Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

Postal Subscription Code 80-968

2018 Impact Factor: 1.272

Front Arch Civil Eng Chin    2011, Vol. 5 Issue (3) : 294-303    https://doi.org/10.1007/s11709-011-0115-9
RESEARCH ARTICLE
Ductile extension of 3-D external circumferential cracks in pipe structures
Wuchao YANG, Xudong QIAN()
Department of Civil and Environmental Engineering, National University of Singapore, Singapore 119077
 Download: PDF(554 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This study investigates the ductile fracture resistance of 3-D external circumferential cracks in the wall of a steel pipe under remote tension, using a damage-mechanism model originally proposed by Gurson and Tvergaard. The ductile crack extension utilizes an element extinction technique implemented in the computational cell framework. The key parameter for the computational cell method, i.e., the initial porosity ratio f0, is calibrated using both the fracture resistance and the load-deformation responses obtained from fracture tests of multiple single-edge bend [SE(B)] specimens made of high-strength steel, HY80, which has a yield strength of 630 MPa. The fracture resistance along the 3-D semi-elliptical crack front is computed from the calibrated cell model. Based on the similarity concept in the near-tip stress-strain fields, this study demonstrates that an equivalent 2-D axi-symmetric model provides conservative estimations of the fracture resistance for 3-D circumferential cracks in pipes.

Keywords ductile fracture      computational cell method      G-T model      J-R curve     
Corresponding Author(s): QIAN Xudong,Email:qianxudong@nus.edu.sg   
Issue Date: 05 September 2011
 Cite this article:   
Wuchao YANG,Xudong QIAN. Ductile extension of 3-D external circumferential cracks in pipe structures[J]. Front Arch Civil Eng Chin, 2011, 5(3): 294-303.
 URL:  
https://academic.hep.com.cn/fsce/EN/10.1007/s11709-011-0115-9
https://academic.hep.com.cn/fsce/EN/Y2011/V5/I3/294
1 Joyce J A, Hackett E M, Roe C. Effects of crack depth and mode of loading on the J-R curve behavior of a high-strength steel. Constraint Effects in Fracture. ASTM. STP , 1993, 1171: 239–263
2 Link R E, Joyce J A. Experimental investigation of fracture toughness scaling models. Constraint Effects in Fracture, Theory and Applications: Second Volume. ASTM. STP , 1995, 1244: 286–315
3 Ruggieri C, Panontin T L, Dodds R H Jr. Numerical modeling of ductile crack growth in 3-D using computational cell elements. International Journal of Fracture , 1996, 82(1): 67–95
doi: 10.1007/BF00017864
4 Xia L, Shih C F. Ductile crack growth. Part I: A numerical study using computational cells with microstructurally-based length scales. Journal of the Mechanics and Physics of Solids , 1995, 43(2): 233–259
doi: 10.1016/0022-5096(94)00064-C
5 Xia L, Shih C F. Ductile crack growth. Part II: Void nucleation and geometry effects on macroscopic fracture behavior. Journal of the Mechanics and Physics of Solids , 1995, 43(12): 1953–1981
doi: 10.1016/0022-5096(95)00063-O
6 Xia L, Shih C F, Hutchinson J W. A computational approach to ductile crack growth under large-scale yielding conditions. Journal of the Mechanics and Physics of Solids , 1995, 43(3): 389–413
doi: 10.1016/0022-5096(94)00069-H
7 Rahman S, Brust F W. Approximate method for predicting J-integral of a circumferentially surface-cracked pipe subjected to bending. International Journal of Fracture , 1979, 85(1): 11–30
8 Ahmad J, Papaspyropoulos V, Brust F W, Wilkowski G M. A predictive J-estimation method for circumferentially surface cracked pipes of power-law hardening materials in pure bending. In: Proceedings of the ASME Pressure Vessels Piping Conference, Honolulu, Hawaii , 1989: 71–85
9 Kumar V, German M. Elastic-plastic fracture analysis of through-wall and surface flaws in cylinders: final report. Palo Alto , CA: Electric Power Research Institute. 1988
10 Jayadevan K R, Ostby E, Thaulow C. Fracture response of pipelines subjected to large plastic deformation under tension. International Journal of Pressure Vessels and Piping , 2004, 81(9): 771–783
doi: 10.1016/j.ijpvp.2004.04.005
11 Chattopadhyay J, Kushwaha H S, Roos E. Some recent developments on integrity assessment of pipes and elbows. Part II: Experimental investigations. International Journal of Solids and Structures , 2006, 43(10): 2932–2958
doi: 10.1016/j.ijsolstr.2005.06.055
12 Hippert E Jr, Dotta F, Ruggieri C. Structural Integrity Assessments of Pipelines Using Crack Growth Resistance Curves. In: Proceedings of 4th International Pipeline Conference Calgary, Alberta, Canada , 2002, ASME: 1741–1749
13 Dotta F, Ruggieri C. Structural integrity assessments of high pressure pipelines with axial flaws using a micromechanics model. International Journal of Pressure Vessels and Piping , 2004, 81(9): 761–770
doi: 10.1016/j.ijpvp.2004.04.004
14 Qian X. An out-of-plane length scale for ductile crack extensions in 3-D SSY models for X65 pipeline materials. International Journal of Fracture , 2011, 167(2): 249–265
doi: 10.1007/s10704-010-9550-1
15 Gurson A L. Continuum theory of ductile rupture by void nucleation and growth. Part 1: Yield criteria and flow rules for porous ductile media. Journal Engineering Materials and Technology-Transactions of ASME , 1977, 99(1): 2–15
doi: 10.1115/1.3443401
16 Tvergaard V. Material failure by void growth to coalescence. Advances in Applied Mechanics , 1989, 27: 83–151
doi: 10.1016/S0065-2156(08)70195-9
17 Faleskog J, Gao X S, Shih C F. Cell model for nonlinear fracture analysis. I. Micromechanics calibration. International Journal of Fracture , 1998, 89(4): 355–373
doi: 10.1023/A:1007421420901
18 Chu C, Needleman A. Void nucleation effects in biaxially stretched sheets. Journal of Engineering Materials and Technology , 1980, 102(3): 249–256
doi: 10.1115/1.3224807
19 Gao X S, Faleskog J, Shih C F. Cell model for nonlinear fracture analysis – II. Fracture-process calibration and verification. International Journal of Fracture , 1998, 89(4): 375–398
doi: 10.1023/A:1007410825313
20 Healy B, Gullerud A, Koppenhoefer K, et al. WARP3D-Release 16.2: 3-D dynamic nonlinear fracture analyses of solids using parallel computers. Structural Research Series (SRS) 607 UILU-ENG-95-2012, University of Illinois at Urbana Champaign , 2009
21 Tvergaard V. Influence of voids on shear band instabilities under plane-stain conditions. International Journal of Fracture , 1981, 17(4): 389–407
doi: 10.1007/BF00036191
22 Gullerud A S, Gao X S, Dodds R H Jr, Haj-Ali R. Simulation of ductile crack growth using computational cells: numerical aspects. Engineering Fracture Mechanics , 2000, 66(1): 65–92
doi: 10.1016/S0013-7944(99)00147-2
23 Shih C F. Relationship between the J-integral and the crack opening displacement for stationary and extending cracks. Journal of the Mechanics and Physics of Solids , 1981, 29(4): 305–326
doi: 10.1016/0022-5096(81)90003-X
24 Zhu X K, Joyce J A. J-resistance curve testing of HY80 steel using SE(B) specimens and normalization method. Engineering Fracture Mechanics , 2007, 74(14): 2263–2281
doi: 10.1016/j.engfracmech.2006.10.018
25 ASTM E1820–01. Standard Test Method for Measurement of Fracture Toughness. ASTM International, West Conshohocken, PA (United States) , 2001
26 Qian X, Dodds R H Jr, Yin S, Bass R. Cleavage fracture modeling of pressure vessels under transient thermo-mechanical loading. Engineering Fracture Mechanics , 2008, 75(14): 4167–4189
doi: 10.1016/j.engfracmech.2008.03.011
27 Quest Integrity Group. FEA Crack: 3D-finite element software for cracks. Version 3.2: User’s Manual , 2010
28 Anderson T L. Fracture Mechanics: Fundamentals and Applications 2rd ed . Boca Raton: CRC press, 1995, 130
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed