Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

Postal Subscription Code 80-968

2018 Impact Factor: 1.272

Front. Struct. Civ. Eng.    2017, Vol. 11 Issue (2) : 143-157    https://doi.org/10.1007/s11709-016-0377-3
REVIEW
Modeling of shear walls using finite shear connector elements based on continuum plasticity
Ulf Arne GIRHAMMAR1(), Per Johan GUSTAFSSON2, Bo KÄLLSNER3
1. Division of Wood Science and Engineering, Luleå University of Technology, Skellefteå 93187, Sweden
2. Division of Structural Mechanics, Department of Building Sciences, Lund University, Lund 22100, Sweden
3. Department of Building Technology, Linnæus University, Växjö 35195, Sweden
 Download: PDF(922 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Light-frame timber buildings are often stabilized against lateral loads by using diaphragm action of roofs, floors and walls. The mechanical behavior of the sheathing-to-framing joints has a significant impact on the structural performance of shear walls. Most sheathing-to-framing joints show nonlinear load-displacement characteristics with plastic behavior. This paper is focused on the finite element modeling of shear walls. The purpose is to present a new shear connector element based on the theory of continuum plasticity. The incremental load-displacement relationship is derived based on the elastic-plastic stiffness tensor including the elastic stiffness tensor, the plastic modulus, a function representing the yield criterion and a hardening rule, and function representing the plastic potential. The plastic properties are determined from experimental results obtained from testing actual connections. Load-displacement curves for shear walls are calculated using the shear connector model and they are compared with experimental and other computational results. Also, the ultimate horizontal load-carrying capacity is compared to results obtained by an analytical plastic design method. Good agreements are found.

Keywords shear walls      wall diaphragms      finite element modelling      plastic shear connector      analytical modelling      experimental comparison     
Corresponding Author(s): Ulf Arne GIRHAMMAR   
Online First Date: 07 April 2017    Issue Date: 19 May 2017
 Cite this article:   
Ulf Arne GIRHAMMAR,Per Johan GUSTAFSSON,Bo KÄLLSNER. Modeling of shear walls using finite shear connector elements based on continuum plasticity[J]. Front. Struct. Civ. Eng., 2017, 11(2): 143-157.
 URL:  
https://academic.hep.com.cn/fsce/EN/10.1007/s11709-016-0377-3
https://academic.hep.com.cn/fsce/EN/Y2017/V11/I2/143
Fig.1  (a) A shear wall unit built up of a timber frame and a sheet. The sheet is connected to the timber frame by means of mechanical fasteners. The center distances of the fasteners can vary in the general case. Here they are assumed to be sr along the bottom and top rail, sps along the perimeter studs, and sis along the intermediate stud, respectively. (b) Diagonal loading corresponding to a fully anchored shear wall. (c) Horizontal loading corresponding to a partially anchored shear wall. Simplified force distributions. The horizontal displacement is measured at the top rail.
Fig.2  (a) A model for fully anchored shear wall with a hold-down at the leading stud; (b) and (c) two models for partially anchored shear walls with only the bottom rail anchored to the foundation or floor, where the influence of the stud-to-rail joints are taken into account in model (c).
Fig.3  Two dimensional spring connector element.
Fig.4  Experimental load-displacement curves together with average curves (bold line) for sheathing-to-framing joints loaded (a) perpendicular to grain and (b) parallel to grain of the timber members
Fig.5  Six different shear force-displacement curves for a sheathing-to-framing joint denoted (a) ductile, (b) test parallel (from Fig. 4(b)), (c) gradual plastic fracture softening (d) test perpendicular (from Fig. 4(a)), (e) rapid plastic fracture softening, and (f) brittle
Fig.6  Experimental load-displacement curves for stud-to-rail joints loaded in (a) shear, (b) compression and (c) tension. Fitted piecewise-linear relationships used for analysis purposes are shown as bold lines
Fig.7  Horizontal load vs displacement for one segment shear walls subjected to (a) horizontal loading (partially anchored shear walls) and (b) diagonal loading (corresponding to fully anchored shear walls). Four test curves, one computational curve obtained by the shear connector model (bold curve) and the analytical plastic load capacity value (dashed line) for each load application
Fig.8  (a) Evolvement of shear displacement between bottom rail and sheathing during increase of global displacement from 0 to 60 mm. (b) Horizontal (solid lines) and vertical (dashed lines) shear stress components at various locations along the bottom rail at the instance of maximum global load (circles) and at 60 mm global horizontal displacement (squares)
Fig.9  Load-displacement curves for partially anchored single segment shear walls subjected to horizontal loading. The curves are based on the sheathing-to-framing joint characteristics shown in Fig. 5. The thick solid curves refer to the shear connector model and the thin solid curves to the single spring model according to Vessby et al. []
1 Källsner B, Girhammar U A. Plastic models for analysis of fully anchored light-frame timber shear walls. Engineering Structures, 2009, 31(9): 2171–2181
2 Källsner B, Girhammar U A. Plastic design of partially anchored wood-framed wall diaphragms with and without openings. In:Proceedings CIB-W18 Meeting. Karlsruhe, Germany, 2005
3 Källsner B, Girhammar U A. Horizontal stabilising of light frame timber structures – Plastic design of wood-framed shear walls. SP Technical Research Institute of Sweden, SP Report 2008: 47, Stockholm, Sweden, 2009 (in Swedish)
4 Girhammar U A, Källsner B. Horizontal stabilisation of sheathed timber frame structures using plastic design methods – Introducing a handbook. Part 1: Design principles for horizontal stabilisation. Procedia Engineering, 2016, 161: 618–627
5 Girhammar U A, Källsner B. Horizontal stabilisation of sheathed timber frame structures using plastic design methods – Introducing a handbook. Part 2: Design of joints and anchoring devices. Procedia Engineering, 2016, 161: 628–635
6 Källsner B, Girhammar U A. Horizontal stabilisation of sheathed timber frame structures using plastic design methods – Introducing a handbook. Part 3: Basics of the plastic design method. Procedia Engineering, 2016, 161: 634–644
7 Källsner B, Girhammar U A. Horizontal stabilisation of sheathed timber frame structures using plastic design methods – Introducing a handbook. Part 4: Design in ultimate limit state. Procedia Engineering, 2016, 161: 645–654
9 Fosci R O. Analysis of wood diaphragms and trusses – Part I: Diaphragms. Canadian Journal of Civil Engineering, 1977, 4(3): 345–352
17 Dolan J D, Foschi R O. Structural analysis model for static loads on timber shear walls. Journal of Structural Engineering, 1991, 117(3): 851–861
10 Judd J P, Fonseca S.Analytical model for sheathing-to-framing connections in wood shear walls and diaphragms. Journal of Structural Engineering, 2005, 131(2): 345–352
11 Vessby J, Källsner B, Olsson A, Girhammar U A. Evaluation of softening behaviour of timber light-frame walls subjected to in-plane forces using simple FE models. Engineering Structures, 2014, 81: 464–479
12 Filiatrault A. Static and dynamic analysis of timber shear walls. Canadian Journal of Civil Engineering, 1990, 17(4): 643–651
13 Källsner B, Girhammar U A. Analysis of fully anchored light-frame timber shear walls – elastic model. Materials and Structures, 2009, 42(3): 301–320
14 Vessby J, Olsson A, Källsner B, Girhammar U A. Modelling aspects on wooden shear walls with mechanically fastened sheathing. In: Shear walls for multi-storey timber buildings by Johan Vessby, Licentiate Thesis, Report No. 44, School of Technology and Design, Växjö University, Sweden, 2008
15 Källsner B, Girhammar U A, Vessby J. Evaluation of two analytical plastic design models for light-frame shear walls. 12th World Conference on Timber Engineering, Auckland, New Zealand,  July 16–19, 2012
16 Girhammar U A, Gustafsson P J, Källsner B. Finite element modelling of shear walls using connector shear elements based on continuum plasticity. In: Proceedings of the Tenth International Conference on Computational Structures Technology. Topping B H V, eds. Stirlingshire, Scotland: Civil-Comp Press, 2010
8 Neal B G. Plastic Methods of Structural Analysis. 2nd ed. London: Chapman & Hall and Science Paperbacks, 1965
18 Fosci R O. Modelling the hysteretic response of mechanical connections for wood structures. In: Proceedings of World Conference on Timber Engineering. Whistler Resort, British Columbia, Canada,  July 31–August 3, 2000
19 Ottosen N S, Ristinmaa M. The Mechanics of Constitutive Modeling. Elsevier, 2005
20 Girhammar U A, Bovim N I, Källsner B. Characteristics of sheathing-to-timber joints in wood shear walls. Proceedings 8th World Conference on Timber Engineering, Lahti, Finland, June, 14–17, 2004
21 Collins M, Kasal B, Paevere P, Foliente G C. Three-dimensional model of light frame wood buildings – I: Model description. Journal of Structural Engineering, 2005, 131(4): 676–683
22 Girhammar U A,Palm S.Tests on stud-to-rail joints in wood-framed shear walls. Umeå University, Faculty of Science and Technology, Department of TFE – Building Engineering, Report 2002:3, Umeå, Sweden, 2002 (in Swedish)
23 Austrell P E, Dahlblom O, Lindemann J, Olsson A, Olsson K G, Petersson H, Ristinmaa M, Sandberg G, Wernberg P A. CALFEM – A Finite Element Toolbox, Version 3.4. KFS in Lund AB, Sweden, 2004
24 Girhammar U A, Eltoft J, Palm S. Tests of Wood-Framed Shear Walls at Partial Anchorage With and Without Openings. Umeå University, Faculty of Science and Technology, Department of TFE – Building Engineering, Report 2003:1, Umeå, Sweden, 2003
25 Girhammar U A, Källsner B. Tests on Partially Anchored Wood-Framed Shear Walls. 8th World Conference on Timber Engineering, Lahti, Finland, 2004
[1] Saleh YAGHOOBI, Ahmad SHOOSHTARI. Joint slip investigation based on finite element modelling verified by experimental results on wind turbine lattice towers[J]. Front. Struct. Civ. Eng., 2018, 12(3): 341-351.
[2] Patricia M. CLAYTON,Daniel M. DOWDEN,Chao-Hsien LI,Jeffrey W. BERMAN,Michel BRUNEAU,Laura N. LOWES,Keh-Chuan TSAI. Self-centering steel plate shear walls for improving seismic resilience[J]. Front. Struct. Civ. Eng., 2016, 10(3): 283-290.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed