Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

Postal Subscription Code 80-968

2018 Impact Factor: 1.272

Front. Struct. Civ. Eng.    2019, Vol. 13 Issue (3) : 557-568    https://doi.org/10.1007/s11709-018-0497-z
RESEARCH ARTICLE
Practical optimization of deployable and scissor-like structures using a fast GA method
M. SALAR1, M. R. GHASEMI1(), B. DIZANGIAN2
1. Department of Civil Engineering, University of Sistan and Baluchestan, Zahedan, Iran
2. Department of Civil Engineering, Velayat University, Iranshahr, Iran
 Download: PDF(1931 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper addresses practical sizing optimization of deployable and scissor-like structures from a new point of view. These structures have been recently highly regarded for beauty, lightweight, determine behavior, proper performance against lateral loads and the ability of been compactly packaged. At this time, there is a few studies done considering practical optimization of these structures. Loading considered here includes wind and gravity loads. In foldable scissor-like structures, connections have a complex behavior. For this reason, in this study, the authors used the ABAQUS commercial package as an analyzer in the optimization procedure. This made the obtained optimal solutions highly reliable from the point of view of applicability and construction requirements. Also, to do optimization task, a fast genetic algorithm method, which has been recently introduced by authors, was utilized. Optimization results show that despite less weight for aluminum models than steel models, aluminum deployable structures are not affordable because they need more material than steel structures and cause more environmental damage.

Keywords optimization      scissor-like structures      deployable structures      genetic algorithm      ABAQUS     
Corresponding Author(s): M. R. GHASEMI   
Just Accepted Date: 13 June 2018   Online First Date: 30 July 2018    Issue Date: 05 June 2019
 Cite this article:   
M. SALAR,M. R. GHASEMI,B. DIZANGIAN. Practical optimization of deployable and scissor-like structures using a fast GA method[J]. Front. Struct. Civ. Eng., 2019, 13(3): 557-568.
 URL:  
https://academic.hep.com.cn/fsce/EN/10.1007/s11709-018-0497-z
https://academic.hep.com.cn/fsce/EN/Y2019/V13/I3/557
Fig.1  Zeigler’s collapsible dome and a basic unit [1]
Fig.2  Geometric shapes designed by Escrig [12]
Fig.3  Selection operator for proposed method [28]
Fig.4  Hinge properties for scissor elements
Fig.5  Join properties for joint connection
Fig.6  Successive deformed configurations during deployment of a pentagonal unit
Fig.7  Flowchart of modelling and optimization of deployable structures
Fig.8  Elements cross-section
radius (mm) thickness (mm)
[10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100] [1 2 3 4 5 6 7 8 9 10]
Tab.1  Discrete section lists for design of examples
material modulus of elasticity (N/m2) density (kg/m3) yield stress (MPa)
steel 2× 10 11 7850 235
aluminum 69× 109 2700 276
Tab.2  Material properties for design of examples
example population size mutation probability crossover
type
selection
operator
foldable double layer 40 1 single point tournament selection
foldable barrel vault 60
120
scissor-like dome 20
Tab.3  The proposed GA properties
Fig.9  Group numbers of the foldable double layer
Fig.10  The convergence history of the foldable double layer with steel material
Fig.11  The convergence history of the foldable double layer with aluminium material
material variables area
(cm2)
radius
(mm)
thickness
(mm)
weight
(kg)
NFE
steel A1 1.2252 20 1 40.6812 2560
A2 0.5969 10 1
aluminum A1 1.8535 30 1 16.6794 2440
A2 0.5969 10 1
Tab.4  Optimization results for a foldable double layer
Fig.12  Group numbers of the foldable barrel vault (Case 1)
Fig.13  Group numbers of the foldable barrel vault (Case 2)
Fig.14  The convergence history of the foldable barrel vault with steel material (Case 1)
Fig.15  The convergence history of the foldable barrel vault with aluminium material (Case 1)
material variables area
(cm2)
radius
(mm)
thickness
(mm)
weight
(kg)
NFE
steel A1 0.5969 10 1 109.3785 2640
A2 1.5394 25 1
aluminum A1 1.2252 20 1 62.7567 2880
A2 2.1677 35 1
Tab.5  Optimization results for a foldable barrel vault (Case 1)
Fig.16  The convergence history of the foldable barrel vault with steel material (Case 2)
Fig.17  The convergence history of the foldable barrel vault with aluminium material (Case 2)
material variables area
(cm2)
radius
(mm)
thickness
(mm)
weight
(kg)
NFE
steel A1 0.5969 10 1 82.7441 11040
A2 0.5969 10 1
A3 0.5969 10 1
A4 1.5394 25 1
A5 0.5969 10 1
A6 0.5969 10 1
aluminum A1 1.2252 20 1 47.4886 10320
A2 1.2252 20 1
A3 1.2252 20 1
A4 2.1677 35 1
A5 0.5969 10 1
A6 0.5969 10 1
Tab.6  Optimization results for a foldable barrel vault (Case 2)
Fig.18  The deployable dome with scissor-hinge elements
Fig.19  Characteristic units for geometric design of deployable scissor-like dome
Fig.20  The convergence history of the foldable dome with steel material
Fig.21  The convergence history of the foldable dome with aluminium material
material area
(cm2)
radius
(mm)
thickness
(mm)
weight
(kg)
NFE
steel 0.5969 10 1 58.0638 260
aluminum 0.5969 10 1 19.9710 240
Tab.7  Optimization results for a scissor-like dome
(*)Foldable Barrel vault(*)
t=150; (*)control angle(*)
L1=0.8; (*) length of upper part of uniplet(*)
L2=0.7; (*)length of lower part of uniplet(*)
m=5; (*)circumferential frequency(*)
n=3; (*)longitudinal frequency(*)
L=L1+L2; t1=180-t;
D=sqrt|(L1^2+L2^2-2*L1*L2*cos|t1);
D1=sqrt|(L^2-D^2);
A=asin|(L2*sin|t1/D);
B=180+A-t;
R=D*(sin|B/(sin|B-sin|A));
C=asin|(L*sin|(B/R));
E=rinit(m,n+1,c,D1)|{[R-D,0,0;R,C,0],[R,0,0;R-D,C,0]}#rinit(m+1,n,c,D1)|{[R-D,0,0;R,0,D1],[R,0,0;R-D,0,D1]};
F=bc(1,1,1)|E;
P=m*C/2;
BV=verad(0,0,90-P)|F;
Use &,vm(2),vt(2),vh(5,8*R,-12*R,0,0,R,0,1,R);Clear;draw BV;
Radius=R; Depth=D; side=n*D1;
sweep=P; span=2*R*sin|P; Rise=R*(1-cos|P);
Give Radius, Depth,Side,Sweep,Span,Rise;
(*)Foldable double layer(*)
T=120; (*) Control angle (*)
D=0.8; (*) Dimensions of a duplet for T=90 (*)
m=4; (*) Frequency in the x-direction (*)
n=3; (*) Frequency in the y-direction (*)
H=sqrt|2*D*sin|(T/2);
V=sqrt|2*D*cos|(T/2);
Fold=rinid(m,n+1,H,H)|{[0,0,0; H,0,V],
[0,0,V; H,0,0]}#rinid(m+1,n,H,H)|
{[0,0,0; 0,H,V], [0,0,V; 0,H,0]};
use &,vn(150,250),vs(35),
vh(m*H, n*H,15*H, 0,0,0, 0,0,1);
clear; draw Fold;
  
1 C J Gantes. Deployable Structures: Analysis and Design. Southampton: Wit Press, 2001
2 L G Rhode-Barbarigos. An active deployable tensegrity structure. Dissertation for the Doctoral Degree. Lausanne: Federal Institute of Technology in Lausanne, 2012
3 E P Pinero. Project for a mobile theatre. Architectural Design, 1961, 12(1): 154–155
4 J. Chilton Space Grid Structures. Abingdon: Taylor & Francis, 2007
6 N Friedman, G Farkas. Roof structures in motion-on retractable and deployable roof structures enabling quick construction or adaption to external excitations. Concrete Structures, 2011, 12: 41–50
7 C J Gantes, J J Connor, R D Logcher, Y Rosenfeld. Structural analysis and design of deployable structures. Computers & Structures, 1989, 32(3–4): 661–669
https://doi.org/10.1016/0045-7949(89)90354-4
8 J P Valcarcef, F Escrig. Recent advances in the analysis of expandable structures. In: Escrig F, Brebbia C A, eds. Mobile and Rapidly Assembled Structures II (Vol. 21). Southampton: Computational Mechanics Publications, 1996, 45–54
9 S Calatrava. Study on the foldability of trusses. Dissertation for the Doctoral Degree. Zurich: Swiss Federal Institute of Technology Zurich, 1981
10 T R Zeigler. US Patent 4026313. 1977-05-31
11 CH Hernández, W Zalewski. Expandable structure for the Venezuelan Pavilion at Expo’92. In: Proceedings of International Conference on Space Structures. 1993, 1710–1719
12 F Escrig. Expandable space frame structures. In: Proceedings of the 3rd International Conference on Space Structures. Guildford: Elsevier, 1984, 845–850
13 Y Rosenfeld, R D Logcher. New concepts for deployable-collapsible structures. International Journal of Space Structures, 1988, 3(1): 20–32
https://doi.org/10.1177/026635118800300103
14 W Shan. Foldable space structures. Dissertation for the Doctoral Degree. Surrey: University of Surrey, 1990
15 T Langbecker, F Albermani. Kinematic and non-linear analysis of foldable barrel vaults. Engineering Structures, 2001, 23(2): 158–171
https://doi.org/10.1016/S0141-0296(00)00033-X
16 C Gantes, J J Connor, R D Logcher. Combining numerical analysis and engineering judgment to design deployable structures. Computers & Structures, 1991, 40(2): 431–440
https://doi.org/10.1016/0045-7949(89)90354-4
18 B Raphael, I F Smith. A direct stochastic algorithm for global search. Applied Mathematics and Computation, 2003, 146(2–3): 729–758
https://doi.org/10.1016/S0096-3003(02)00629-X
19 B Dizangian, M R Ghasemi. A fast marginal feasibility search method in size optimization of truss structures. Asian Journal of Civil Engineering, 2015, 16(5): 567–585
20 B Dizangian, M R Ghasemi. Ranked-based sensitivity analysis for size optimization of structures. Journal of Mechanical Design, 2015, 137(12): 121402
https://doi.org/10.1115/1.4031295
21 K Imai, L A Schmit. Configuration optimization of trusses. Journal of the Structural Division, 1981, 107(5): 745–756
22 H Ghasemi, H S Park, T Rabczuk. A multi-material level set-based topology optimization of flexoelectric composites. Computer Methods in Applied Mechanics and Engineering, 2018, 332: 47–62
https://doi.org/10.1016/j.cma.2017.12.005
23 S S Nanthakumar, T Lahmer, X Zhuang, H S Park, T Rabczuk. Topology optimization of piezoelectric nanostructures. Journal of the Mechanics and Physics of Solids, 2016, 94: 316–335
https://doi.org/10.1016/j.jmps.2016.03.027
24 H Ghasemi, H S Park, T Rabczuk. A level-set based IGA formulation for topology optimization of flexoelectric materials. Computer Methods in Applied Mechanics and Engineering, 2017, 313: 239–258
https://doi.org/10.1016/j.cma.2016.09.029
25 S S Nanthakumar, X Zhuang, H S Park, T Rabczuk. Topology optimization of flexoelectric structures. Journal of the Mechanics and Physics of Solids, 2017, 105: 217–234
https://doi.org/10.1016/j.jmps.2017.05.010
26 J H Holland. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. Cambridge: MIT Press, 1992
27 M R Ghasemi, E Hinton, R D Wood. Optimization of trusses using genetic algorithms for discrete and continuous variables. Engineering Computations, 1999, 16(3): 272–303
https://doi.org/10.1108/02644409910266403
28 M Salar, M R Ghasemi, B Dizangian. A fast GA-based method for solving truss optimization problems. International Journal of Optimization in Civil Engineering, 2015, 6(1): 101–114
29 K S Lee, Z W Geem. A new structural optimization method based on the harmony search algorithm. Computers & Structures, 2004, 82(9–10): 781–798
https://doi.org/10.1016/j.compstruc.2004.01.002
30 American Institute of Steel Construction (AISC). Manual of Steel Constructional Low Able Stress Design. 9th ed. Chicago: American Institute of Steel Construction, 1989
31 National Building Code of Canada. Canadian Commission on Building and Fire Codes. Volume 1. 2005
32 H Nooshin, P Disney. Formex configuration processing II. International Journal of Space Structures, 2001, 16(1): 1–56
https://doi.org/10.1260/0266351011495313
[1] Siamak TALATAHARI, Mahdi RABIEI. Shear wall layout optimization of tall buildings using Quantum Charged System Search[J]. Front. Struct. Civ. Eng., 2020, 14(5): 1131-1151.
[2] Mohammad Sadegh ES-HAGHI, Aydin SHISHEGARAN, Timon RABCZUK. Evaluation of a novel Asymmetric Genetic Algorithm to optimize the structural design of 3D regular and irregular steel frames[J]. Front. Struct. Civ. Eng., 2020, 14(5): 1110-1130.
[3] Hamed FATHNEJAT, Behrouz AHMADI-NEDUSHAN. An efficient two-stage approach for structural damage detection using meta-heuristic algorithms and group method of data handling surrogate model[J]. Front. Struct. Civ. Eng., 2020, 14(4): 907-929.
[4] Shahaboddin SHAMSHIRBAND, Amir MOSAVI, Timon RABCZUK. Particle swarm optimization model to predict scour depth around a bridge pier[J]. Front. Struct. Civ. Eng., 2020, 14(4): 855-866.
[5] Meisam RABIEI, Asskar Janalizadeh CHOOBBASTI. Innovative piled raft foundations design using artificial neural network[J]. Front. Struct. Civ. Eng., 2020, 14(1): 138-146.
[6] Xiao YAN, Zizheng SUN, Shucai LI, Rentai LIU, Qingsong ZHANG, Yiming ZHANG. Quantitatively assessing the pre-grouting effect on the stability of tunnels excavated in fault zones with discontinuity layout optimization: A case study[J]. Front. Struct. Civ. Eng., 2019, 13(6): 1393-1404.
[7] Tugrul TALASLIOGLU. Optimal dome design considering member-related design constraints[J]. Front. Struct. Civ. Eng., 2019, 13(5): 1150-1170.
[8] Reza KHADEMI-ZAHEDI, Pouyan ALIMOURI. Finite element model updating of a large structure using multi-setup stochastic subspace identification method and bees optimization algorithm[J]. Front. Struct. Civ. Eng., 2019, 13(4): 965-980.
[9] Tugrul TALASLIOGLU. Optimal design of steel skeletal structures using the enhanced genetic algorithm methodology[J]. Front. Struct. Civ. Eng., 2019, 13(4): 863-889.
[10] Fengjie TAN, Tom LAHMER. Shape design of arch dams under load uncertainties with robust optimization[J]. Front. Struct. Civ. Eng., 2019, 13(4): 852-862.
[11] Mohammad Reza GHASEMI, Charles V. CAMP, Babak DIZANGIAN. Novel decoupled framework for reliability-based design optimization of structures using a robust shifting technique[J]. Front. Struct. Civ. Eng., 2019, 13(4): 800-820.
[12] Nazim Abdul NARIMAN. Control efficiency optimization and Sobol’s sensitivity indices of MTMDs design parameters for buffeting and flutter vibrations in a cable stayed bridge[J]. Front. Struct. Civ. Eng., 2017, 11(1): 66-89.
[13] Mehdi BABAEI,Ebrahim SANAEI. Multi-objective optimal design of braced frames using hybrid genetic and ant colony optimization[J]. Front. Struct. Civ. Eng., 2016, 10(4): 472-480.
[14] Ali KEZMANE,Said BOUKAIS,Mohand Hamizi. Numerical simulation of squat reinforced concrete wall strengthened by FRP composite material[J]. Front. Struct. Civ. Eng., 2016, 10(4): 445-455.
[15] M. A. LASHTEH NESHAEI, M. A. MEHRDAD, N. ABEDIMAHZOON, N. ASADOLLAHI. Predicting beach profile evolution with group method data handling-type neural networks on beaches with seawalls[J]. Front Struc Civil Eng, 2013, 7(2): 117-126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed