Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

Postal Subscription Code 80-968

2018 Impact Factor: 1.272

Front Arch Civil Eng Chin    2011, Vol. 5 Issue (2) : 171-179    https://doi.org/10.1007/s11709-011-0103-0
RESEARCH ARTICLE
Uncoupled state space solution to layered poroelastic medium with anisotropic permeability and compressible pore fluid
Zhiyong AI(), Wenze ZENG, Yichong CHENG, Chao WU
Department of Geotechnical Engineering, Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092, China
 Download: PDF(215 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper presents an uncoupled state space solution to three-dimensional consolidation of layered poroelastic medium with anisotropic permeability and compressible pore fluid. Starting from the basic equations of poroelastic medium, and introducing intermediate variables, the state space equation usually comprising eight coupled state vectors is uncoupled into two sets of equations of six and two state vectors in the Laplace-Fourier transform domain. Combined with the continuity conditions between adjacent layers and boundary conditions, the uncoupled state space solution of a layered poroelastic medium is obtained by using the transfer matrix method. Numerical results show that the anisotropy of permeability and the compressibility of pore fluid have remarkable influence on the consolidation behavior of poroelastic medium.

Keywords uncoupled state space solution      layered poroelastic medium      three-dimensional consolidation      anisotropic permeability      compressible pore fluid     
Corresponding Author(s): AI Zhiyong,Email:zhiyongai@tongji.edu.cn   
Issue Date: 05 June 2011
 Cite this article:   
Zhiyong AI,Wenze ZENG,Yichong CHENG, et al. Uncoupled state space solution to layered poroelastic medium with anisotropic permeability and compressible pore fluid[J]. Front Arch Civil Eng Chin, 2011, 5(2): 171-179.
 URL:  
https://academic.hep.com.cn/fsce/EN/10.1007/s11709-011-0103-0
https://academic.hep.com.cn/fsce/EN/Y2011/V5/I2/171
Fig.1  Layered poroelastic medium with anisotropic permeability and compressible pore fluid under an arbitrary load
Fig.2  Comparison of surface displacement for a two-layered poroelastic medium
Fig.3  Influence of anisotropic permeability parameter on surface displacement for a single poroelastic layer
Fig.4  Influence of anisotropic permeability parameter on excess pore water pressure for a single poroelastic layer
Fig.5  Influence of compressibility parameter on surface displacement for a single poroelastic layer
Fig.6  Influence of compressibility parameter on excess pore water pressure for a single poroelastic layer
Fig.7  Variation of surface settlement for a five-layered poroelastic medium
Fig.8  Variation of excess pore water pressure along depth at time factor for a five-layered poroelastic medium
Fig.9  Variation of excess pore water pressure along depth at time factor for a five-layered poroelastic medium
1 Biot M A. General theory of three-dimensional consolidation. Journal of Applied Physics , 1941, 12(2): 155-164
doi: 10.1063/1.1712886
2 McNamee J, Gibson R E. Displacement functions and linear transforms applied to diffusion through porous elastic media. Quarterly Journal of Mechanics and Applied Mathematics , 1960, 13(1): 98-111
doi: 10.1093/qjmam/13.1.98
3 McNamee J, Gibson R E. Plane strain and axially symmetric problem of the consolidation of a semi-infinite clay stratum. Quarterly Journal of Mechanics and Applied Mathematics , 1960, 13(2): 210-227
doi: 10.1093/qjmam/13.2.210
4 Schiffman R L, Fungaroli A A. Consolidation due to tangential loads. In: Proceedings of the 6th International Conference on Soil Mechanics and Foundation Engineering. Montreal , 1965, 1: 188-192
5 Booker J R, Small J C. Finite layer analysis of consolidation I. International Journal for Numerical and Analytical Methods in Geomechanics , 1982, 6(2): 151-171
doi: 10.1002/nag.1610060204
6 Booker J R, Small J C. Finite layer analysis of consolidation II. International Journal for Numerical and Analytical Methods in Geomechanics , 1982, 6(2): 173-194
doi: 10.1002/nag.1610060205
7 Booker J R, Small J C. A method of computing the consolidation behavior of layered soils using direct numerical inversion of Laplace Transforms. International Journal for Numerical and Analytical Methods in Geomechanics , 1987, 11(4): 363-380
doi: 10.1002/nag.1610110405
8 Wang J G, Fang S S. The state vector solution of axisymmetric Biot’s consolidation problems for multilayered poroelastic media. Mechanics Research Communications , 2001, 28(6): 671-677
doi: 10.1016/S0093-6413(02)00218-5
9 Wang J G, Fang S S. State space solution of non-axisymmetric Biot consolidation problems for multilayered poroelastic media. International Journal of Engineering Science , 2003, 41(15): 1799-1813
doi: 10.1016/S0020-7225(03)00062-4
10 Ai Z Y, Han J. A solution to plane strain consolidation of multi-layered soils. Soil and Rock Behavior and Modeling . ASCE: Geotechnical Special Publication, 2006, 150: 276-283
11 Ai Z Y, Cheng Z Y, Han J. State space solution to three-dimensional consolidation of multi-layered soils. International Journal of Engineering Science , 2008, 46(5): 486-498
doi: 10.1016/j.ijengsci.2007.12.003
12 Ai Z Y, Cheng Z Y. Transfer matrix solutions to plane-strain and three-dimensional Biot’s consolidation of multi-layered soils. Mechanics of Materials , 2009, 41(3): 244-251
doi: 10.1016/j.mechmat.2008.11.006
13 Booker J R, Carter J P. Elastic consolidation around a point sink embedded in a half-space with anisotropic permeability. International Journal for Numerical and Analytical Methods in Geomechanics , 1987, 11(1): 61-77
doi: 10.1002/nag.1610110106
14 Mei G X, Yin J H, Zai J M, Yin Z Z, Ding X L, Zhu G F, Chu L M. Consolidation analysis of a cross-anisotropic homogeneous elastic soil using a finite layer numerical method. International Journal for Numerical and Analytical Methods in Geomechanics , 2004, 28(2): 111-129
doi: 10.1002/nag.324
15 Singh J S, Rani S, Kumar R. Quasi-static deformation of poroelastic half-space with anisotropic permeability by two-dimensional surface load. Geophysical Journal International , 2007, 170(3): 1311-1327
doi: 10.1111/j.1365-246X.2007.03497.x
16 Booker J R, Carter J P. Withdrawal of a compressible pore fluid from a point sink in an isotropic elastic half space with anisotropic permeability. International Journal of Solids and Structures , 1987, 23(3): 369-385
doi: 10.1016/0020-7683(87)90042-4
17 Chen G J. Consolidation of multilayered half space with anisotropic permeability and compressible constituents. International Journal of Solids and Structures , 2004, 41(16-17): 4567-4586
doi: 10.1016/j.ijsolstr.2004.03.019
18 Ai Z Y, Wu C. Analysis of plane strain consolidation for a multi-layered soil with anisotropic permeability and compressible constituents. Chineses Journal of Theoretical and Applied Mechanics , 2009, 41: 801-807
19 Skempton A W. The pore-pressure coefficients A and B. Geotechnique , 1954, 4(4): 143-147
doi: 10.1680/geot.1954.4.4.143
20 Cheng A H D, Liggett J A. Boundary integral equation method for linear porous-elasticity with applications to soil consolidation. International Journal for Numerical Methods in Engineering , 1984, 20(2): 255-278
doi: 10.1002/nme.1620200206
21 Yue Z Q, Selvadurai A P S, Law K T. Excess pore water pressure in a poroelastic seabed saturated with a compressible fluid. Canadian Geotechnical Journal , 1994, 31(6): 989-1003
22 Senjuntichai T, Rajapakse R K N D. Exact stiffness method for quasi-statics of a multi-layered poroelastic medium. International Journal of Solids and Structures , 1995, 32(11): 1535-1553
doi: 10.1016/0020-7683(94)00190-8
23 Pan E. Green’s functions in layered poroelastic half-space. International Journal for Numerical and Analytical Methods in Geomechanics , 1999, 23(13): 1631-1653
doi: 10.1002/(SICI)1096-9853(199911)23:13<1631::AID-NAG60>3.0.CO;2-Q
24 Wang H F. Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrogeology. Princeton: Princeton University Press, 2000
25 Ai Z Y, Cheng Z Y. Plane strain Biot’s consolidation of multi-layered soils with compressible constituents. In: Characterization, Monitoring, and Modeling of GeoSystems . ASCE: Geotechnical Special Publication, 2008, 179: 702-709
26 Ai Z Y, Wang Q S. Axisymmetric Biot’s consolidation of multi-layered soils with compressible constituents. In: Characterization, Monitoring, and Modeling of GeoSystems . ASCE: Geotechnical Special Publication, 2008, 179: 678-685
27 Ai Z Y, Wu C, Han J. Transfer matrix solutions for three dimensional consolidation of a multi-layered soil with compressible constituents. International Journal of Engineering Science , 2008, 46(11): 1111-1119
doi: 10.1016/j.ijengsci.2008.04.005
28 Biot M A. Theory of elasticity and consolidation for a porous anisotropic solid. Journal of Applied Physics , 1955, 26(2): 182-185
doi: 10.1063/1.1721956
29 Verruijt A.Displacement functions in the theory of consolidation of thermoelasticity. Zeitschrift für angewandte Mathematik und Physik ZAMP , 1971, 22: 891-898
30 Talbot A. The accurate numerical inversion of Laplace transforms. Journal of the Institute of Mathematics and Its Applications , 1979, 23(1): 97-120
doi: 10.1093/imamat/23.1.97
31 Sneddon I N. The Use of Integral Transform. New York: McGraw-Hill, 1972
32 Pastel E C, Leckie F A. Matrix Methods in Elasto-Mechanics. New York: McGraw-Hill, 1963
33 Ai Z Y, Yue Z Q, Tham L G, Yang M. Extended Sneddon and Muki solutions for multilayered elastic materials. International Journal of Engineering Science , 2002, 40(13): 1453-1483
doi: 10.1016/S0020-7225(02)00022-8
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed