Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

Postal Subscription Code 80-968

2018 Impact Factor: 1.272

Front. Struct. Civ. Eng.    2017, Vol. 11 Issue (2) : 244-254    https://doi.org/10.1007/s11709-016-0371-9
RESEARCH ARTICLE
Approximation of structural damping and input excitation force
Mohammad SALAVATI()
Institute of Structural Mechanics, Faculty of Civil Engineering, Bauhaus University Weimar, Weimar 99423, Germany
 Download: PDF(4077 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Structural dynamic characteristics are the most significant parameters that play a decisive role in structural damage assessment. The more sensitive parameter to the damage is the damping behavior of the structure. The complexity of structural damping mechanisms has made this parameter to be one of the ongoing research topics. Despite all the difficulties in the modeling of damping, there are some approaches like as linear and nonlinear models which are described as the energy dissipation throughout viscous, material or structural hysteretic and frictional damping mechanisms. In the presence of a mathematical model of the damping mechanisms, it is possible to estimate the damping ratio from the theoretical comparison of the damped and un-damped systems. On the other hand, solving the inverse problem of the input force estimation and its distribution to each SDOFs, from the measured structural responses plays an important role in structural identification process. In this paper model-based damping approximation method and a model-less structural input estimation are considered. The effectiveness of proposed methods has been carried out through analytical and numerical simulation of the lumped mass system and the results are compared with reference data. Consequently, high convergence of the comparison results illustrates the satisfactory of proposed approximation methods.

Keywords structural modal parameters      damping identification method      input excitation force identification      Inverse problem     
Corresponding Author(s): Mohammad SALAVATI   
Online First Date: 21 February 2017    Issue Date: 19 May 2017
 Cite this article:   
Mohammad SALAVATI. Approximation of structural damping and input excitation force[J]. Front. Struct. Civ. Eng., 2017, 11(2): 244-254.
 URL:  
https://academic.hep.com.cn/fsce/EN/10.1007/s11709-016-0371-9
https://academic.hep.com.cn/fsce/EN/Y2017/V11/I2/244
Fig.1  Basic concept of the FRF

H(ω)= FFT( X)FFT( F(t)) , Hd  1(ω) Xd( ω)= Fd(ω).

Fig.2  Matlab Simulink simple model of Mass-Spring-Damper
Tab.1  Comparison of assumed damping ratios with identifies damping ratios by using proposed method and NeXT-ERA
Fig.3  Comparison of the reference mathematical model response and estimated numerical displacement response for various damping ratios: a) ξr= 0.09 b) ξr= 0.16 c) ξr= 0.32 d) ξr= 0.63
Tab.2  Overlap similarity between the reference and estimated responses
Fig.4  Comparisons of reference and identified excitation force for each damping coefficient values such as: (a)C1; (b) C2; (c) C3; (d) C4
Tab.3  Overlap similarity of the identified and reference responses for different value of damping coefficients
Fig.5  Comparisons of reference and identified displacement responses for each damping coefficient values by using (a) C1; (b) C2; (c) C3; (d) C4
Fig.6  FE model of the lumped mass system
Fig.7  Comparisons of reference and estimated excitation force; similarity= 97.9483%
Fig.8  Comparisons of reference and estimated acceleration responses; similarity= 99.9869%; FE damping ratio= 0.6; estimated damping ratio= 0.6
1 Nanthakumar S S ,  Lahmer T ,  Zhuang X ,  Zic G, Rabczuk  T. Detection of material interfaces using a regularized level set method in piezoelectric structures. Inverse Problems in Science and Engineering, 2016, 24(1): 153–176
2 Nanthakumar S S ,  Valizadeh N ,  Park H S ,  Rabczuk T . Surface effects on shape and topology optimization of nanostructures. Computational Mechanics, 2015, 56(1): 97–112
3 Nanthakumar S S ,  Lahmer T ,  Rabczuk T . Detection of multiple flaws in piezoelectric structures using XFEM and level sets. Computer Methods in Applied Mechanics and Engineering, 2014, 275: 98–112
4 Nanthakumar S S ,  Lahmer T ,  Rabczuk T . Detection of flaws in piezoelectric structures using extended FEM. International Journal for Numerical Methods in Engineering, 2013, 96(6): 373–389
48 RabczukT, EiblJ, StempniewskiL . Simulation of high velocity concrete fragmentation using SPH/MLSPH. International Journal for Numerical Methods in Engineering, 2003, 56(10): 1421–1444
49 RabczukT, Belytschko T. A three dimensional large deformation meshfree method for arbitrary evolving cracks. Computer Methods in Applied Mechanics and Engineering, 2007, 196(29–30): 2777–2799
50 RabczukT, ZiG, BordasS, Nguyen-Xuan H. A simple and robust three-dimensional cracking-particle method without enrichment. Computer Methods in Applied Mechanics and Engineering, 2010, 199(37–40): 2437–2455
51 RabczukT, Belytschko T. Cracking particles: a simplied meshfree method for arbitrary evolving cracks. International Journal for Numerical Methods in Engineering, 2004, 61(13): 2316–2343
52 ZiG, Rabczuk T, WallW A . Extended meshfree methods without branch enrichment for cohesive cracks. Computational Mechanics, 2007, 40(2): 367–382
53 RabczukT, BordasS, ZiG. A three-dimensional meshfree method for continuous multiple crack initiation, nucleation and propagation in statics and dynamics. Computational Mechanics, 2007, 40(3): 473–495
54 RabczukT, ZiG, BordasS, Nguyen-Xuan H. A geometrically non-linear three dimensional cohesive crack method for reinforced concrete structures. Engineering Fracture Mechanics, 2008, 75(16): 4740–4758
55 RabczukT, BordasS, ZiG. On three-dimensional modelling of crack growth using partition of unity methods. Computers & Structures, 2010, 88(23–24): 1391–1411
56 RabczukT, ZiG. A meshfree method based on the local partition of unity for cohesive cracks. Computational Mechanics, 2007, 39(6): 743–760
57 RabczukT., EiblJ.: Numerical analysis of prestressed concrete beams using a coupled element free Galerkin/nite element method, International Journal of Solids andStructures, 2004, 41 (3- 4), 1061–1080
58 RabczukT, Akkermann J, EiblJ . A numerical model for reinforced concrete structures. International Journal of Solids and Structures, 2005, 42(5–6): 1327–1354
59 RabczukT, Belytschko T. Application of particle methods to static fracture of reinforced concrete structures. International Journal of Fracture, 2006, 137(1–4): 19–49
60 RabczukT, EiblJ. Modeling dynamic failure of concrete with meshfree particle methods. International Journal of Impact Engineering, 2006, 32(11): 1878–1897
5 Juang J N, Pappa  R S. Eigen-system realization algorithm for modal parameter identification and model reduction. Journal of Guidance, Control, and Dynamics, 1985, 8(5): 620–627
6 Mohanty P, Rixen  D J. Identifying mode shapes and modal frequencies by operational modal analysis in the presence of harmonic excitation. Experimental Mechanics, 2005, 45(3): 213–220
7 Moaveni B, Barbosa  A, Conte J P ,  Hemez F M . Uncertainty analysis of modal parameters obtained from three system identification methods. In: Proceedings of the 25th International Modal Analysis Conference (IMAC-XXV). Orlando, USA, 2007
8 Amani M G, Riera  J, Curadelli O . Identification of changes in the stiffness and damping matrices of linear structures through ambient vibrations. Structural Control and Health Monitoring, 2007, 14(8): 1155–1169
9 Yang Y B, Chen  Y J. A new direct method for updating structural models based on measured modal data. Engineering Structures, 2009, 31(1): 32–42
10 Fan W, Qiao  P Z. Vibration-based damage identification methods: a review and comparative study. Structural Health Monitoring, 2011, 10(1): 83–111
11 Ozcelik  O, Salavati   M. Variability of modal parameter estimations using two different output-only system identification methods. Journal of Testing and Evaluation, 2013, 41(6): 20120361
12 Doebling SW, Farrar  Ch, Prime MB ,  Shevitz DW . Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: A Literature Review. Los Alamos National Laboratory Report. LA-13070-MS. UC900, 1996
13 Salawu O S. Detection of structural damage through changes in frequency: A review. Engineering Structures, 1997, 19(9): 718–723
14 Modena C, Sonda  D, Zonta D . Damage localization in reinforced concrete structures by using damping measurements, damage assessment of structures. In: Proceedings of the international conference on damage assessment of structures, DAMAS 99, 1999, 132–141
15 Kawiecki G.Modal damping measurements for damage detection. In: European COST F3 conference on system identification and structural health monitoring. Madrid, Spain, 2000, 651–658
16 Zonta D, Modena  C, Bursi OS . Analysis of dispersive phenomena in damaged structures. In: European COST F3 conference on system identification and structural health monitoring. Madrid, Spain, 2000, 801–810
17 Zou Y, Tong  L, Steven G P . Vibration-based model-dependent damage (delamination) identification and health monitoring for composite structures–a review. Journal of Sound and Vibration, 2000, 230(2): 357–378
18 Curadelli R O ,  Riera J D ,  Ambrosini D ,  Amani M G . Damage detection by means of structural damping identification. Engineering Structures, 2008, 30(12): 3497–3504
19 Gomaa F R, Nasser  A A, Ahmed Sh   O. Sensitivity of Modal Parameters to Detect Damage through Theoretical and Experimental Correlation. International Journal of Current Engineering and Technology, 2014, 4(1): 172–181
20 Wang M L, Kreitinger  T J. Kreitinger, Identification of force from response data of a nonlinear system. Soil Dynamics and Earthquake Engineering, 1994, 13(4): 267–280
21 Ma C K, Lin  D C. Input forces estimation of a cantilever beam. Inverse Problems in Engineering, 2000, 8(6): 511–528
22 Steltzner A D, Kammer D C.Input Force Estimation Using an Inverse Structural Filter. IMAC XVII, 1999
23 Ma C K, Chang  J M, Lin  D C. Input forces estimation of beam structures by an inverse method. Journal of Sound and Vibration, 2003, 259(2): 387–407
24 Ekke J. Oosterhuis, Wouter   B. Eidhof, Peter   J.M. van der  Hoogt, de Boer  A. Force prediction via the inverse FRF using experimental and numerical data from demonstrator with tunable nonlinearities. In: Proceedings of the 13th international congress on sound and vibration. Vienna, Austria, 2006
25 Hisham. A. Al-Khazali. Calculations of frequency response functions (FRF) using computer smart office software and nyquist plot under gyroscopic effect rotation. International Journal of Computer Science and Information Technology & Security, 2011, 1(2): 90–97
26 Foss  G, Niezrecki   C. Special topics in structural dynamics volume 6. In: Proceeding of the 32nd IMAC. A conference and exposition of structural dynamics, 2014
27 Unavane  T V ,  Panse  Dr. M. S . New method for online frequency response function estimation using circular queue. International Journal for research in emerging science and technology, 2015, 2(6): 134–137
28 Rayleigh L. Theory of Sound (two volumes). New York: Dover Publications, 1897
29 Lee J H, Kim  J. Direct identification of damping parameters from FRF and its application to compressor engineering. In: Proceedings of International Compressor Conference at Purdue University. 2000, 869–876
30 Yamaguchi H, Adhikari  R. Energy-Based evaluation of modal damping in structural cables with and without damping treatment. Journal of Sound and Vibration, 1995, 181(1): 71–83
31 Xu B, Wu  Z, Chen G ,  Yokoyama K . Direct identification of structural parameters from dynamic responses with neural networks. Engineering Applications of Artificial Intelligence, 2004, 17(8): 931–943
32 Slavic J, Simonovski  I, Boltezar M . damping identification using a continuous wavelet transform: application to real data. Journal of Sound and Vibration, 2003, 262(2): 291–307
33 Min C, Park  H, Park S ,  PARK  H ,  PARK  S . Direct identification of non-proportional modal damping matrix for lumped mass system using modal parameters. Journal of Mechanical Science and Technology, 2012, 26(4): 993–1002
34 Arora V. Direct structural damping identification method using complex FRFs. Journal of Sound and Vibration, 2015, 339: 304–323
35 Pan Y, Wang  Y. Iterative method for exponential damping identification. Computer-Aided Civil and Infrastructure Engineering, 2015, 30(3): 229–243
36 Kimball A.Vibration Damping, Including the Case of Solid Damping, Trans. ASME, APM51–52, 1929
37 Thomson W T. Theory of Vibration with Applications. Prentice-Hall, Englewood Cliffs, NJ, 1972
38 Lazan B J. Damping of Materials and Members in Structural Mechanics. Oxford: Pergamom Press, 1968
39 Frizzarin M, Feng  M Q, Franchetti  P, Soyoz S ,  Modena C . Damage detection based on damping analysis of ambient vibration data. Structural Control and Health Monitoring, 2010, 17: 368-385
40 Montalvão D ,  Silva J M M . An alternative method to the identification of the modal damping factor based on the dissipated energy. Mechanical Systems and Signal Processing, 2015, 54–55: 108–123
41 O’Callahan J ,  Piergentili F . Force estimation using operational data. In: International Modal Analysis Conference 1996. Dearborn, USA, 1996
42 Hong L L, Hwang  W L. Empirical formula for fundamental vibration periods of reinforced concrete buildings in Taiwan. Earthquake Engineering & Structural Dynamics, 2000, 29(3): 327–337
43 Ma C K, Chang  J M, Lin  D C. Input forces estimation of beam structures by an inverse method. Journal of Sound and Vibration, 2003, 259(2): 387–407
44 Suwała G, Jankowski  Ł. A model-less method for added mass identification. Diffusion and Defect Data, Solid State Data. Part B, Solid State Phenomena, 2009, 147–149: 570–575
45 Khoo S Y, Ismail  Z, Kong K K ,  Ong Z C ,  Noroozi S ,  Chong W T ,  Rahman A G A . Impact force identification with pseudo-inverse method on a light weight structure for under-determined, even-determined and over-determined cases. International Journal of Impact Engineering, 2014, 63: 52–62
46 Rajkumar  S, Dewan  A, Bhagat Sujatha   C, Narayanan S . Comparison of various techniques used for estimation of input force and computation of frequency response function (FRF) from measured response data. In: the 22nd International Congress on Sound and Vibration- ICSV22. Florence, Italy,  12–16, July, 2015
47 Chopra A K. Dynamics of structures. 3rd ed. Prentice-Hall, Upper Saddle River (NJ), 2007
[1] Ali KARIMPOUR, Salam RAHMATALLA. Identification of structural parameters and boundary conditions using a minimum number of measurement points[J]. Front. Struct. Civ. Eng., 2020, 14(6): 1331-1348.
[2] S. SAMANTA, S. S. NANTHAKUMAR, R. K. ANNABATTULA, X. ZHUANG. Detection of void and metallic inclusion in 2D piezoelectric cantilever beam using impedance measurements[J]. Front. Struct. Civ. Eng., 2019, 13(3): 542-556.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed