Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

Postal Subscription Code 80-968

2018 Impact Factor: 1.272

Front Arch Civil Eng Chin    2011, Vol. 5 Issue (2) : 151-159    https://doi.org/10.1007/s11709-011-0109-7
RESEARCH ARTICLE
Structure creation in earthen construction materials: information from dry soil mixtures
Christopher BECKETT(), Charles AUGARDE
School of Engineering and Computing Sciences, Durham University, Durham DH1 3LE, UK
 Download: PDF(399 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

There is increasing interest in the use of earthen construction materials, such as rammed earth, due to their inherent sustainability. These materials have been used by man for thousands of years and some of the earliest examples can be found in China. Features of the structures of these materials arise from the means of production. In particular, in situ earthen construction materials exhibit strong anisotropy due to their layered nature. A more subtle structure effect arises from the way that the earth mixture is deposited. This paper reviews and discusses stratification effects in dry soil mixtures, including some original experimental work, and indicates some links between the features of the dry mixtures and earthen construction materials. Improved understanding of the physical processes in play will allow more accurate specification of these materials in the future, and hence spread their use.

Keywords rammed earth      stratification      particle size distribution      pore size distribution     
Corresponding Author(s): BECKETT Christopher,Email:c.t.s.beckett@dur.ac.uk   
Issue Date: 05 June 2011
 Cite this article:   
Christopher BECKETT,Charles AUGARDE. Structure creation in earthen construction materials: information from dry soil mixtures[J]. Front Arch Civil Eng Chin, 2011, 5(2): 151-159.
 URL:  
https://academic.hep.com.cn/fsce/EN/10.1007/s11709-011-0109-7
https://academic.hep.com.cn/fsce/EN/Y2011/V5/I2/151
Fig.1  Typical shape of a sandpile. is the repose angle of species
Fig.2  (a) Results for spontaneous stratification of a bidisperse mixture of smaller smooth grains (light) and larger rougher grains (dark); (b) results for a segregating mixture of smaller rougher (light) grains and larger, smoother grains (dark) []
Fig.3  The generalized repose angles for: (a) small, smooth particle rolling down a surface of rough particles, ; (b) rough, large particle rolling down a surface of small, smooth particles, ; (c) small, smooth particle rolling down a slope of the same species, ; (d) large, rough particle rolling down a slope of the same species, []
Fig.4  Diagrammatic process of kink formation and propagation (after Makse et al. []). (a) initial avalanche at velocity (); (b) formation of the kink; (c) profile and propagation of the kink up the sandpile (slope angle ) with kink angles , and
Fig.5  Particle grading curves for fine and coarse sand
Fig.6  Silo pouring directions
Fig.7  (a)-(d) Stratification results for PDs 1, 2, 4 and 5 respectively (all using manual pouring)
Fig.8  (a)-(b) Stratification pattern for low flow rate; (c)-(d) Stratification pattern for high flow rate
Fig.9  (a) Stratification pattern showing delineation between pouring phase; (b) diagrammatic description
1 Houben H, Guillaud H. Earth construction — a comprehensive guide. 2nd ed. London: Intermediate Technology Publications, 1996
2 Maniatidis V, Walker P. A Review of Rammed Earth Construction. Bath: University of Bath, 2003
3 Walker P, Keable R, Martin J, Maniatidis V. Rammed Earth: Design and Construction Guidelines. Watford: BRE Bookshop, 2005
4 Easton D. The Rammed Earth House, Completely Revised Edition. Vermont: Chelsea Green Publication Company, 2007
5 Jaquin P A. Analysis of historic rammed earth construction. Dissertation for the Doctoral Degree . Durham: Durham University, 2008
6 Ngowi A B. Improving the traditional earth construction: a case study of Botswana. Construction & Building Materials , 1997, 11(1): 1–7
doi: 10.1016/S0950-0618(97)00006-8
7 Jaquin P A, Augarde C E, Legrand L. Unsaturated characteristics of rammed earth. In: Proceedings of the 1st European Conference on Unsaturated Soils. Durham , 2008, 417–422
8 Jaquin P A, Augarde C E, Gerrard C M. A chronological description of the spatial development of rammed earth techniques. International Journal of Architectural Heritage: Conservation. Analysis and Restoration , 2008, 2(4): 377–400
9 Delgado M C J, Guerrero I C. Earth building in Spain. Construction & Building Materials , 2006, 20(9): 679–690
doi: 10.1016/j.conbuildmat.2005.02.006
10 Treloar G, Owen C, Fay R. Environmental assessment of rammed earth construction systems. Structural Survey , 2001, 19(2): 99–105
doi: 10.1108/02630800110393680
11 Conti A P. Earth building today, a renewed use of an ancient technology. In: Proceedings of the 11th International Conference on Non-Conventional Materials and Technologies (NOCMAT). Bath University , 2009
12 Liu J, Hu R, Wang R, Yang L. Regeneration of vernacular architecture: new rammed earth houses on the upper reaches of the Yangtze river. Frontiers of Energy and Power Engineering in China , 2010, 4(1): 93–99
doi: 10.1007/s11708-010-0002-4
13 Jaquin P A, Augarde C E, Gallipoli D, Toll D G. The strength of unstabilised rammed earth materials. Geotechnique , 2009, 59(5): 487–490
doi: 10.1680/geot.2007.00129
14 Barzegar A R, Oades J M, Rengasamy P, Murray R S. Tensile-strength of dry, remoulded soils as affected by properties of the clay fraction. Geoderma , 1995a, 65(1–2): 93–108
doi: 10.1016/0016-7061(94)00028-9
15 Barzegar A R, Rengasamy P, Oades J M. Effects of clay type and rate of wetting on the mellowing of compacted soils. Geoderma , 1995b, 68(1–2): 39–49
doi: 10.1016/0016-7061(95)00022-G
16 Gens A. Soil-environment interactions in geotechnical engineering. Geotechnique , 2010, 60(1): 3–74
doi: 10.1680/geot.9.P.109
17 Beckett C T S, Augarde C E. Development of microstructure in compacted earthen building materials. In: Alonso E, Gens A, eds. Unsaturated Soils. Fifth International Conference on Unsaturated Soils, Barcelona, September , CRC Press , 2010139–144
18 Utomo W H, Dexter A R. Soil friability. Journal of Soil Science , 1981, 32(2): 203–213
doi: 10.1111/j.1365-2389.1981.tb01700.x
19 Causarano H. Factors affecting the tensile strength of soil aggregates. Soil & Tillage Research , 1993, 28(1): 15–25
doi: 10.1016/0167-1987(93)90052-Q
20 Dexter A R. Physical properties of tilled soils. Soil & Tillage Research , 1997, 43(1–2): 41–63
doi: 10.1016/S0167-1987(97)00034-2
21 Or D, Tuller M. Liquid retention and interfacial area in variably saturated porous media: Upscaling from single-pore to sample-scale model. Water Resources Research , 1999, 35: 3591–3605
22 Gelard D, Fontaine L, Maximilien S, Olagnon C, Laurent J, Houben H, Van Damme H. When physics revisit earth construction: Recent advances in the understanding of the cohesion mechanisms of earthen materials. In: Proceedings of the International Symposium on Earthen Structures. IIS Bangalore , 2007, 294–302
23 Fredlund D G. Unsaturated soil mechanics in engineering practice. Journal of Geotechnical and Geoenvironmental Engineering , 2006, 132(3): 286–321
doi: 10.1061/(ASCE)1090-0241(2006)132:3(286)
24 Baker R, Frydman S. Unsaturated soil mechanics: critical review of physical foundations. Engineering Geology , 2009, 106(1–2): 26–39
doi: 10.1016/j.enggeo.2009.02.010
25 Likos W J. Pore-scale model for water retention in unsaturated sand. AIP Conference Proceedings , 2009, 1145: 907–910
26 Tuller M, Or D, Retention of water in soil and the soil water characteristic curve, in Encyclopaedia of Soils in the Environment. Oxford (U. K.): Elsevier Ltd, 2004
27 Chae J, Kim B, Park S, Kato S. Effect of suction on unconfined compressive strength in partly saturated soils. KSCE Journal of Civil Engineering , 2010, 14(3): 281–290
doi: 10.1007/s12205-010-0281-7
28 Dexter A R, Chan K Y. Soil mechanical properties as inuenced by exchangeable cations. Journal of Soil Science , 1991, 42(2): 219–226
doi: 10.1111/j.1365-2389.1991.tb00403.x
29 Barzegar A R, Oades J M, Rengasamy P, Giles L. Effect of sodicity and salinity on disaggregation and tensile strength of an alfisol under different cropping systems. Soil & Tillage Research , 1994, 32(4): 329–345
doi: 10.1016/0167-1987(94)00421-A
30 Rahimi H, Pazira E, Tajik F. Effect of soil organic matter, electrical conductivity and sodium adsorption ratio on tensile strength of aggregates. Soil & Tillage Research , 2000, 54(3–4): 145–153
doi: 10.1016/S0167-1987(00)00086-6
31 Diamond S. Microstructure and pore structure of impact-compacted clays. Clays and Clay Minerals , 1971, 19(4): 239–249
doi: 10.1346/CCMN.1971.0190405
32 Collins K, McGown A. Form and function of microfabric features in a variety of natural soils. Geotechnique , 1974, 24(2): 223–254
doi: 10.1680/geot.1974.24.2.223
33 Tuller M, Or D, Dudley L M. Adsorption and capillary condensation in porous media: Liquid retention and interfacial configurations in angular pores. Water Resources Research , 1999, 35(7): 1949–1964
34 Tarantino A, De Col E, Compaction behaviour of clay. Géotechnique , 2008, 58(3): 199–213
35 Monroy R, Zdravkovic L, Ridley A. Evolution of microstructure in compacted London clay during wetting and loading. Géotechnique , 2010, 60(2): 105–199
doi: 10.1680/geot.8.P.125
36 Zhang L M, Li X. Microporosity structure of coarse granular soils. Journal of Geotechnical and Geoenvironmental Engineering , 2010, 136(10): 1425–1436
doi: 10.1061/(ASCE)GT.1943-5606.0000348
37 Hall M, Djerbib Y. Moisture ingress in rammed earth: Part 1– the effect of soil particle-size distribution on the rate of capillary suction. Construction & Building Materials , 2004, 18(4): 269–280
doi: 10.1016/j.conbuildmat.2003.11.002
38 Bolton M. A Guide to Soil Mechanics. Cambridge: M D & K, 1991
39 Grasselli Y, Herrmann H J. On the angles of dry granular heaps. Physica A: Statistical and Theoretical Physics , 1997, 246(3–4): 301–312
doi: 10.1016/S0378-4371(97)00326-9
40 Grasselli Y, Herrmann H. Etude sur la forme d’un tas de billes dans un silo bidimensionnel. Comptes Rendus de l’Acadmie des Sciences – Series IIB – Mechanics-Physics-Chemistry-Astronomy , 1998, 326(1): 61–67 (in French)
doi: 10.1016/S1251-8069(97)86954-0
41 Grasselli Y, Herrmann H, Shapes of heaps and in silos. The European Physical Journal B – Condensed Matter and Complex Systems , 1999, 10: 673–679
42 Herrmann H J. Shapes of granular surfaces. Physica A: Statistical Mechanics and its Applications , 1999, 270(1–2): 82–88
43 Hadeler K P, Kuttler C. Dynamical models for granular matter. Granular Matter , 1999, 2(1): 9–18
doi: 10.1007/s100350050029
44 Herrmann H J. Granular matter. Physica A: Statistical Mechanics and Its Applications , 2002, 313(1–2): 188–210
45 Goyal R K, Tomassone M S. Power-law and exponential segregation in two-dimensional silos of granular mixtures. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics , 2006, 74(5): 10
doi: 10.1103/PhysRevE.74.051301
46 Cizeau P, Makse H A, Stanley H E. Mechanisms of granular spontaneous stratification and segregation in two-dimensional silos. Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics , 1999, 59(4): 4408–4421
doi: 10.1103/PhysRevE.59.4408
47 Makse H A, Ball R C, Stanley H E, Warr S. Dynamics of granular stratification. Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics , 1998, 58(3): 3357–3367
doi: 10.1103/PhysRevE.58.3357
48 Makse H A, Havlin S, King P R, Stanley H E. Spontaneous stratification in granular mixtures. Nature , 1997, 386(March): 379–381
doi: 10.1038/386379a0
49 Samadani A, Kudrolli A. Angle of repose and segregation in cohesive granular matter. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics , 2001, 6405(5): 9
50 Shimokawa M, Ohta S. Dual stratification of a sand pile formed by trapped kink. Physics Letters [Part A] , 2007, 366(6): 591–595
doi: 10.1016/j.physleta.2007.05.067
51 Samadani A, Pradhan A, Kudrolli A. Size segregation of granular matter in silo discharges. Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics , 1999, 60(6): 7203–7209
doi: 10.1103/PhysRevE.60.7203 pmid:11970663
52 Ottino J M, Khakhar D V. Fundamental research in heaping, mixing, and segregation of granular materials: challenges and perspectives. Powder Technology , 2001, 121(2–3): 117–122
doi: 10.1016/S0032-5910(01)00361-8
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed