnants, Phys. Rev. D 89(4), 047302 (2014)
https://doi.org/10.1103/PhysRevD.89.047302
|
13 |
V. Ravi and P. D. Lasky, The birth of black holes: neutron star collapse times, gamma-ray bursts and fast radio bursts, Mon. Not. R. Astron. Soc. 441(3), 2433 (2014)
https://doi.org/10.1093/mnras/stu720
|
14 |
H. Gao, B. Zhang, and H. J. Lü, Constraints on binary neutron star merger product from short GRB observations, Phys. Rev. D 93(4), 044065 (2016)
https://doi.org/10.1103/PhysRevD.93.044065
|
15 |
A. Li, B. Zhang, N. B. Zhang, H. Gao, B. Qi, and T. Liu, Internal X-ray plateau in short GRBs: Signature of supramassive fast-rotating quark stars? Phys. Rev. D 94(8), 083010 (2016)
https://doi.org/10.1103/PhysRevD.94.083010
|
16 |
J. M. Lattimer and M. Prakash, Neutron star observations: Prognosis for equation of state constraints, Phys. Rep. 442(1–6), 109 (2007)
https://doi.org/10.1016/j.physrep.2007.02.003
|
17 |
F. X. Timmes, S. E. Woosley, and T. A. Weaver, The neutron star and black hole initial mass function, Astrophys. J. 457, 834 (1996)
https://doi.org/10.1086/176778
|
18 |
C. L. Fryer, K. Belczynski, G. Wiktorowicz, M. Dominik, V. Kalogera, and D. E. Holz, Compact remnant mass function: Dependence on the explosion mechanism and metallicity, Astrophys. J. 749(1), 91 (2012)
https://doi.org/10.1088/0004-637X/749/1/91
|
19 |
O. Pejcha and T. A. Thompson, The landscape of the neutrino mechanism of core-collapse supernovae: Neutron star and black hole mass functions, explosion energies, and nickel yields, Astrophys. J. 801(2), 90 (2015)
https://doi.org/10.1088/0004-637X/801/2/90
|
20 |
J. M. Lattimer and A. Yahil, Analysis of the neutrino events from supernova 1987A, Astrophys. J. 340, 426 (1989)
https://doi.org/10.1086/167404
|
21 |
A. Burrows, D. Klein, and R. Gandhi, The future of supernova neutrino detection, Phys. Rev. D 45(10), 3361 (1992)
https://doi.org/10.1103/PhysRevD.45.3361
|
22 |
J. Gava, J. Kneller, C. Volpe, and G. C. McLaughlin, Dynamical collective calculation of supernova neutrino signals, Phys. Rev. Lett. 103(7), 071101 (2009)
https://doi.org/10.1103/PhysRevLett.103.071101
|
23 |
G. Camelio, A. Lovato, L. Gualtieri, O. Benhar, J. A. Pons, and V. Ferrari, Evolution of a proto-neutron star with a nuclear many-body equation of state: Neutrino luminosity and gravitational wave frequencies, Phys. Rev. D 96(4), 043015 (2017)
https://doi.org/10.1103/PhysRevD.96.043015
|
24 |
S. Rosswog, T. Piran, and E. Nakar, The multimessenger picture of compact object encounters: Binary mergers versus dynamical collisions, Mon. Not. R. Astron. Soc. 430(4), 2585 (2013)
https://doi.org/10.1093/mnras/sts708
|
25 |
A. Bauswein, S. Goriely, and H. T. Janka, Systematics of dynamical mass ejection, nucleosynthesis, and radioactively powered electromagnetic signals from neutron-star mergers, Astrophys. J. 773(1), 78 (2013)
https://doi.org/10.1088/0004-637X/773/1/78
|
26 |
K. Hotokezaka, K. Kiuchi, K. Kyutoku, H. Okawa, Y. Sekiguchi, M. Shibata, and K. Taniguchi, Mass ejection from the merger of binary neutron stars, Phys. Rev. D 87(2), 024001 (2013)
https://doi.org/10.1103/PhysRevD.87.024001
|
27 |
R. Fernández, D. Kasen, B. D. Metzger, and E. Quataert, Outflows from accretion discs formed in neutron star mergers: effect of black hole spin, Mon. Not. R. Astron. Soc. 446(1), 750 (2015)
https://doi.org/10.1093/mnras/stu2112
|
28 |
C. Y. Song, T. Liu, and A. Li, Outflows from black hole hyperaccretion systems: Short and long-short gamma-ray bursts and “quasi-supernovae”, Mon. Not. R. Astron. Soc. 477(2), 2173 (2018)
https://doi.org/10.1093/mnras/sty783
|
29 |
B. P. Abbott, et al. (LIGO Scientific Collaboration and Virgo Collaboration), GW170817: Observation of gravitational waves from a binary neutron star inspiral, Phys. Rev. Lett. 119, 161101 (2017)
|
30 |
D. Radice, A. Perego, S. Bernuzzi, and B. Zhang, Longlived remnants from binary neutron star mergers, Mon. Not. R. Astron. Soc. 481(3), 3670 (2018)
https://doi.org/10.1093/mnras/sty2531
|
31 |
J. M. Lattimer and M. Prakash, Neutron star structure and the equation of state, Astrophys. J. 550(1), 426 (2001)
https://doi.org/10.1086/319702
|
32 |
M. Coughlin, T. Dietrich, K. Kawaguchi, S. Smartt, C. Stubbs, and M. Ujevic, Toward rapid transient identification and characterization of kilonovae, Astrophys. J. 849(1), 12 (2017)
https://doi.org/10.3847/1538-4357/aa9114
|
33 |
G. Bozzola, N. Stergioulas, and A. Bauswein, Universal relations for differentially rotating relativistic stars at the threshold to collapse, Mon. Not. R. Astron. Soc. 474(3), 3557 (2018)
https://doi.org/10.1093/mnras/stx3002
|
34 |
A. M. Studzińska, M. Kucaba, D. Gondek-Rosińska, L. Villain, and M. Ansorg, Effect of the equation of state on the maximum mass of differentially rotating neutron stars, Mon. Not. R. Astron. Soc. 463(3), 2667 (2016)
https://doi.org/10.1093/mnras/stw2152
|
35 |
D. Gondek-Rosińska, I. Kowalska, L. Villain, M. Ansorg, and M. Kucaba, A New View on the Maximum Mass of Differentially Rotating Neutron Stars, Astrophys. J. 837(1), 58 (2017)
https://doi.org/10.3847/1538-4357/aa56c1
|
36 |
A. Bauswein and N. Stergioulas, Semi-analytic derivation of the threshold mass for prompt collapse in binary neutron-star mergers, Mon. Not. R. Astron. Soc. 471(4), 4956 (2017)
https://doi.org/10.1093/mnras/stx1983
|
37 |
L. R. Weih, E. R. Most, and L. Rezzolla, On the stability and maximum mass of differentially rotating relativistic stars, Mon. Not. R. Astron. Soc. 473(1), L126 (2018)
https://doi.org/10.1093/mnrasl/slx178
|
38 |
E. M. Butterworth and J. R. Ipser, On the structure and stability of rapidly rotating fluid bodies in general relativity (I): The numerical method for computing structure and its application to uniformly rotating homogeneous bodies, Astrophys. J. 204, 200 (1976)
https://doi.org/10.1086/154163
|
39 |
N. Stergioulas and J. L. Friedman, Comparing models of rapidly rotating relativistic stars constructed by two numerical methods, Astrophys. J. 444, 306 (1995)
https://doi.org/10.1086/175605
|
40 |
F. Douchin and P. Haensel, A unified equation of state of dense matter and neutron star structure, Astronomy and Astrophysics 380, 151 (2001)
https://doi.org/10.1051/0004-6361:20011402
|
41 |
R. B. Wiringa, V. Fiks, and A. Fabrocini, Equation of state for dense nucleon matter, Phys. Rev. C 38(2), 1010 (1988)
https://doi.org/10.1103/PhysRevC.38.1010
|
42 |
A. Akmal and V. R. Pandharipande, Spin-isospin structure and pion condensation in nucleon matter, Phys. Rev. C 56(4), 2261 (1997)
https://doi.org/10.1103/PhysRevC.56.2261
|
43 |
S. Goriely, N. Chamel, and J. M. Pearson, Further explorations of Skyrme–Hartree–Fock–Bogoliubov mass formulas (XII): Stiffness and stability of neutron-star matter, Phys. Rev. C 82(3), 035804 (2010)
https://doi.org/10.1103/PhysRevC.82.035804
|
44 |
S. Typel, G. Röpke, T. Klähn, D. Blaschke, and H. H. Wolter, Composition and thermodynamics of nuclear matter with light clusters, Phys. Rev. C 81(1), 015803 (2010)
https://doi.org/10.1103/PhysRevC.81.015803
|
45 |
H. Müther, M. Prakash, and T. L. Ainsworth, The nuclear symmetry energy in relativistic Brueckner-Hartree- Fock calculations, Phys. Lett. B 199(4), 469 (1987)
https://doi.org/10.1016/0370-2693(87)91611-X
|
46 |
H. Müller and B. D. Serot, Relativistic mean-field theory and the high-density nuclear equation of state, Nucl. Phys. A. 606(3–4), 508 (1996)
https://doi.org/10.1016/0375-9474(96)00187-X
|
47 |
G. B. Cook, S. L. Shapiro, and S. A. Teukolsky, Rapidly rotating neutron stars in general relativity: Realistic equations of state, Astrophys. J. 424, 823 (1994)
https://doi.org/10.1086/173934
|
48 |
J. P. Lasota, P. Haensel, and M. A. Abramowicz, Fast rotation of neutron stars, Astrophys. J. 456, 300 (1996)
https://doi.org/10.1086/176650
|
49 |
C. Breu and L. Rezzolla, Maximum mass, moment of inertia and compactness of relativistic stars, Mon. Not. R. Astron. Soc. 459(1), 646 (2016)
https://doi.org/10.1093/mnras/stw575
|
50 |
Y. W. Yu, L. D. Liu, and Z. G. Dai, A long-lived remnant neutron star after GW170817 inferred from its associated kilonova, Astrophys. J. 861(2), 114 (2018)
https://doi.org/10.3847/1538-4357/aac6e5
|
51 |
S. Z. Li, L. D. Liu, Y. W. Yu, and B. Zhang, What powered the optical transient AT2017gfo associated with GW170817? Astrophys. J. 861(2), L12 (2018)
https://doi.org/10.3847/2041-8213/aace61
|
52 |
S. Ai, H. Gao, Z. G. Dai, X. F. Wu, A. Li, B. Zhang, and M. Z. Li, The allowed parameter space of a long-lived neutron star as the merger remnant of GW170817, Astrophys. J. 860(1), 57 (2018)
https://doi.org/10.3847/1538-4357/aac2b7
|
53 |
L. Piro, E. Troja, B. Zhang, G. Ryan, H. van Eerten, R. Ricci, M. H. Wieringa, A. Tiengo, N. R. Butler, S. B. Cenko, O. D. Fox, H. G. Khandrika, G. Novara, A. Rossi, and T. Sakamoto, A long-lived neutron star merger remnant in GW170817: Constraints and clues from Xray observations, Mon. Not. R. Astron. Soc. 483(2), 1912 (2019)
https://doi.org/10.1093/mnras/sty3047
|
54 |
B. D. Metzger, Welcome to the multi-messenger era! Lessons from a neutron star merger and the landscape ahead, arXiv: 1710.05931 (2017)
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|