Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2022, Vol. 17 Issue (5) : 53511    https://doi.org/10.1007/s11467-022-1197-7
RESEARCH ARTICLE
Field-free switching through bulk spin−orbit torque inL10-FePt films deposited on vicinal substrates
Yongming Luo1(), Yanshan Zhuang1, Zhongshu Feng1, Haodong Fan1, Birui Wu1, Menghao Jin1, Ziji Shao1, Hai Li1, Ru Bai1, Yizheng Wu2, Ningning Wang1, Tiejun Zhou1()
1. Center for Integrated Spintronic Devices, Hangzhou Dianzi University, Hangzhou 310018, China
2. State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
 Download: PDF(10231 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

L10-FePt distinguishes itself for its ultrahigh perpendicular magnetic anisotropy (PMA), enabling thermally stabile memory cells to scale down to 3 nm. The recently discovered “bulk” spin−orbit torques inL10-FePt provide an efficient and scalable way to manipulate the L10-FePt magnetization. However, the existence of an external field during the switching limits its practical application, and therefore field-free switching of L10-FePt is highly demanded. In this manuscript, by growing the L10-FePt film on vicinal MgO (001) substrates, we realize the field-free switching of L10-FePt. This method is different from previously established strategies as it does not need to add other functional layers or create asymmetry in the film structure. The dependence on the vicinal angle, film thickness, and growth temperature demonstrates a wide operation window for the field-free switching of L10-FePt. We confirm the physical origin of the field-free switching is due to the tilted anisotropy of L10-FePt induced by the vicinal surface. We also quantitatively characterize the spin-orbit torques in the L10-FePt films. Our results extend beyond the established strategies to realize field-free switching, and potentially could be applied to mass production.

Keywords spin−orbit torque      vicinal substrates      field-free switching     
Corresponding Author(s): Yongming Luo,Tiejun Zhou   
About author:

Tongcan Cui and Yizhe Hou contributed equally to this work.

Issue Date: 09 October 2022
 Cite this article:   
Yongming Luo,Yanshan Zhuang,Zhongshu Feng, et al. Field-free switching through bulk spin−orbit torque inL10-FePt films deposited on vicinal substrates[J]. Front. Phys. , 2022, 17(5): 53511.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-022-1197-7
https://academic.hep.com.cn/fop/EN/Y2022/V17/I5/53511
Fig.1  (a) Atomic structure of the L10-FePt. The orange and gray spheres represent the Fe and Pt atoms, respectively, while the pink arrows represent the spin of the associated Fe atoms. (b) Schematic drawing of the FePt film grown on vicinal substrates. α denotes the vicinal angle of the substrates. (c) θ−2 θ XRD spectra of the 6 nm L10-FePt films grown on flat ( α = 0 °) and vicinal ( α = 7 °) MgO (001) substrates. (d) Out-of-Plane normalized AHE loops of the 6 nm L10-FePt grown on flat and vicinal MgO (001) substrates.
Fig.2  AMR measurements for the L10-FePt films grown on flat and vicinal MgO substrates. (a) The schematic configuration of the AMR measurements. (b) The schematic drawing of the switching of magnetization when it rotates across the hard axis, for systems with different anisotropies. The left and right panels show switching processes with perpendicular (left) and tilted (right) anisotropies. (c) Angular dependence of ΔR for L10-FePt grown on different substrates. The field with different amplitudes is rotated from 0° to 360° (CCW), and then back from 360° to 0° (CW). The top and bottom panels represent the results for samples grown on flat ( α=0°) and vicinal ( α=7 °) substrates respectively. (d) Simulation of the angular dependence of my2 in systems with different directions of the easy axis. Fields with different amplitudes are rotated CCW, and then back CW. The top and bottom panels represent the results for samples with perpendicular ( φ=0°) and tilted anisotropy ( φ=8°), respectively. In (c) and (d), the results at different fields are offset for clarity.
Fig.3  Current-induced switching of the L10-FePt films grown on vicinal substrates. (a) Schematic drawing of the set-up for the current-induced magnetization switching of the L10-FePt films. (b) Current-induced magnetization switching of the 6nm L10-FePt grown on the vicinal substrate ( α =7°). The RH at different Hx are offset for clarity. (c) Plot of Δ RH as a function of Hx, for L10-FePt films grown on substrates with different vicinal angles. Δ RH is marked by the green dash arrow in (b). The dependence of Hef f with different parameters (d) Vicinal angles of the substrate, (e) Growth temperature and (f) The thickness of the L10-FePt film. If not specified, the vicinal angle for the vicinal substrates is 7°, the growth temperature of the L10-FePt film is 700 ° C, and 6 nm in thickness.
Fig.4  Harmonic Hall voltage analysis of the L10-FePt films. (a) Schematic of the set-up for the Harmonic Hall voltage measurements, and illustration of the spin−orbit effective fields Δ HL and Δ HT. (b)−(d) are measurement results for the 6nm L10-FePt film grown on the vicinal substrate. (b) First harmonic Hall voltage as a function of the longitudinal field Hx. Blue and pink squares are experimental data for the up and down magnetization directions, respectively. The solid lines are parabolic fits to the data. Second harmonic Hall voltages as a function of the transverse ( H y) (c) and longitudinal ( Hx) fields (d). The solid lines are linear fits to the data. For the data in (b)−(d), the AC current was 3 mA in amplitude. Dependence of spin-torque efficiencies ( βL( T)) with (e) Film Thickness, (f) Growth temperature and (g) Vicinal angles of the substrates (left). We also show the dependence of θSH with vicinal angles of the substrates in (g) (right). If not specified, the vicinal angle for the vicinal substrates is 7°, the growth temperature of the L10-FePt film is 700°C, and 6 nm in thickness.
1 Sun S., B. Murray C., Weller D., Folks L., Moser A.. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science , 2000, 287( 5460): 1989
https://doi.org/10.1126/science.287.5460.1989
2 Tang M., Shen K., Xu S., Yang H., Hu S., Lü W., Li C., Li M., Yuan Z., J. Pennycook S., Xia K., Manchon A., Zhou S., Qiu X.. Bulk spin torque-driven perpendicular magnetization switching in L10 FePt single layer. Adv. Mater. , 2020, 32( 31): 2002607
https://doi.org/10.1002/adma.202002607
3 Liu L., Yu J., Gonzalez-Hernandez R., Li C., Deng J., Lin W., Zhou C., Zhou T., Zhou J., Wang H., Guo R., Y. Yoong H., M. Chow G., Han X., Dupé B., Železný J., Sinova J., Chen J.. Electrical switching of perpendicular magnetization in a single ferromagnetic layer. Phys. Rev. B , 2020, 101( 22): 220402
https://doi.org/10.1103/PhysRevB.101.220402
4 Zhu L., C. Ralph D., A. Buhrman R.. Unveiling the mechanism of bulk spin−orbit torques within chemically disordered FexPt1−x single layers. Adv. Funct. Mater. , 2021, 31( 36): 2103898
https://doi.org/10.1002/adfm.202103898
5 Q. Zheng S., K. Meng K., B. Liu Q., K. Chen J., Miao J., G. Xu X., Jiang Y.. Disorder dependent spin-orbit torques in L10 FePt single layer. Appl. Phys. Lett. , 2020, 117( 24): 242403
https://doi.org/10.1063/5.0028815
6 Mihai Miron I., Gaudin G., Auffret S., Rodmacq B., Schuhl A., Pizzini S., Vogel J., Gambardella P.. Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. Nat. Mater. , 2010, 9( 3): 230
https://doi.org/10.1038/nmat2613
7 Liu L., J. Lee O., J. Gudmundsen T., C. Ralph D., A. Buhrman R.. Current-induced switching of perpendicularly magnetized magnetic layers using spin torque from the spin Hall effect. Phys. Rev. Lett. , 2012, 109( 9): 096602
https://doi.org/10.1103/PhysRevLett.109.096602
8 Liu L., F. Pai C., Li Y., W. Tseng H., C. Ralph D., A. Buhrman R.. Spin-torque switching with the giant spin Hall effect of tantalum. Science , 2012, 336( 6081): 555
https://doi.org/10.1126/science.1218197
9 Shao Q., Li P., Liu L., Yang H., Fukami S., Razavi A., Wu H., Wang K., Freimuth F., Mokrousov Y., D. Stiles M., Emori S., Hoffmann A., Akerman J., Roy K., P. Wang J., H. Yang S., Garello K., Zhang W.. Roadmap of spin−orbit torques. IEEE Trans. Magn. , 2021, 57( 7): 1
https://doi.org/10.1109/TMAG.2021.3078583
10 Kong W., Wan C., Wang X., Tao B., Huang L., Fang C., Guo C., Guang Y., Irfan M., Han X.. Spin-orbit torque switching in a T-type magnetic configuration with current orthogonal to easy axes. Nat. Commun. , 2019, 10( 1): 233
https://doi.org/10.1038/s41467-018-08181-y
11 Fukami S., Zhang C., DuttaGupta S., Kurenkov A., Ohno H.. Magnetization switching by spin−orbit torque in an antiferromagnet−ferromagnet bilayer system. Nat. Mater. , 2016, 15( 5): 535
https://doi.org/10.1038/nmat4566
12 Eason K., G. Tan S., B. A. Jalil M., Y. Khoo J.. Bistable perpendicular switching with in-plane spin polarization and without external fields. Phys. Lett. A , 2013, 377( 37): 2403
https://doi.org/10.1016/j.physleta.2013.07.001
13 You L., Lee O., Bhowmik D., Labanowski D., Hong J., Bokor J., Salahuddin S.. Switching of perpendicularly polarized nanomagnets with spin−orbit torque without an external magnetic field by engineering a tilted anisotropy. Proc. Natl. Acad. Sci. USA , 2015, 112( 33): 10310
https://doi.org/10.1073/pnas.1507474112
14 Liu L., Qin Q., Lin W., Li C., Xie Q., He S., Shu X., Zhou C., Lim Z., Yu J., Lu W., Li M., Yan X., J. Pennycook S., Chen J.. Current-induced magnetization switching in all-oxide heterostructures. Nat. Nanotechnol. , 2019, 14( 10): 939
https://doi.org/10.1038/s41565-019-0534-7
15 Leroy F., Mueller P., J. Metois J., Pierre-Louis O.. Vicinal silicon surfaces: From step density wave to faceting. Phys. Rev. B , 2007, 76( 4): 045402
https://doi.org/10.1103/PhysRevB.76.045402
16 Tegenkamp C.. Vicinal surfaces for functional nanostructures. J. Phys.: Condens. Matter , 2009, 21( 1): 013002
https://doi.org/10.1088/0953-8984/21/1/013002
17 Ma S., Tan A., X. Deng J., Li J., D. Zhang Z., Hwang C., Q. Qiu Z.. Tailoring the magnetic anisotropy of Py/Ni bilayer films using well aligned atomic steps on Cu(001). Sci. Rep. , 2015, 5( 1): 1
https://doi.org/10.1038/srep11055
18 K. Kawakami R., J. Escorcia-Aparicio E., Q. Qiu Z.. Symmetry-induced magnetic anisotropy in Fe films grown on stepped Ag(001). Phys. Rev. Lett. , 1996, 77( 12): 2570
https://doi.org/10.1103/PhysRevLett.77.2570
19 Dhesi S., Dürr H., Van der Laan G.. Canted spin structures in Ni films on stepped Cu(001). Phys. Rev. B , 1999, 59( 13): 8408
https://doi.org/10.1103/PhysRevB.59.8408
20 Choi J., Wu J., Z. Wu Y., Won C., Scholl A., Doran A., Owens T., Q. Qiu Z.. Effect of atomic steps on the interfacial interaction of FeMn/Co films grown on vicinal Cu(001). Phys. Rev. B , 2007, 76( 5): 054407
https://doi.org/10.1103/PhysRevB.76.054407
21 Zhu J., Li Q., X. Li J., Ding Z., H. Liang J., Xiao X., M. Luo Y., Y. Hua C., J. Lin H., W. Pi T., Hu Z., Won C., Z. Wu Y.. Antiferromagnetic spin reorientation transition in epitaxial NiO/CoO/MgO(001) systems. Phys. Rev. B , 2014, 90( 5): 054403
https://doi.org/10.1103/PhysRevB.90.054403
22 He P., Ma L., Shi Z., Guo G., G. Zheng J., Xin Y., Zhou S.. Chemical composition tuning of the anomalous Hall effect in isoelectronic L10 FePd1−xPtx alloy films. Phys. Rev. Lett. , 2012, 109( 6): 066402
https://doi.org/10.1103/PhysRevLett.109.066402
23 Okamoto S., Kikuchi N., Kitakami O., Miyazaki T., Shimada Y., Fukamichi K.. Chemical-order-dependent magnetic anisotropy and exchange stiffness constant of FePt (001) epitaxial films. Phys. Rev. B , 2002, 66( 2): 024413
https://doi.org/10.1103/PhysRevB.66.024413
24 Zhao Z., K. Smith A., Jamali M., P. Wang J.. External-field-free spin Hall switching of perpendicular magnetic nanopillar with a dipole-coupled composite structure. Adv. Electron. Mater. , 2020, 6( 5): 1901368
https://doi.org/10.1002/aelm.201901368
25 van den Brink A., Vermijs G., Solignac A., Koo J., T. Kohlhepp J., J. M. Swagten H., Koopmans B.. Fieldfree magnetization reversal by spin-Hall effect and exchange bias. Nat. Commun. , 2016, 7( 1): 1
https://doi.org/10.1038/ncomms10854
26 Hayashi M., Kim J., Yamanouchi M., Ohno H.. Quantitative characterization of the spin-orbit torque using harmonic Hall voltage measurements. Phys. Rev. B , 2014, 89( 14): 144425
https://doi.org/10.1103/PhysRevB.89.144425
27 Garello K., M. Miron I., O. Avci C., Freimuth F., Mokrousov Y., Blügel S., Auffret S., Boulle O., Gaudin G., Gambardella P.. Symmetry and magnitude of spin-orbit torques in ferromagnetic heterostructures. Nat. Nanotechnol. , 2013, 8( 8): 587
https://doi.org/10.1038/nnano.2013.145
28 O. Avci C., Quindeau A., F. Pai C., Mann M., Caretta L., S. Tang A., C. Onbasli M., A. Ross C., S. Beach G.. Current-induced switching in a magnetic insulator. Nat. Mater. , 2017, 16( 3): 309
https://doi.org/10.1038/nmat4812
29 Zhu L., C. Ralph D., A. Buhrman R.. Maximizing spinorbit torque generated by the spin Hall effect of Pt. Appl. Phys. Rev. , 2021, 8( 3): 031308
https://doi.org/10.1063/5.0059171
30 Filianina M., P. Hanke J., Lee K., S. Han D., Jaiswal S., Rajan A., Jakob G., Mokrousov Y., Kläui M.. Electric-field control of spin-orbit torques in perpendicularly magnetized W/CoFeB/MgO films. Phys. Rev. Lett. , 2020, 124( 21): 217701
https://doi.org/10.1103/PhysRevLett.124.217701
31 G. Ye X., F. Zhu P., Z. Xu W., Shang N., Liu K., M. Liao Z.. Orbit-transfer torque driven field-free switching of perpendicular magnetization. Chin. Phys. Lett. , 2022, 39( 3): 037303
https://doi.org/10.1088/0256-307X/39/3/037303
32 Lee D., Go D., J. Park H., Jeong W., W. Ko H., Yun D., Jo D., Lee S., Go G., H. Oh J., J. Kim K., G. Park B., C. Min B., C. Koo H., W. Lee H., J. Lee O., J. Lee K.. Orbital torque in magnetic bilayers. Nat. Commun. , 2021, 12( 1): 6710
https://doi.org/10.1038/s41467-021-26650-9
33 Perna P., Rodrigo C., Jiménez E., Mikuszeit N., J. Teran F., Méchin L., Camarero J., Miranda R.. Magnetization reversal in half metallic La0.7Sr0.3MnO3 films grown onto vicinal surfaces. J. Appl. Phys. , 2011, 109 : 07B107
https://doi.org/10.1063/1.3560893
34 Tao Y., Sun C., Li W., Yang L., Jin F., Hui Y., Li H., Wang X., Dong K.. Field-free spin–orbit torque switching in L10-FePt single layer with tilted anisotropy. Appl. Phys. Lett. , 2022, 120( 10): 102405
https://doi.org/10.1063/5.0077465
[1] fop-21197-OF-zhoutiejun_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed