Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

Postal Subscription Code 80-968

2018 Impact Factor: 1.272

Front. Struct. Civ. Eng.    2017, Vol. 11 Issue (2) : 187-208    https://doi.org/10.1007/s11709-017-0391-0
RESEARCH ARTICLE
Application of a vertex chain operation algorithm on topological analysis of three-dimensional fractured rock masses
Zixin ZHANG1,2,3, Jia WU1,2,4, Xin HUANG1,2()
1. Department of Geotechnical Engineering, School of Civil Engineering, Tongji University, Shanghai 200092, China
2. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University
3. State Key Laboratory for Geomechanics and Deep Underground Engineering, Xuzhou 221008, China
4. Shanghai?Tunnel?Engineering?&?Rail?Transit?Design?and?Research?Institute, Shanghai 200235, China
 Download: PDF(3353 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Identifying the morphology of rock blocks is vital to accurate modelling of rock mass structures. This paper applies the concepts of directed edges and vertex chain operations which are typical for block tracing approach to block assembling approach to construct the structure of three-dimensional fractured rock masses. Polygon subtraction and union algorithms that rely merely on vertex chain operation are proposed, which allow a fast and convenient construction of complex faces/loops. Apart from its robustness in dealing with finite discontinuities and complex geometries, the advantages of the current methodology in tackling some challenging issues associated with the morphological analysis of rock blocks are addressed. In particular, the identification of complex blocks with interior voids such as cavity, pit and torus can be readily achieved based on the number and the type of loops. The improved morphology visualization approach can benefit the pre-processing stage when analyzing the stability of rock masses subject to various engineering impacts using the block theory and the discrete element method.

Keywords morphology      block assembling      vertex operation      discontinuities     
Corresponding Author(s): Xin HUANG   
Online First Date: 19 April 2017    Issue Date: 19 May 2017
 Cite this article:   
Zixin ZHANG,Jia WU,Xin HUANG. Application of a vertex chain operation algorithm on topological analysis of three-dimensional fractured rock masses[J]. Front. Struct. Civ. Eng., 2017, 11(2): 187-208.
 URL:  
https://academic.hep.com.cn/fsce/EN/10.1007/s11709-017-0391-0
https://academic.hep.com.cn/fsce/EN/Y2017/V11/I2/187
Fig.1  Illustration of two families of rock blocks identification algorithm: (a) the block tracing approach; (b) the block assembling approach
Fig.2  The procedure of the block detection algorithm
Fig.3  The internal data structure of the vertex class and the fracture class
Fig.4  Illustration of the definition of a boundary box
Fig.5  The internal data structure of the element face class and element block class
Fig.6  The internal data structure of the complex face class and the complex block class
Fig.7  The procedure of element block identification
Fig.8  Handling order of the fractures: (a) not sorted by the area; (b) sorted by the area
Fig.9  Four typical relationships between the boundary boxes of the element block and the fracture plane: (a) isolated; (b) intersecting; (c) EB1 and EB2 respectively located in the upper and the lower space of the fracture; (d) the fracture plane cuts through EB3
Fig.10  Determining the anticlockwise order of the vertex list
Fig.11  The procedure of fracture cutting element block
Fig.12  The union-find relationship judgment of the element block (dashed rectangular indicates the area of extended fracture plane while the solid ellipse represents the real area of the fracture plane): (a) two separate EBs; (b) two blocks that can be combined
Fig.13  The procedure of the union-find element blocks
Fig.14  An example for constructing complex blocks using the grouped element blocks (id number within the brackets indicates the id of the fracture plane that the EF is on)
Fig.15  Two typical cases of element face operations to generate complex faces
Fig.16  The problem of identification the loop of the complex face: (1) an outer loop with three inner loops; (2) two outer loops (an outer loop with two inner loops); (3) three outer loops (an outer loop with an inner loop)
Fig.17  Illustration of typical polygon subtraction
Fig.18  Three typical cases in which the polygons could be merged: (a) two successive vertexes in common; (b) more than two sequentially-numbered vertexes in common; (c) the common vertexes are discrete but at least two of these vertexes are in sequence
Fig.19  Combining one hollow element face with a solid element face: (a) The vertexes of the inner loop does not equal to the common vertexes; (b) The common vertexes are coincident with the vertexes of the inner loop of the subject polygon
Fig.20  Typical types of complex rock blocks: (a) convex; (b) concave; (c) containing cavity; (d) containing a pit; (e) containing a torus
Fig.21  Excavation of a complex block
Tab.1  Geological parameters of the boundary planes
Tab.2  Geological parameters of the fracture planes
Fig.22  Morphology analysis for a three-dimensional fractured rock mass prior to excavation: (a) generating the fracture network within the computational domain; (b) identifying the element blocks; (c) clustering the element blocks; (d) constructing the final complex blocks.
Fig.23  Morphology analysis for a three-dimensional fractured rock mass after excavation: (a) defining the excavation planes and identifying the affected complex blocks; (b) determining the newly-created element blocks; (c) deleting the element blocks in the excavation domain; (d) clustering the newly-created element blocks; (e) constructing the final complex blocks (4–12 are newly-generated complex blocks. The size of some blocks has been scaled down or scaled up for the ease of observation.)
Tab.3  Geological parameters of the excavation planes
Tab.4  The geometrical parameters of each complex block
Tab.5  Geological parameters of the boundary planes
Tab.6  Geological parameters of the fracture planes
Tab.7  Geological parameters of the excavation planes
Tab.8  The geometrical parameters of each complex block
Fig.24  Morphology analysis for a three-dimensional fractured rock mass after excavation of a circular tunnel
1 Lei Q, Wang  X. Tectonic interpretation of the scaling properties of a multiscale fracture system in limestone: structure and connectivity. Geophysical Research Letters, 2016, 43: 1551–1558
https://doi.org/10.1002/2015GL067277
2 Warburton P. A computer program for reconstructing blocky rock geometry and analyzing single block stability. Computers & Geosciences, 1985, 11(6): 707–712
https://doi.org/10.1016/0098-3004(85)90013-5
3   Heliot D. Generating a blocky rock mass. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts: Elsevier; 1988, 25(3): 127–138
4   Lin D, Fairhurst  C, Starfield A . Geometrical identification of three-dimensional rock block systems using topological techniques. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts: Elsevier; 1987, 24(6): 331–338
5 Ikegawa Y, Hudson  J A. A novel automatic identification system for three-dimensional multi-block systems. Engineering Computations, 1992, 9(2): 169–179
https://doi.org/10.1108/eb023856
6 Jing L. Block system construction for three-dimensional discrete element models of fractured rocks. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(4): 645–659
https://doi.org/10.1016/S1365-1609(00)00006-X
7 Lu J. Systematic identification of polyhedral rock blocks with arbitrary joints and faults. Computers and Geotechnics, 2002, 29(1): 49–72
https://doi.org/10.1016/S0266-352X(01)00018-0
8 Elmouttie M, Krähenbühl  G, Poropat G . Robust algorithms for polyhedral modelling of fractured rock mass structure. Computers and Geotechnics, 2013, 53: 83–94
https://doi.org/10.1016/j.compgeo.2013.05.001
9 Elmouttie M, Poropat  G, Krähenbühl G. Polyhedral modelling of rock mass structure. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(4): 544–552
https://doi.org/10.1016/j.ijrmms.2010.03.002
10 Elmouttie M, Poropat  G, Krähenbühl G. Polyhedral modelling of underground excavations. Computers and Geotechnics, 2010, 37(4): 529–535
https://doi.org/10.1016/j.compgeo.2010.02.009
11   Cundall PA . Formulation of a three-dimensional distinct element model—Part I. A scheme to detect and represent contacts in a system composed of many polyhedral blocks. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts: Elsevier; 1988, 25(3): 107–116
12   Hart R, Cundall  P, Lemos J . Formulation of a three-dimensional distinct element model—Part II. Mechanical calculations for motion and interaction of a system composed of many polyhedral blocks. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts: Elsevier; 1988, 25(3): 117–125
13 Yu Q C, Ohnishi  Y, Xue G F ,  Chen D. A generalized procedure to identify three‐dimensional rock blocks around complex excavations. International Journal for Numerical and Snalytical Methods in Geomechanics., 2009, 33(3): 355–375
https://doi.org/10.1002/nag.720
14 Zhang Y, Xiao  M, Chen J . A new methodology for block identification and its application in a large scale underground cavern complex. Tunnelling and Underground Space Technology, 2010, 25(2): 168–180
https://doi.org/10.1016/j.tust.2009.10.005
15 Zhang Z, Lei  Q. Object-oriented modeling for three-dimensional multi-block systems. Computers and Geotechnics, 2013, 48: 208–227
https://doi.org/10.1016/j.compgeo.2012.07.008
16 Zhang Z, Lei  Q. A morphological visualization method for removability analysis of blocks in discontinuous rock masses. Rock Mechanics and Rock Engineering, 2014, 47(4): 1237–1254
https://doi.org/10.1007/s00603-013-0471-y
17 Wu J, Zhang  Z, Kwok C . Stability analysis of rock blocks around a cross-harbor tunnel using the improved morphological visualization method. Engineering Geology, 2015, 187: 10–31
https://doi.org/10.1016/j.enggeo.2014.12.014
18 Hao J, Shi  K B, Chen  G M, Bai  X J. Block theory of limited trace lengths and its application to probability analysis of block sliding of surrounding rock. Chinese Journal of Rock Mechanics and Engineering., 2014, 33(7): 1471–1477
19 Liu X G, Zhu  H H, Liu  X Z, Wu  W. Improvement of contact detection algorithm of three-dimensional blocks. Chinese Journal of Rock Mechanics and Engineering., 2015, 34(3): 489–497
20 Bourke P. Calculating the area and centroid of a polygon. 1988. Aavilable online:
21 Büeler B, Enge  A, Fukuda K . Exact Volume Computation for Polytopes: A Practical Study. In: Kalai G, Ziegler G, editors. Polytopes — Combinatorics and Computation: Birkhäuser Basel; 2000, 29(6): 131–154
22   Greiner G ,  Hormann K . Efficient clipping of arbitrary polygons[J]. ACM Transactions on Graphics (TOG), 1998, 17(2): 71–83
23 Vatti B R. A generic solution to polygon clipping. Communications of the ACM, 1992, 35(7): 56–63
https://doi.org/10.1145/129902.129906
24 Rivero M, Feito  F R. Boolean operations on general planar polygons. Computers & Graphics, 2000, 24(6): 881–896
https://doi.org/10.1016/S0097-8493(00)00090-X
25 Martínez F, Rueda  A J, Feito  F R. A new algorithm for computing Boolean operations on polygons. Computers & Geosciences, 2009, 35(6): 1177–1185
https://doi.org/10.1016/j.cageo.2008.08.009
26   Shi G.Producing joint polygons, cutting joint blocks and finding key blocks for general free surfaces. Chinese Journal of Rock Mechanics and Engineering. 2006, 25(11): 2161–2170
[1] M. A. Lashteh NESHAEI, F. GHANBARPOUR. The effect of sea level rise on beach morphology of caspian sea coast[J]. Front. Struct. Civ. Eng., 2017, 11(4): 369-379.
[2] Jing HU, Pengfei LIU, Bernhard STEINAUER. A study on fatigue damage of asphalt mixture under different compaction using 3D-microstructural characteristics[J]. Front. Struct. Civ. Eng., 2017, 11(3): 329-337.
[3] H. Afsoos Biria,M. A. Lashteh Neshaei,A. Ghabraei,M. A. Mehrdad. Investigation of sediment transport pattern and beach morphology in the vicinity of submerged groyne (case study: Dahane Sar Sefidrood)[J]. Front. Struct. Civ. Eng., 2015, 9(1): 82-90.
[4] Bettina ALBERS, Krzysztof WILMANSKI. Continuous modeling of soil morphology —thermomechanical behavior of embankment dams[J]. Front Arch Civil Eng Chin, 2011, 5(1): 11-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed