Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

Postal Subscription Code 80-968

2018 Impact Factor: 1.272

Front. Struct. Civ. Eng.    2019, Vol. 13 Issue (5) : 1200-1213    https://doi.org/10.1007/s11709-019-0546-2
RESEARCH ARTICLE
The influence of hand hole on the ultimate strength and crack pattern of shield tunnel segment joints by scaled model test
Shaochun WANG, Xi JIANG, Yun BAI()
Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, Shanghai 200092, China
 Download: PDF(6422 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

With the shield tunnel going deeper and deeper, the circumferential axial force becomes the governing factor rather than the bending moment. The hand hole acts as a weak point and initial damage in the segment joint especially when the circumferential axial force is extremely high. Despite the wide application of steel fiber or synthetic fiber in the tunneling, limited researches focus on the structural responses of segment joint with macro structural synthetic fiber (MSSF). In this paper, a 1:2 reduced-scale experiment was conducted to study the structural performance of the segment joint with different types of hand holes under ultra-high axial force. Special attention is paid to failure mode and structural performance (bearing capacity, deformation, cracking, and toughness). Moreover, segment joints with MSSF are also tested to evaluate the effects of MSSF on the failure mode and structural performance of the segment joints. The experiment results show that the hand hole becomes the weakest point of the segment joint under ultra-high axial force. A \ /-type crack pattern is always observed before the final failure of the segment joints. Different types and sizes of the hand hole have different degree of influences on the structural behavior of segment joints. The segment joint with MSSF shows higher ultimate bearing capacity and toughness compared to segment joint with common concrete. Besides, the MSSF improves the initial cracking load and anti-spallling resistance of the segment joint.

Keywords shield tunneling      structural synthetic fiber concrete      hand hole      segment joint      ultimate bearing capacity      crack pattern     
Corresponding Author(s): Yun BAI   
Just Accepted Date: 27 May 2019   Online First Date: 08 July 2019    Issue Date: 11 September 2019
 Cite this article:   
Shaochun WANG,Xi JIANG,Yun BAI. The influence of hand hole on the ultimate strength and crack pattern of shield tunnel segment joints by scaled model test[J]. Front. Struct. Civ. Eng., 2019, 13(5): 1200-1213.
 URL:  
https://academic.hep.com.cn/fsce/EN/10.1007/s11709-019-0546-2
https://academic.hep.com.cn/fsce/EN/Y2019/V13/I5/1200
joint Qty. hole shape 1 (mm) w (mm) d Vf As (mm2)
JS_REC_0_1.93 3 rectangle 250 80 170 0% 2260
JB_REC_0_1.93 3 rectangle 200 80 130 0% 2260
JI_STM_0_1.93 3 streamline 150 80 60 0% 2260
JI_TRA_0_1.93 3 trapezoid 150 80 60 0% 2260
JI_REC_0_1.93 3 rectangle 150 80 60 0% 2260
JI_REC_0.55_1.93 3 rectangle 150 80 60 4% 2260
JI_REC_0.55_0 3 rectangle 150 80 60 4% 0
COL_STD_0_1.93 3 no hole 0% 2260
Tab.1  Joint component geometry details
Fig.1  Simplicity and equivalence of the segment joints
Fig.2  Geometry and reinforcement details of segment joints. (a) Front view and cross section B-B′; (b) cross section A-A′ and steel strain gauge locations; (c) concrete strain gauge locations. (unit: mm)
item value
length (mm) 48
modulus of elasticity (GPa) 10
tensile strength (MPa) 640
equivalent diameter (mm) 0.7
density (g/cm3) 0.91
Tab.2  Structural synthetic fiber properties
materials RC SFRC
cement 350 350
sand 680 680
coarse aggregate 1159 1159
water 146 146
fly ash 36 36
admixture 3.82 4.32
mineral powder 3 3
fiber dosage 0 0
Tab.3  Concrete properties
bar type usage diameter (mm) area (mm2) fy (MPa) εy Es (GPa)
steel18 deformed bar longitudinal
reinforcement
18 254.3 465 0.0023 200
steel12 deformed bar longitudinal
reinforcement
12 113.0 478 0.0024 200
steel10 plain bar transverse
reinforcement
10 78.4 423 0.0022 190
Tab.4  Steel bar properties
Fig.3  Overview of the test setup
joint average compressive strength (MPa) variance (MPa)
JS_REC_0_1.93 59.99 0.703
JB_REC_0_1.93 59.98 0.703
JI_STM_0_1.93 60.29 0.127
JI_TRA_0_1.93 60.33 0.167
JI_REC_0_1.93 59.67 0.104
JI_REC_0.55_1.93 59.68 0.242
JI_REC_0.55_0 60.08 0.391
COL_STD_0_1.93 60.12 0.000
Tab.5  Compressive strength of the concrete
Fig.4  General behavior of the tested segment joints
joint fc
(MPa)
Pfcr
(kN)
Pyi
(kN)
Pfp
(kN)
Pmax
(kN)
P fcr Pmax P yiP fp δyi
(mm)
δfp
(mm)
δmax
(mm)
δy i δfp
JS_REC_0_1.93_A 59.19 700 2460 2560 2657 0.263 0.961 0.354 0.376 0.376 0.941
JS_REC_0_1.93_B 60.52 800 2480 2567 3015 0.265 0.966 0.379 0.396 0.957
JS_REC_0_1.93_C 60.25 700 2790 2878 2878 0.243 0.969 0.424 0.439 0.439 0.966
JB_REC_0_1.93_A 60.25 1100 3300 3374 3374 0.326 0.978 0.485 0.529 0.529 0.917
JB_REC_0_1.93_B 59.19 1000 2510 2742 3090 0.324 0.915 0.306 0.349 0.877
JB_REC_0_1.93_C 60.52 1100 3250 3414 3414 0.322 0.952 0.501
JI_TRA_0_1.93_A 60.37 1400 3421 3667 3705 0.378 0.933 0.580 0.655 0.978 0.885
JI_TRA_0_1.93_B 60.37 1300 3320 3482 3482 0.373 0.953 0.538 0.578 0.578 0.931
JI_TRA_0_1.93_C 60.15 1400 3335 3534 3701 0.378 0.944 0.498 0.538 0.714 0.926
JI_STM_0_1.93_A 60.23 1500 3700 3954 3954 0.379 0.936 0.762 0.922 0.922 0.826
JI_STM_0_1.93_B 60.52 1500 3290 3860 3860 0.389 0.852 0.701 0.894 0.894 0.784
JI_STM_0_1.93_C 60.23 1400 3200 3437 3437 0.407 0.931 0.660 0.725 0.725 0.910
JI_REC_0_1.93_A 59.55 1600 3190 3900 3900 0.410 0.818 0.602 0.855 0.855 0.704
JI_REC_0_1.93_B 59.73 1500 3650 3751 3751 0.400 0.973 0.665 0.687 0.687 0.968
JI_REC_0_1.93_C 59.73 1200 2835 3380 3380 0.385 0.839 0.568 0.695 0.695 0.817
JI_REC_0.55_1.93_A 59.57 1900 4110 4172 4172 0.455 0.985 0.749 0.753 0.753 0.995
JI_REC_0.55_1.93_B 59.1 1900 3650 3681 4107 0.463 0.992 0.730 0.738 1.841 0.989
JI_REC_0.55_1.93_C 60.37 1600 4105 4213 4213 0.404 0.974 0.792 0.904 0.904 0.876
JI_REC_0.55_0_A 60.62 1300 3060 3189 3189 0.408 0.960 0.512 0.607 0.607 0.843
JI_REC_0.55_0_B 60.18 1300 3222 3226 3226 0.403 0.999 0.522 0.523 0.523 0.998
JI_REC_0.55_0_C 59.45 1300 2655 2975 2975 0.437 0.892 0.434 0.533 0.533 0.814
COL_STD_0_1.93_A 60.12 1700 3950 4109 4109 0.414 0.961 0.876 0.933 0.933 0.939
COL_STD_0_1.93_B 60.12 1800 3708 4219 4219 0.427 0.879 0.881 1.454 1.454 0.606
COL_STD_0_1.93_C 60.12 1900 3678 4117 4117 0.462 0.893 0.790 1.715 1.715 0.461
Tab.6  Summary of test results
Fig.5  Ultimate failure mode of test specimens
Fig.6  Failure process of representative joints: (a) RC joint (b) MSSF joint
Fig.7  Load-deformation relationship of all specimens
Fig.8  Influences of hand holes with different sizes on segment joints
Fig.9  Influences of hand holes with different shapes on segment joints
Fig.10  Influence of MSSF on segment joints
Fig.11  Tensile and compressive concrete strain of segment joints around the hand hole: (a) tensile strain; (b) compressive strain
Fig.12  Tensile and compressive steel strain of segment joints around the hand hole: (a) tensile strain; (b) compressive strain
joint type JS_REC_0_1.93 JB_REC_0_1.93 JI_REC_0_1.93 JI_REC_0.55_1.93 COL_STD_0_1.93
tensile strain (με) 236 174 116 101 71
compressive strain (με) 347 305 281 265 236
magnification coefficient (tensile) 3.32 2.45 1.63 1.42 1
magnification coefficient (compressive) 1.47 1.29 1.19 1.12 1
Tab.7  Concrete strain magnification coefficient of different segment joints
joint average toughness CV
JS_REC_0_1.93 499.7 0.125
JB_REC_0_1.93 863.3 0.067
JI_STM_0_1.93 1341.7 0.092
JI_TRA_0_1.93 1050.3 0.081
JI_REC_0_1.93 1274.3 0.064
JI_REC_0.55_1.93 1501.8 0.070
JI_REC_0.55_0 883.0 0.038
COL_STD_0_1.93 1645.1 0.097
Tab.8  Joint toughness
1 H Mashimo, T Ishimura. Evaluation of the load on shield tunnel lining in gravel. Tunnelling & Underground Space Technology Incorporating Trenchless Technology Research, 2003, 18(2–3): 233–241
https://doi.org/10.1016/S0886-7798(03)00032-4
2 Y Koyama. Present status and technology of shield tunneling method in Japan. Tunnelling & Underground Space Technology Incorporating Trenchless Technology Research, 2003, 18(2–3): 145–159
https://doi.org/10.1016/S0886-7798(03)00040-3
3 W G Ita. Guidelines for the Design of Shield Tunnel Lining. 2000
4 W Q Ding, Y C Peng, Z G Yan, B W Shen, H H Zhu, X X Wei. Full-scale testing and modeling of the mechanical behavior of shield TBM tunnel joints. Structural Engineering and Mechanics, 2013, 45(3): 337–354
https://doi.org/10.12989/sem.2013.45.3.337
5 W Q Ding, Z Q Yue, L G Tham, H H Zhu, C F Lee, T Hashimoto. Analysis of shield tunnel. International Journal for Numerical and Analytical Methods in Geomechanics, 2004, 28(1): 57–91
https://doi.org/10.1002/nag.327
6 Z Li, K Soga, F Wang, P Wright, K Tsuno. Behaviour of cast-iron tunnel segmental joint from the 3D FE analyses and development of a new bolt-spring model. Tunnelling & Underground Space Technology Incorporating Trenchless Technology Research, 2014, 41(1): 176–192
https://doi.org/10.1016/j.tust.2013.12.012
7 K Feng, C He, Y Fang, Y Jiang. Study on the mechanical behavior of lining structure for underwater shield tunnel of high-speed railway. Advances in Structural Engineering, 2013, 16(8): 1381–1399
https://doi.org/10.1260/1369-4332.16.8.1381
8 X Liu, Y Bai, Y Yuan, H A Mang. Experimental investigation of the ultimate bearing capacity of continuously jointed segmental tunnel linings. Structure and Infrastructure Engineering, 2016, 12(10): 1364–1379
https://doi.org/10.1080/15732479.2015.1117115
9 P R Budarapu, R Gracie, S P A Bordas, T Rabczuk. An adaptive multiscale method for quasi-static crack growth. Computational Mechanics, 2014, 53(6): 1129–1148
https://doi.org/10.1007/s00466-013-0952-6
10 P R Budarapu, R Gracie, S W Yang, X Zhuang, T Rabczuk. Efficient coarse graining in multiscale modeling of fracture. Theoretical and Applied Fracture Mechanics, 2014, 69(2): 126–143
https://doi.org/10.1016/j.tafmec.2013.12.004
11 H Talebi, M Silani, S P A Bordas, P Kerfriden, T Rabczuk. A computational library for multiscale modeling of material failure. Computational Mechanics, 2014, 53(5): 1047–1071
https://doi.org/10.1007/s00466-013-0948-2
12 H Talebi, M Silani, T Rabczuk. Concurrent multiscale modeling of three dimensional crack and dislocation propagation. Advances in Engineering Software, 2015, 80: 82–92
https://doi.org/10.1016/j.advengsoft.2014.09.016
13 T Rabczuk, G Zi, S Bordas, H Nguyen-Xuan. A geometrically non-linear three-dimensional cohesive crack method for reinforced concrete structures. Engineering Fracture Mechanics, 2008, 75(16): 4740–4758
https://doi.org/10.1016/j.engfracmech.2008.06.019
14 T Chau-Dinh, G Zi, P S Lee, T Rabczuk, J H Song. Phantom-node method for shell models with arbitrary cracks. Computers & Structures, 2012, 92–93(3): 242–256
https://doi.org/10.1016/j.compstruc.2011.10.021
15 T Rabczuk, P M A Areias, T Belytschko. A meshfree thin shell method for non-linear dynamic fracture. International Journal for Numerical Methods in Engineering, 2007, 72(5): 524–548
https://doi.org/10.1002/nme.2013
16 N Nguyen-Thanh, N Valizadeh, M N Nguyen, H Nguyen-Xuan, X Zhuang, P Areias, G Zi, Y Bazilevs, L De Lorenzis, T Rabczuk. An extended isogeometric thin shell analysis based on Kirchhoff-Love theory. Computer Methods in Applied Mechanics and Engineering, 2015, 284: 265–291
https://doi.org/10.1016/j.cma.2014.08.025
17 T Rabczuk, R Gracie, J H Song, T Belytschko. Immersed particle method for fluid-structure interaction. International Journal for Numerical Methods in Engineering, 2010, 81(1): 48–71
https://doi.org/10.1002/nme.2670
18 P Areias, J Reinoso, P P Camanho, J C D Sá, T Rabczuk. Effective 2D and 3D crack propagation with local mesh refinement and the screened Poisson equation. Engineering Fracture Mechanics, 2017, 189: 339–360
19 P Areias, T Rabczuk. Steiner-point free edge cutting of tetrahedral meshes with applications in fracture. Finite Elements in Analysis and Design, 2017, 132: 27–41
https://doi.org/10.1016/j.finel.2017.05.001
20 P Areias, M A Msekh, T Rabczuk. Damage and fracture algorithm using the screened Poisson equation and local remeshing. Engineering Fracture Mechanics, 2016, 158: 116–143
https://doi.org/10.1016/j.engfracmech.2015.10.042
21 P Areias, T Rabczuk, P P Camanho. Finite strain fracture of 2D problems with injected anisotropic softening elements. Theoretical and Applied Fracture Mechanics, 2014, 72: 50–63
https://doi.org/10.1016/j.tafmec.2014.06.006
22 P Areias, T Rabczuk, D Dias-Da-Costa. Element-wise fracture algorithm based on rotation of edges. Engineering Fracture Mechanics, 2013, 110(3): 113–137
https://doi.org/10.1016/j.engfracmech.2013.06.006
23 P Areias, T Rabczuk. Finite strain fracture of plates and shells with configurational forces and edge rotations. International Journal for Numerical Methods in Engineering, 2013, 94(12): 1099–1122
https://doi.org/10.1002/nme.4477
24 H Nguyen-Xuan, G R Liu, S Bordas, S Natarajan, T Rabczuk. An adaptive singular ES-FEM for mechanics problems with singular field of arbitrary order. Computer Methods in Applied Mechanics and Engineering, 2013, 253: 252–273
https://doi.org/10.1016/j.cma.2012.07.017
25 T Rabczuk, G Zi, S Bordas, H Nguyen-Xuan. A simple and robust three-dimensional cracking-particle method without enrichment. Computer Methods in Applied Mechanics and Engineering, 2010, 199(37–40): 2437–2455
https://doi.org/10.1016/j.cma.2010.03.031
26 T Rabczuk, T Belytschko. A three-dimensional large deformation meshfree method for arbitrary evolving cracks. Computer Methods in Applied Mechanics and Engineering, 2007, 196(29–30): 2777–2799
https://doi.org/10.1016/j.cma.2006.06.020
27 T Rabczuk, T Belytschko. Cracking particles: A simplified meshfree method for arbitrary evolving cracks. International Journal for Numerical Methods in Engineering, 2004, 61(13): 2316–2343
https://doi.org/10.1002/nme.1151
28 S S Ghorashi, N Valizadeh, S Mohammadi, T Rabczuk. T-spline based XIGA for fracture analysis of orthotropic media. Computers & Structures, 2015, 147: 138–146
https://doi.org/10.1016/j.compstruc.2014.09.017
29 S S Nanthakumar, T Lahmer, X Zhuang, G Zi, T Rabczuk. Detection of material interfaces using a regularized level set method in piezoelectric structures. Inverse Problems in Science and Engineering, 2015, 24(1): 1–24
30 T Rabczuk, S Bordas, G Zi. On three-dimensional modelling of crack growth using partition of unity methods. Computers & Structures, 2010, 88(23–24): 1391–1411
https://doi.org/10.1016/j.compstruc.2008.08.010
31 H Ren, X Zhuang, T Rabczuk. Dual-horizon peridynamics: A stable solution to varying horizons. Computer Methods in Applied Mechanics and Engineering, 2017, 318: 762–782
https://doi.org/10.1016/j.cma.2016.12.031
32 H Ren, X Zhuang, Y Cai, T Rabczuk. Dual-horizon peridynamics. International Journal for Numerical Methods in Engineering, 2016, 108(12): 1451–1476
https://doi.org/10.1002/nme.5257
33 F Amiri, C Anitescu, M Arroyo, S P A Bordas, T Rabczuk. XLME interpolants, a seamless bridge between XFEM and enriched meshless methods. Computational Mechanics, 2014, 53(1): 45–57
https://doi.org/10.1007/s00466-013-0891-2
34 P Areias, T Rabczuk, M A Msekh. Phase-field analysis of finite-strain plates and shells including element subdivision. Computer Methods in Applied Mechanics and Engineering, 2016, 312: 322–350
https://doi.org/10.1016/j.cma.2016.01.020
35 F Amiri, D Millán, Y Shen, T Rabczuk, M Arroyo. Phase-field modeling of fracture in linear thin shells. Theoretical and Applied Fracture Mechanics, 2014, 69(2): 102–109
https://doi.org/10.1016/j.tafmec.2013.12.002
36 X Zhuang, R Huang, C Liang, T. Rabczuk A coupled thermo-hydro-mechanical model of jointed hard rock for compressed air energy storage. Mathematical Problems in Engineering, 2014, 2014, 179169
37 T Kasper, C Edvardsen, G Wittneben, D Neumann. Lining design for the district heating tunnel in Copenhagen with steel fibre reinforced concrete segments. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research, 2008, 23(5): 574–587
38 S P Timoshenko, J N Goodier. Theory of Elasticity. New York: McGraw-Hill, 1951
39 CECS13. Standard test methods for fiber reinforced concrete. 2009 (in Chinese)
40 GB/T28900. Test methods of steel for reinforcement of concrete. 2012 (in Chinese)
41 S J Foster, M M Attard. Experimental tests on eccentrically loaded high strength concrete columns. ACI Structural Journal, 1997, 94(3): 295–303
42 GB50010. Code for design of concrete structures. 2010 (in Chinese)
43 N Vu-Bac, T Lahmer, X Zhuang, T Nguyen-Thoi, T Rabczuk. A software framework for probabilistic sensitivity analysis for computationally expensive models. Advances in Engineering Software, 2016, 100: 19–31
https://doi.org/10.1016/j.advengsoft.2016.06.005
44 K M Hamdia, M Silani, X Zhuang, P He, T Rabczuk. Stochastic analysis of the fracture toughness of polymeric nanoparticle composites using polynomial chaos expansions. International Journal of Fracture, 2017, 206(2): 215–227
https://doi.org/10.1007/s10704-017-0210-6
45 T Rabczuk, T Belytschko. Application of particle methods to static fracture of reinforced concrete structures. International Journal of Fracture, 2006, 137(1–4): 19–49
https://doi.org/10.1007/s10704-005-3075-z
46 T Rabczuk, J Akkermann, J Eibl. A numerical model for reinforced concrete structures. International Journal of Solids and Structures, 2005, 42(5–6): 1327–1354
https://doi.org/10.1016/j.ijsolstr.2004.07.019
[1] Renpeng CHEN, Pin ZHANG, Huaina WU, Zhiteng WANG, Zhiquan ZHONG. Prediction of shield tunneling-induced ground settlement using machine learning techniques[J]. Front. Struct. Civ. Eng., 2019, 13(6): 1363-1378.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed