Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

Postal Subscription Code 80-968

2018 Impact Factor: 1.272

Front Arch Civil Eng Chin    2011, Vol. 5 Issue (4) : 465-478    https://doi.org/10.1007/s11709-011-0135-5
RESEARCH ARTICLE
SHM-based F-AHP bridge rating system with application to Tsing Ma Bridge
Qi LI1,2(), You-lin XU2, Yue ZHENG2, An-xin GUO3, Kai-yuen WONG4, Yong XIA2
1. Department of Bridge Engineering, Tongji University, Shanghai 200092, China; 2. Department of Civil and Structural Engineering, The Hong Kong Polytechnic University, Hong Kong, China; 3. School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China; 4. Bridges & Structures Division, Hong Kong Highways Department, Hong Kong, China
 Download: PDF(202 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper aims at developing a structural health monitoring (SHM)-based bridge rating method for bridge inspection of long-span cable-supported bridges. The fuzzy based analytic hierarchy approach is employed, and the hierarchical structure for synthetic rating of each structural component of the bridge is proposed. The criticality and vulnerability analyses are performed largely based on the field measurement data from the SHM system installed in the bridge to offer relatively accurate condition evaluation of the bridge and to reduce uncertainties involved in the existing rating method. The procedures for determining relative weighs and fuzzy synthetic ratings for both criticality and vulnerability are then suggested. The fuzzy synthetic decisions for inspection are made in consideration of the synthetic ratings of all structural components. The SHM-based bridge rating method is finally applied to the Tsing Ma suspension bridge in Hong Kong as a case study. The results show that the proposed method is feasible and it can be used in practice for long-span cable-supported bridges with SHM system.

Keywords structural health monitoring (SHM)      bridge rating method      fuzzy based analytic hierarchy approach      criticality and vulnerability rating      Tsing Ma Bridge     
Corresponding Author(s): LI Qi,Email:liqi_bridge@tongji.edu.cn   
Issue Date: 05 December 2011
 Cite this article:   
Qi LI,You-lin XU,Yue ZHENG, et al. SHM-based F-AHP bridge rating system with application to Tsing Ma Bridge[J]. Front Arch Civil Eng Chin, 2011, 5(4): 465-478.
 URL:  
https://academic.hep.com.cn/fsce/EN/10.1007/s11709-011-0135-5
https://academic.hep.com.cn/fsce/EN/Y2011/V5/I4/465
Fig.1  Analytic hierarchical structure for each bridge component
BoldItalic1BoldItalic2···BoldItalicn
A1BoldItalic12···
A2BoldItalic21BoldItalic22···BoldItalic2n
···············
Anαn1αn2···αnn
Tab.1  Comparative weight matrix
n12345678910
RI000.580.901.121.241.321.411.451.49
Tab.2  Random index ()
Fig.2  Fuzzy membership functions for the five point fuzzy rating set
scale of fuzzy synthetic rating Rtime interval for inspection
75R<100six months
57.5R<75one year
25R<57.5two years
0R<25six years
Tab.3  Fuzzy synthetic decision for inspection
CFdefinitionrangepoints
C1any alternative load path?no100
yes, affect global structural performance67
yes, not affect global structural performance0
C2design normal combined loads (based on strength utilization factor)0%-100%0-100
C3design fatigue loads (based on fatigue life)high:<200 years100
normal: between 200 and 300 years67
low:>300 years or not applicable0
C4known or discovered imperfections but not serious enough to warrant immediate repairany, non-repairable100
any, repairable67
none0
C5failure mechanismscatastrophic collapse100
partial collapse67
structural damage33
Tab.4  Criticality factor: definitions and values
VFdefinitionrangepoints
V1. corrosionexposure or degree of protection (VA1)internal or adequate0
partial or average50
extreme or none100
likelihood of detection in superficial inspection (VB1)likely0
possible50
unlikely100
likely influence on structural integrity (VC1)likely0
possible50
unlikely100
V2. damageexposure to damage(VA2)none0
medium50
high100
likelihood of detection in superficial inspection (VB2)likely0
possible50
none100
likely influence on structural integrity (VC2)low0
medium50
high100
V3. wearrelative wear rate per annum (VA3)low0
medium50
high100
likelihood of detection in routine maintenance (VB3)likely0
medium50
unlikely100
likely influence on structural integrity (VC3)low0
medium50
high100
Tab.5  Vulnerability factor: definitions and values
Fig.3  Configuration of Tsing Ma Bridge (unit:m). (a) Elevation; (b) cross section of bridge deck
name of groupname of componentgroup No.component No.serial No.
suspension cablesmain cables1(a)1
strand shoes(b)2
shoe anchor rods(c)3
anchor bolts(d)4
cable clamps & bands(e)5
suspendershangers2(a)6
hanger connections: stiffeners(b)7
hanger connections: bearing plates(c)8
towerslegs3(a)9
portals(b)10
saddles(c)11
anchorageschambers4(a)12
prestressing anchors(b)13
saddles(c)14
(piers: M1, M2, T1, T2, T3)legs5(a)15
cross-beams(b)16
outer- longitudinal trussestop chord6(a)17
diagonal(b)18
vertical post(c)19
bottom chord(d)20
inner- longitudinal trussestop chord7(a)21
diagonal(b)22
vertical post(c)23
bottom chord(d)24
main cross-framestop web8(a)25
sloping web(b)26
bottom web(c)27
bottom chord(d)28
intermediate cross-framestop web9(a)29
sloping web(b)30
bottom web(c)31
bottom chord(d)32
plan bracingsupper-deck10(a)33
lower-deck(b)34
decktroughs11(a)35
plates(b)36
railway beamsT-sections12(a)37
top flanges(b)38
connections(c)39
bearingsrocker bearings at Ma Wan Tower13(a)40
PTFE bearings at Tsing Yi Tower(b)41
PTFE bearings at pier T1(c)42
PTFE bearings at pier T2(d)43
PTFE bearings at pier T3(e)44
PTFE bearings at Tsing Yi anchorage(f)45
rocker bearings at M2(g)46
PTFE bearings at M1(h)47
hinge bearing at Lantau anchorage(i)48
movement jointshighway movement joint14(a)49
railway movement joint(b)50
Tsing Yi approach decktop chord15(a)51
diagonal(b)52
vertical post(c)53
bottom chord(d)54
diagonals (K-bracings)(e)55
Tab.6  Classification of structural components of Tsing Ma Bridge
Fig.4  A 3-D finite element model of Tsing Ma Bridge
group No.serial No.criticality factors
C1C2C3C4C5
111006500100
2676700100
3676700100
4676700100
567670033
2667160033
7671000033
8671000033
39100400067
10100670067
11100670067
4121003300100
13671000067
14100670067
5151003300100
16100670067
617100620067
1810075100067
191002067067
2010076100067
7216710067067
2267530067
23673267067
246710067067
82567710067
261006767067
271001000067
281001000067
92967310067
30676767067
316710067067
326710067067
1033100850067
34100570067
11356710067067
36671000067
1237100067067
38100330067
39100330067
13401001000067
4110010006767
4210010006767
4310010006767
4410010006767
4510010006767
461001000067
4710010006767
481001000067
144910067100033
5010067100033
155167380067
5267360067
53672867067
54677867067
55671967067
Tab.7  Scores of criticality factors
index levelC1C2C3C4C5relative weight
C111/31/2110.1237
C2312330.3945
C321/21220.2343
C411/31/2110.1237
C511/31/2110.1237
Tab.8  Comparison matrix and relative weights for 1
index levelV1V2V3relative weight
V11220.5
V21/2110.25
V31/2110.25
Tab.9  Comparison matrix and relative weights for 1
index levelC1C2C3C4C5relative weight
C111/41/3110.0985
C2412440.4304
C331/21330.2741
C411/41/3110.0985
C511/41/3110.0985
Tab.10  Comparison matrix and relative weights for2
index levelV1V2V3relative weight
V11330.6
V21/3110.2
V 31/3110.2
Tab.11  Comparison matrix and relative weights for 2
group No.serial No.case 1case 2(C2–C1)/C1×100%
score of fuzzy rating (C1)time interval for inspection (year)score of fuzzy rating (C2)time interval for inspection (year)
1153.3254.422.06
251.9253.523.08
351.9253.523.08
451.9253.523.08
545.3246.221.99
2644.3243.92-0.90
757.6160.214.51
857.6160.214.51
3950.5251.622.18
1050.1251.522.79
1150.1251.522.79
41251.125425.68
1355.1257.424.17
1452.2253.221.92
51551.1252.322.35
1650.1251.522.79
61750.6251.321.38
1860.5162.312.98
1950.1250.520.80
2060.6162.913.80
72156.8259.514.75
2245.1245.821.55
2347.3247.821.06
2456.8259.514.75
82551.4253.023.11
2654.9256.322.55
2759.0161.313.90
2859.0161.313.90
92943.0243.220.47
3052.8254.623.41
3157.0259.514.39
3257.0259.514.39
103354.4256.223.31
3447.4248.221.69
113556.8259.514.75
3655.1257.514.36
123748.0248.521.04
3850.2251.021.59
3950.2251.021.59
134059.6162.214.36
4159.2161.814.39
4259.2161.814.39
4359.2161.814.39
4459.2161.814.39
4559.2161.814.39
4659.6162.214.36
4759.2161.814.39
4859.6162.214.36
144962.3164.112.89
5062.3164.112.89
155144.7245.221.12
5244.2244.620.90
5346.4246.820.86
5453.8255.823.72
5547.3247.921.27
Tab.12  Decision on time intervals for inspection
1 Hong Kong Highways Department (HyD). Master Maintenance Manual for Long-Span Cable-Supported Bridges, Appendix 14 of the Contract for Management, Operation and Maintenance of the Tsing Ma Control Area (TMCA). Hong Kong, China , 1996
2 Hong Kong Highways Department (HyD). Master Maintenance Manual for Long-Span Cabl- Supported Bridges, Appendix 14 of the Contract for Management, Operation and Maintenance of the Tsing Ma Control Area (TMCA). Hong Kong, China , 2001
3 Wong K Y. Criticality and vulnerability analyses of Tsing Ma Bridge. In: Proceedings of the International Conference on Bridge Engineering—Challenges in the 21st Century. Hong Kong, China , 2006, 209–220
4 Kushida M, Tokuyama T, Miyamoto A. Quantification of subjective uncertainty included in empirical knowledge on bridge rating. In: Proceedings of Second International Symposium on Uncertainty Modeling and Analysis . New York: IEEE, 1993, 22–28
5 Melhem H. Fuzzy logic for bridge rating using an eigenvector of priority settings. In: Proceedings of the First International Joint Conference of the North American Fuzzy Information Processing Society Biannual Conference. The Industrial Fuzzy Control and Intelligent Systems Conference, and the NASA Joint Technology Workshop on Neural Networks and Fuzzy Logic . New York: IEEE, 1994, 279–286
6 Aktan A E, Farhey D N, Brown D L, Dalal V, Helmicki A J, Hunt V J, Shelley S J. Condition assessment for bridge management. Journal of Infrastructure Systems , 1996, 2(3): 108–117
doi: 10.1061/(ASCE)1076-0342(1996)2:3(108)
7 Liang M T, Wu J H, Liang C H. Multiple layer fuzzy evaluation for existing reinforced concrete bridges. Journal of Infrastructure Systems , 2001, 7(4): 144–159
doi: 10.1061/(ASCE)1076-0342(2001)7:4(144)
8 Kawamura K, Miyamoto A. Condition state evaluation of existing reinforced concrete bridges using neuro-fuzzy hybrid system. Computers & Structures , 2003, 81(18-19): 1931–1940
doi: 10.1016/S0045-7949(03)00213-X
9 Sasmal S, Ramanjaneyulu K, Gopalakrishnan S, Lakshmanan N. Fuzzy logic based condition rating of existing reinforced concrete bridges. Journal of Performance of Constructed Facilities , 2006, 20(3): 261–273
doi: 10.1061/(ASCE)0887-3828(2006)20:3(261)
10 Sasmal S, Ramanjaneyulu K. Condition evaluation of existing reinforced concrete bridges using fuzzy based analytic hierarchy approach. Expert Systems with Applications , 2008, 35(3): 1430–1443
doi: 10.1016/j.eswa.2007.08.017
11 ISIS Canada. Guidelines for Structural Health Monitoring, Design Manual No. 2, ISIS Canada Corporation, 2001
12 Wong K Y, Man K L, Chan W Y K. Monitoring of wind load and response for cable-supported bridges in Hong Kong. In: Proceedings of SPIE 6th International Symposium on NDE for Health Monitoring and Diagnostics, Health Monitoring and Management of Civil Infrastructure Systems. Newport Beach, California , 2001, 292–303
13 Wong K Y, Man K L, Chan W Y K. Application of global positioning system to structural health monitoring of cable-supported bridges. In: Proceedings of SPIE 6th International Symposium on NDE for Health Monitoring and Diagnostics, Health Monitoring and Management of Civil Infrastructure Systems. Newport Beach, California , 2001, 390–401
14 Xu Y L, Zhu L D, Wang K Y, Chan K W Y. Field measurement results of Tsing Ma suspension Bridge during typhoon Victor. Journal of Structural Engineering and Mechanics , 2000, 10(6): 545–559
15 Guo W W, Xu Y L, Xia H, Zhang W S, Shum K M. Dynamic response of suspension bridge to typhoon and trains. II: numerical results. Journal of Structural Engineering , 2007, 133(1): 12–21
doi: 10.1061/(ASCE)0733-9445(2007)133:1(12)
16 Liu T T, Xu Y L, Zhang W S, Wong K Y, Zhou H J, Chan K W Y. Buffeting-induced stresses in a long suspension bridge: structural health monitoring orientated stress analysis. Wind and Structures , 2009, 12(6): 479–504
17 Chen Z W, Xu Y L, Li Q, Wu D J. Dynamic stress analysis of long suspension bridges under wind, railway, and highway loadings. Journal of Bridge Engineering , 2011, 16(3): 383–391
doi: 10.1061/(ASCE)BE.1943-5592.0000216
18 Chen Z W, Xu Y L, Wang X M. SHMS-based fatigue reliability analysis of multi-loading suspension bridges. Journal of Structural Engineering , 2011 (In press)
doi: 10.1061/(ASCE)ST.1943-541X.0000460
19 Saaty T L. The Analytic Hierarchy Process. New York: McGraw Hill, 1980
20 Transportation Research Board National Research Council. NCHRP Report 458: Redundancy in Highway Bridge Substructures. Washington, D.C , 2001
21 Kaewkulchai G, Williamson E B. Beam element formulation and solution procedure for dynamic progressive collapse analysis. Computers & Structures , 2004, 82(7-8): 639–651
doi: 10.1016/j.compstruc.2003.12.001
22 BSI. BS5400, Part 10: Code of Practice for Fatigue, 1982
[1] T. VO-DUY,N. NGUYEN-MINH,H. DANG-TRUNG,A. TRAN-VIET,T. NGUYEN-THOI. Damage assessment of laminated composite beam structures using damage locating vector (DLV) method[J]. Front. Struct. Civ. Eng., 2015, 9(4): 457-465.
[2] Michael CH HUI, Doris YAU. Major bridge development in Hong Kong, China—past, present and future[J]. Front Arch Civil Eng Chin, 2011, 5(4): 405-414.
[3] Dapeng ZHU, Yang WANG, James BROWNJOHN. Vibration testing of a steel girder bridge using cabled and wireless sensors[J]. Front Arch Civil Eng Chin, 2011, 5(3): 249-258.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed