|
|
Field-free switching through bulk spin−orbit torque inL10-FePt films deposited on vicinal substrates |
Yongming Luo1( ), Yanshan Zhuang1, Zhongshu Feng1, Haodong Fan1, Birui Wu1, Menghao Jin1, Ziji Shao1, Hai Li1, Ru Bai1, Yizheng Wu2, Ningning Wang1, Tiejun Zhou1( ) |
1. Center for Integrated Spintronic Devices, Hangzhou Dianzi University, Hangzhou 310018, China 2. State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China |
|
|
Abstract L10-FePt distinguishes itself for its ultrahigh perpendicular magnetic anisotropy (PMA), enabling thermally stabile memory cells to scale down to 3 nm. The recently discovered “bulk” spin−orbit torques inL10-FePt provide an efficient and scalable way to manipulate the L10-FePt magnetization. However, the existence of an external field during the switching limits its practical application, and therefore field-free switching of L10-FePt is highly demanded. In this manuscript, by growing the L10-FePt film on vicinal MgO (001) substrates, we realize the field-free switching of L10-FePt. This method is different from previously established strategies as it does not need to add other functional layers or create asymmetry in the film structure. The dependence on the vicinal angle, film thickness, and growth temperature demonstrates a wide operation window for the field-free switching of L10-FePt. We confirm the physical origin of the field-free switching is due to the tilted anisotropy of L10-FePt induced by the vicinal surface. We also quantitatively characterize the spin-orbit torques in the L10-FePt films. Our results extend beyond the established strategies to realize field-free switching, and potentially could be applied to mass production.
|
Keywords
spin−orbit torque
vicinal substrates
field-free switching
|
Corresponding Author(s):
Yongming Luo,Tiejun Zhou
|
About author: Tongcan Cui and Yizhe Hou contributed equally to this work. |
Issue Date: 09 October 2022
|
|
1 |
Sun S., B. Murray C., Weller D., Folks L., Moser A.. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science , 2000, 287( 5460): 1989
https://doi.org/10.1126/science.287.5460.1989
|
2 |
Tang M., Shen K., Xu S., Yang H., Hu S., Lü W., Li C., Li M., Yuan Z., J. Pennycook S., Xia K., Manchon A., Zhou S., Qiu X.. Bulk spin torque-driven perpendicular magnetization switching in L10 FePt single layer. Adv. Mater. , 2020, 32( 31): 2002607
https://doi.org/10.1002/adma.202002607
|
3 |
Liu L., Yu J., Gonzalez-Hernandez R., Li C., Deng J., Lin W., Zhou C., Zhou T., Zhou J., Wang H., Guo R., Y. Yoong H., M. Chow G., Han X., Dupé B., Železný J., Sinova J., Chen J.. Electrical switching of perpendicular magnetization in a single ferromagnetic layer. Phys. Rev. B , 2020, 101( 22): 220402
https://doi.org/10.1103/PhysRevB.101.220402
|
4 |
Zhu L., C. Ralph D., A. Buhrman R.. Unveiling the mechanism of bulk spin−orbit torques within chemically disordered FexPt1−x single layers. Adv. Funct. Mater. , 2021, 31( 36): 2103898
https://doi.org/10.1002/adfm.202103898
|
5 |
Q. Zheng S., K. Meng K., B. Liu Q., K. Chen J., Miao J., G. Xu X., Jiang Y.. Disorder dependent spin-orbit torques in L10 FePt single layer. Appl. Phys. Lett. , 2020, 117( 24): 242403
https://doi.org/10.1063/5.0028815
|
6 |
Mihai Miron I., Gaudin G., Auffret S., Rodmacq B., Schuhl A., Pizzini S., Vogel J., Gambardella P.. Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. Nat. Mater. , 2010, 9( 3): 230
https://doi.org/10.1038/nmat2613
|
7 |
Liu L., J. Lee O., J. Gudmundsen T., C. Ralph D., A. Buhrman R.. Current-induced switching of perpendicularly magnetized magnetic layers using spin torque from the spin Hall effect. Phys. Rev. Lett. , 2012, 109( 9): 096602
https://doi.org/10.1103/PhysRevLett.109.096602
|
8 |
Liu L., F. Pai C., Li Y., W. Tseng H., C. Ralph D., A. Buhrman R.. Spin-torque switching with the giant spin Hall effect of tantalum. Science , 2012, 336( 6081): 555
https://doi.org/10.1126/science.1218197
|
9 |
Shao Q., Li P., Liu L., Yang H., Fukami S., Razavi A., Wu H., Wang K., Freimuth F., Mokrousov Y., D. Stiles M., Emori S., Hoffmann A., Akerman J., Roy K., P. Wang J., H. Yang S., Garello K., Zhang W.. Roadmap of spin−orbit torques. IEEE Trans. Magn. , 2021, 57( 7): 1
https://doi.org/10.1109/TMAG.2021.3078583
|
10 |
Kong W., Wan C., Wang X., Tao B., Huang L., Fang C., Guo C., Guang Y., Irfan M., Han X.. Spin-orbit torque switching in a T-type magnetic configuration with current orthogonal to easy axes. Nat. Commun. , 2019, 10( 1): 233
https://doi.org/10.1038/s41467-018-08181-y
|
11 |
Fukami S., Zhang C., DuttaGupta S., Kurenkov A., Ohno H.. Magnetization switching by spin−orbit torque in an antiferromagnet−ferromagnet bilayer system. Nat. Mater. , 2016, 15( 5): 535
https://doi.org/10.1038/nmat4566
|
12 |
Eason K., G. Tan S., B. A. Jalil M., Y. Khoo J.. Bistable perpendicular switching with in-plane spin polarization and without external fields. Phys. Lett. A , 2013, 377( 37): 2403
https://doi.org/10.1016/j.physleta.2013.07.001
|
13 |
You L., Lee O., Bhowmik D., Labanowski D., Hong J., Bokor J., Salahuddin S.. Switching of perpendicularly polarized nanomagnets with spin−orbit torque without an external magnetic field by engineering a tilted anisotropy. Proc. Natl. Acad. Sci. USA , 2015, 112( 33): 10310
https://doi.org/10.1073/pnas.1507474112
|
14 |
Liu L., Qin Q., Lin W., Li C., Xie Q., He S., Shu X., Zhou C., Lim Z., Yu J., Lu W., Li M., Yan X., J. Pennycook S., Chen J.. Current-induced magnetization switching in all-oxide heterostructures. Nat. Nanotechnol. , 2019, 14( 10): 939
https://doi.org/10.1038/s41565-019-0534-7
|
15 |
Leroy F., Mueller P., J. Metois J., Pierre-Louis O.. Vicinal silicon surfaces: From step density wave to faceting. Phys. Rev. B , 2007, 76( 4): 045402
https://doi.org/10.1103/PhysRevB.76.045402
|
16 |
Tegenkamp C.. Vicinal surfaces for functional nanostructures. J. Phys.: Condens. Matter , 2009, 21( 1): 013002
https://doi.org/10.1088/0953-8984/21/1/013002
|
17 |
Ma S., Tan A., X. Deng J., Li J., D. Zhang Z., Hwang C., Q. Qiu Z.. Tailoring the magnetic anisotropy of Py/Ni bilayer films using well aligned atomic steps on Cu(001). Sci. Rep. , 2015, 5( 1): 1
https://doi.org/10.1038/srep11055
|
18 |
K. Kawakami R., J. Escorcia-Aparicio E., Q. Qiu Z.. Symmetry-induced magnetic anisotropy in Fe films grown on stepped Ag(001). Phys. Rev. Lett. , 1996, 77( 12): 2570
https://doi.org/10.1103/PhysRevLett.77.2570
|
19 |
Dhesi S., Dürr H., Van der Laan G.. Canted spin structures in Ni films on stepped Cu(001). Phys. Rev. B , 1999, 59( 13): 8408
https://doi.org/10.1103/PhysRevB.59.8408
|
20 |
Choi J., Wu J., Z. Wu Y., Won C., Scholl A., Doran A., Owens T., Q. Qiu Z.. Effect of atomic steps on the interfacial interaction of FeMn/Co films grown on vicinal Cu(001). Phys. Rev. B , 2007, 76( 5): 054407
https://doi.org/10.1103/PhysRevB.76.054407
|
21 |
Zhu J., Li Q., X. Li J., Ding Z., H. Liang J., Xiao X., M. Luo Y., Y. Hua C., J. Lin H., W. Pi T., Hu Z., Won C., Z. Wu Y.. Antiferromagnetic spin reorientation transition in epitaxial NiO/CoO/MgO(001) systems. Phys. Rev. B , 2014, 90( 5): 054403
https://doi.org/10.1103/PhysRevB.90.054403
|
22 |
He P., Ma L., Shi Z., Guo G., G. Zheng J., Xin Y., Zhou S.. Chemical composition tuning of the anomalous Hall effect in isoelectronic L10 FePd1−xPtx alloy films. Phys. Rev. Lett. , 2012, 109( 6): 066402
https://doi.org/10.1103/PhysRevLett.109.066402
|
23 |
Okamoto S., Kikuchi N., Kitakami O., Miyazaki T., Shimada Y., Fukamichi K.. Chemical-order-dependent magnetic anisotropy and exchange stiffness constant of FePt (001) epitaxial films. Phys. Rev. B , 2002, 66( 2): 024413
https://doi.org/10.1103/PhysRevB.66.024413
|
24 |
Zhao Z., K. Smith A., Jamali M., P. Wang J.. External-field-free spin Hall switching of perpendicular magnetic nanopillar with a dipole-coupled composite structure. Adv. Electron. Mater. , 2020, 6( 5): 1901368
https://doi.org/10.1002/aelm.201901368
|
25 |
van den Brink A., Vermijs G., Solignac A., Koo J., T. Kohlhepp J., J. M. Swagten H., Koopmans B.. Fieldfree magnetization reversal by spin-Hall effect and exchange bias. Nat. Commun. , 2016, 7( 1): 1
https://doi.org/10.1038/ncomms10854
|
26 |
Hayashi M., Kim J., Yamanouchi M., Ohno H.. Quantitative characterization of the spin-orbit torque using harmonic Hall voltage measurements. Phys. Rev. B , 2014, 89( 14): 144425
https://doi.org/10.1103/PhysRevB.89.144425
|
27 |
Garello K., M. Miron I., O. Avci C., Freimuth F., Mokrousov Y., Blügel S., Auffret S., Boulle O., Gaudin G., Gambardella P.. Symmetry and magnitude of spin-orbit torques in ferromagnetic heterostructures. Nat. Nanotechnol. , 2013, 8( 8): 587
https://doi.org/10.1038/nnano.2013.145
|
28 |
O. Avci C., Quindeau A., F. Pai C., Mann M., Caretta L., S. Tang A., C. Onbasli M., A. Ross C., S. Beach G.. Current-induced switching in a magnetic insulator. Nat. Mater. , 2017, 16( 3): 309
https://doi.org/10.1038/nmat4812
|
29 |
Zhu L., C. Ralph D., A. Buhrman R.. Maximizing spinorbit torque generated by the spin Hall effect of Pt. Appl. Phys. Rev. , 2021, 8( 3): 031308
https://doi.org/10.1063/5.0059171
|
30 |
Filianina M., P. Hanke J., Lee K., S. Han D., Jaiswal S., Rajan A., Jakob G., Mokrousov Y., Kläui M.. Electric-field control of spin-orbit torques in perpendicularly magnetized W/CoFeB/MgO films. Phys. Rev. Lett. , 2020, 124( 21): 217701
https://doi.org/10.1103/PhysRevLett.124.217701
|
31 |
G. Ye X., F. Zhu P., Z. Xu W., Shang N., Liu K., M. Liao Z.. Orbit-transfer torque driven field-free switching of perpendicular magnetization. Chin. Phys. Lett. , 2022, 39( 3): 037303
https://doi.org/10.1088/0256-307X/39/3/037303
|
32 |
Lee D., Go D., J. Park H., Jeong W., W. Ko H., Yun D., Jo D., Lee S., Go G., H. Oh J., J. Kim K., G. Park B., C. Min B., C. Koo H., W. Lee H., J. Lee O., J. Lee K.. Orbital torque in magnetic bilayers. Nat. Commun. , 2021, 12( 1): 6710
https://doi.org/10.1038/s41467-021-26650-9
|
33 |
Perna P., Rodrigo C., Jiménez E., Mikuszeit N., J. Teran F., Méchin L., Camarero J., Miranda R.. Magnetization reversal in half metallic La0.7Sr0.3MnO3 films grown onto vicinal surfaces. J. Appl. Phys. , 2011, 109 : 07B107
https://doi.org/10.1063/1.3560893
|
34 |
Tao Y., Sun C., Li W., Yang L., Jin F., Hui Y., Li H., Wang X., Dong K.. Field-free spin–orbit torque switching in L10-FePt single layer with tilted anisotropy. Appl. Phys. Lett. , 2022, 120( 10): 102405
https://doi.org/10.1063/5.0077465
|
[1] |
fop-21197-OF-zhoutiejun_suppl_1
|
Download
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|