Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

Postal Subscription Code 80-968

2018 Impact Factor: 1.272

Front. Struct. Civ. Eng.    2018, Vol. 12 Issue (1) : 109-124    https://doi.org/10.1007/s11709-017-0389-7
RESEARCH ARTICLE
Modeling considerations in seismic assessment of RC bridges using state-of-practice structural analysis software tools
Ricardo MONTEIRO1,2(), Miguel ARAÚJO2, Raimundo DELGADO2, Mário MARQUES2
1. School of Advanced Studies IUSS Pavia, Italy
2. Department of Civil Engineering, Faculty of Engineering, University of Porto, Portugal
 Download: PDF(3656 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The increasing awareness of the general society toward the seismic safety of structures has led to more restrictive performance requirements hence, many times, to the need of using new and more accurate methods of analysis of structures. Among these, nonlinear static procedures are becoming, evermore, the preferred choice of the majority of design codes, as an alternative to complete nonlinear time-history analysis for seismic design and assessment of structures. The many available software tools should therefore be evaluated and well understood, in order to be easily and soundly employed by the practitioners. The study presented herein intends to contribute to this need by providing further insight with respect to the use of commonly employed structural analysis software tools in nonlinear analysis of bridge structures. A comparison between different nonlinear modeling assumptions is presented, together with the comparison with real experimental results. Furthermore, alternative adaptive pushover procedures are proposed and applied to a case study bridge, based on a generic plastic hinge model. The adopted structural analysis program proved to be accurate, yielding reliable estimates, both in terms of local plastic hinge behavior and global structural behavior.

Keywords nonlinear analysis      pushover      RC bridges      structural modelling software     
Corresponding Author(s): Ricardo MONTEIRO   
Online First Date: 19 April 2017    Issue Date: 08 March 2018
 Cite this article:   
Ricardo MONTEIRO,Miguel ARAÚJO,Raimundo DELGADO, et al. Modeling considerations in seismic assessment of RC bridges using state-of-practice structural analysis software tools[J]. Front. Struct. Civ. Eng., 2018, 12(1): 109-124.
 URL:  
https://academic.hep.com.cn/fsce/EN/10.1007/s11709-017-0389-7
https://academic.hep.com.cn/fsce/EN/Y2018/V12/I1/109
Fig.1  RC columns experimental and numerical properties: (a) Dimensions and reinforcement steel detailing; (b) numerical model; (c) loading paths; (d) fiber model of the cross-section; (e) confined and unconfined concrete stress-strain relationships; and (f) reinforcement steel stress-strain relationships
Fig.2  Numerical model fiber hinge results: (a) Uniaxial N13 results for the N13-N16 square column; (b) and (c) biaxial N14 results in x and y directions, respectively, for the N13-N16 square column; (d) and (e) biaxial N11 results in x and y directions, respectively, for the N09-N12 rectangular column
Fig.3  Numerical model multilinear hinge results: (a) Uniaxial N13 results for the N13-N16 square column using uniaxial hinge model; (b) uniaxial N13 results for the N13-N16 square column using uniaxial hinge models with different hysteretic laws; (c) MxMy integration diagram of the coupled hinge model; (d) pushover curves for 45° and 26.5° directions using a coupled hinge model
Fig.4  (a) P213 bridge structural model and adopted lumped plasticity modeling solutions; (b) pier cross section fiber hinge model; (c) multilinear uniaxial hinge model
Fig.5  Dynamic characteristics of the P213 bridge: (a) Mode shapes; (b) evolution of the periods of vibration with the degradation of the structure; (c) evolution of the modal mass participation ratios with the degradation of the structure
Fig.6  Seismic action adopted: (a) EC8 elastic spectrum for PGA= 0.35 g and ground type D; (b) artificial accelerograms generated according to EC8
Fig.7  Conventional PA and THA results: (a) Capacity curves; (b) THA moment-rotation diagrams (pier P2) for each plasticity model; (c) response of the bridge (PGA = 0.35 g); (d) response of the bridge (PGA = 0.70 g)
Fig.8  Flowchart for the adaptive pushover analysis (APA) based procedure
Fig.9  Proposed adaptive methodology: (a) APA and (b) MAPA; and (c), (d) representation of steps 1 and 6
Fig.10  Adaptive pushover results: (a) 1st mode shape APA load pattern; (b) mode shape with higher modal mass participation ratio APA load pattern; (c) combined SRSS load pattern; (d) combined SRSS load pattern with spectral amplification; (e) bridge displacements (PGA = 0.35 g); and (f) bridge displacements (PGA = 0.70 g)
Fig.11  Capacity curves: (a) P213 irregular bridge; (b) P123 semi-regular bridge
1 Miranda E, Bertero V V. Evaluation of strength reduction factors. Earthquake Spectra, 1994, 10(2): 357–379
2 CEB.Seismic design of RC structures for controlled inelastic response. Bulletin no. 236, Comité Euro-International du Béton, 1997
3 Kappos A J. Evaluation of behaviour factors on the basis of ductility and overstrength studies. Engineering Structures, 1999, 21(9): 823–835
4 Mwafy A M, Elnashai A S. Calibration of force reduction factors for RC buildings. Journal of Earthquake Engineering, 2002, 6(2): 239–273
5 Maheri M R, Akbari R. Seismic behaviour factor, R, for steel X-braced and knee braced RC buildings. Engineering Structures, 2003, 25(12): 1505–1513
6 Costa A, Romão X, Oliveira C S. A methodology for the probabilistic assessment of behaviour factors. Bulletin of Earthquake Engineering, 2010, 8(1): 47–64
7 Paret T, Searer G, Freeman S. ASCE 31 and 41: Apocalypse Now. Structures Congress, Las Vegas, Nevada, 2011
8 Araújo M, Castro J. Critical review of codes for seismic safety assessment of existing steel buildings. Journal of Earthquake Engineering, 2016 (in Press)
9 Johnson N, Saiidi M, Sanders D. Nonlinear earthquake response modelling of a large-scale two-span concrete bridge. Journal of Bridge Engineering, 2009, 14(6): 460–471
10 Inel M, Ozmen H B. Effects of plastic hinge properties in nonlinear analysis of reinforced concrete buildings. Engineering Structures, 2006, 28(11): 1494–1502
11 Habibullah A,Pyle S.Practical three dimensional nonlinear static pushover analysis. Structures Magazine, winter, 1998
12 Varum H, Sousa R, Delgado W, Fernandes C, Costa A, Jara J M, Jara M, Álvarez J J. Comparative structural response of two steel bridges constructed 100 years apart. Structure and Infrastructure Engineering, 2011, 7(11): 843–855
13 Araújo M, Delgado R. Seismic safety assessment of curved bridges using pushover analysis. Papadrakakis M, Papadopoulos V, Plevris V, eds. 3rd ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering (COMPDYN 2011), Corfu, Greece, 25–28 May, 2011
14 Araújo M, Marques M, Delgado R. Multidirectional pushover analysis for seismic assessment of irregular-in-plan bridges. Engineering Structures, 2014, 79: 375–389
15 Rodrigues H, Varum H, Arêde A, Costa A. Comparative efficiency analysis of different nonlinear modelling strategies to simulate the biaxial response of RC columns. Earthquake Engineering and Engineering Vibration, 2012, 11(4): 553–566
16 Casarotti C, Monteiro R, Pinho R. Verification of spectral reduction factors for seismic assessment of bridges. Bulletin of New Zealand Society for Earthquake Engineering, 2009, 42: 111–121
17 Pinho R, Monteiro R, Casarotti C, Delgado R. Assessment of continuous span bridges through nonlinear static procedures. Earthquake Spectra, 2009, 25(1): 143–159
18 Kohrangi M, Bento R, Lopes M. Seismic performance of irregular bridges – comparison of different nonlinear static procedures. Structure and Infrastructure Engineering, 2015, 11(12): 1642–1650
19 Monteiro R, Delgado R, Pinho R. Probabilistic seismic assessment of RC bridges: Part I – uncertainty models. Structures, 2016a, 5: 258–273
20 Monteiro R, Delgado R, Pinho R. Probabilistic seismic assessment of RC bridges: Part II – nonlinear demand prediction. Structures, 2016, 5: 274–283
21 CSI.CSI Analysis Reference Manual for SAP2000. ETABS and SAFE, Computer and Structures, Inc, California, 2010
22 Pinho R, Casarotti C, Antoniou S. A comparison of single-run pushover analysis techniques for assessment of bridges. Earthquake Engineering & Structural Dynamics, 2007, 36(10): 1347–1362
23 Kunnath S. Identification of modal combination for nonlinear static analysis of building structures. Computer-Aided Civil and Infrastructure Engineering, 2004, 19(4): 264–259
24 Krawinkler H, Seneviratna G. Pros and cons of a pushover analysis of seismic performance evaluation. Engineering Structures, 1998, 20(4-6): 452–464
25 Elnashai A S. Advanced inelastic static (pushover) analysis for earthquake applications. Structural Engineering and Mechanics, 2001, 12(1): 51–69
26 Paret T, Sasaki K, Eilbeck D, Freeman S. Approximate inelastic procedures to identify failure mechanisms from higher mode effects. In: Proceedings of the 11th World Conference on Earthquake Engineering. Acapulco, 1996
27 Chopra A, Goel R. A modal pushover analysis procedure for estimating seismic demands for buildings. Earthquake Engineering & Structural Dynamics, 2002, 31(3): 561–582
28 Bracci J, Kunnath S, Reinhorn A. Seismic performance and retrofit evaluation of reinforced concrete structures. Journal of Structural Engineering, 1997, 123(1): 3–10
29 Requena M, Ayala A G. Evaluation of a simplified method for the determination of the nonlinear seismic response of RC frames. In: Proceedings of the 12th World Conference on Earthquake Engineering. Auckland, 2000
30 Paraskeva T S, Kappos A J, Sextos A G. Extension of modal pushover analysis to seismic assessment of bridges. Earthquake Engineering & Structural Dynamics, 2006, 35(10): 1269–1293
31 Antoniou S, Pinho R. Development and verification of a displacement-based adaptive pushover procedure. Journal of Earthquake Engineering, 2004, 8(5): 643–661
32 Pinho R, Marques M, Monteiro R, Casarotti C, Delgado R. Evaluation of nonlinear static procedures in the assessment of building frames. Earthquake Spectra, 2013, 29(4): 1459–1476
33 Monteiro R, Marques M, Adhikari G, Casarotti C, Pinho R. Spectral reduction factors evaluation for seismic assessment of frame buildings. Engineering Structures, 2014, 77: 129–142
34 Casarotti C, Pinho R. An Adaptive Capacity Spectrum Method for assessment of bridges subjected to earthquake action. Bulletin of Earthquake Engineering, 2007, 5(3): 377–390
35 Zelaschi C, De Angelis G, Giardi F, Forcellini D, Monteiro R. Performance based earthquake engineering approach applied to bridges in a road network. Papadrakakis M, Papadopoulos V, Plevris V, eds. 5th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering (COMPDYN 2015), Crete Island, Greece, 25–27 May, 2015
36 Taucer F, Spacone E, Filippou F. A fiber beam-column element for seismic response analysis of reinforced concrete structures. Report UCB/EER-91/17, Earthquake Engineering Research Center, University of California, California, 1991
37 CEN.EN 1998-2: 2005 Eurocode 8: Design of Structures for Earthquake Resistance – Part 2: Bridges. European Committee for Standardization, Brussels, 2005
38 ATC.ATC-40 Seismic evaluation and retrofit of concrete buildings. Volume 1, Applied Technology Council, California, 1996
39 ASCE. Seismic evaluation and retrofit of existing buildings (ASCE/SEI 41-13). American Society of Civil Engineers, Virginia, 2014
40 CALTRANS.Caltrans Seismic design criteria. Version 1.6, California Department of Transportation, California, 2010
41 Aviram A, Mackie K, Stojadinović B. Guidelines for nonlinear analysis of bridge structures in California,  PEER Report 2008/03, Pacific Earthquake Engineering Research Center, University of California, California, 2008
42 Bae S, Bayrak O. Plastic hinge length of reinforced concrete columns. ACI Structural Journal, 2008, 290–300
43 Dowell R K, Seible F, Wilson E. Pivot hysteresis model for reinforced concrete members. ACI Structural Journal, 1998, 607–617
44 Park R, Paulay T. Reinforced concrete structures.New York: John Wiley and Sons, 1975
45 Mander J B, Priestley M J N, Park M. Theoretical stress-strain model for confined concrete. Journal of Structural Engineering, 1988, 114(8): 1804–1826
46 Rodrigues H, Arêde A, Varum H, Costa A. Experimental evaluation of rectangular reinforced concrete column behaviour under biaxial cyclic loading. Earthquake Engineering & Structural Dynamics, 2013, 42(2): 239–259
47 Rodrigues H, Arêde A, Varum H, Costa A. Damage evolution in reinforced concrete columns subjected to biaxial loading. Bulletin of Earthquake Engineering, 2013, 11(5): 1517–1540
48 CEN.EN 1998-1: 2004 Eurocode 8: Design of Structures for Earthquake Resistance – Part 1: General rules, seismic action and rules for buildings. European Committee for Standardization, Brussels, 2004
49 Monteiro R, Ribeiro R, Marques M, Delgado R, Costa A G. Pushover Analysis of RC Bridges Using Fibre Models or Plastic Hinges. In: Proceedings of the 14th World Conference on Earthquake Engineering. Beijing, China October12–17, 2008
50 Monteiro R. Sampling based numerical seismic assessment of continuous span RC bridges. Engineering Structures, 2016, 118: 407–420
51 Chaboche J L. A review of some plasticity and viscoelastic constitutive theories. International Journal of Plasticity, 2008, 24(10): 1642–1693
52 Ibarra L F, Medina R A, Krawinkler H. Hysteretic models that incorporate strength and stiffness deterioration. Earthquake Engineering & Structural Dynamics, 2005, 34(12): 1489–1511
53 Orakcal K, Wallave J W, Conte J P. Flexural modelling of reinforced concrete walls – model attributes. ACI Structural Journal, 2004, 688–698
54 Billah A M, Alam M S. Seismic performance of concrete columns reinforced with hybrid shape memory alloy (SMA) and fiber reinforced polymer (FRP) bars. Construction & Building Materials, 2012, 28(1): 730–742
55 Guedes J M. Seismic behaviour of reinforced concrete bridges. Modelling, numerical analysis and experimental assessment. Dissertation for the Doctoral Degree. University of Porto, Porto, 1997
56 Araújo M, Macedo L, Marques M, Castro J M. Code-based record selection methods for seismic performance assessment of buildings. Earthquake Engineering & Structural Dynamics, 2016, 45(1): 129–148
57 Paraskeva T, Kappos A. Further development of a multimodal pushover analysis procedure for seismic assessment of bridges. Earthquake Engineering & Structural Dynamics, 2010, 39: 211–222
58 Isaković T, Lazaro M, Fishinger M. Extension of pushover methods for the seismic analysis of single-column bent viaducts. Earthquake Engineering & Structural Dynamics, 2008, 37(8): 1185–1202
59 Araújo M, Delgado R. Application of adaptive pushover methods of analysis to SAP2000, In: Proceedings of the Congress in Numerical Methods in Engineering, Coimbra, 2011
[1] Mohammad REZAIEE-PAJAND, Mohammad MOHAMMADI-KHATAMI. A fast and accurate dynamic relaxation scheme[J]. Front. Struct. Civ. Eng., 2019, 13(1): 176-189.
[2] Fatiha IGUETOULENE, Youcef BOUAFIA, Mohand Said KACHI. Non linear modeling of three-dimensional reinforced and fiber concrete structures[J]. Front. Struct. Civ. Eng., 2018, 12(4): 439-453.
[3] Amar KAHIL, Aghiles NEKMOUCHE, Said BOUKAIS, Mohand HAMIZI, Naceur Eddine HANNACHI. Effect of RC wall on the development of plastic rotation in the beams of RC frame structures[J]. Front. Struct. Civ. Eng., 2018, 12(3): 318-330.
[4] Fadzli M. NAZRI, Pang Yew KEN. Seismic performance of moment resisting steel frame subjected to earthquake excitations[J]. Front Struc Civil Eng, 2014, 8(1): 19-25.
[5] Siu-Lai CHAN, Yaopeng LIU, Andy LEE, . Nonlinear analysis of pre-tensioned glass wall facade by stability function with initial imperfection[J]. Front. Struct. Civ. Eng., 2010, 4(3): 376-382.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed