Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

Postal Subscription Code 80-968

2018 Impact Factor: 1.272

Front. Struct. Civ. Eng.    2019, Vol. 13 Issue (6) : 1474-1494    https://doi.org/10.1007/s11709-019-0572-0
RESEARCH ARTICLE
Investigation of the interior RC beam-column joints under monotonic antisymmetrical load
Fei GAO1, Zhiqiang TANG1, Biao HU2(), Junbo CHEN3, Hongping ZHU1, Jian MA1
1. School of Civil Engineering and Mechanics, Huazhong University of Science and Technology, Wuhan 430074, China
2. Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, Shenzhen University, Shenzhen 518060, China
3. Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
 Download: PDF(2368 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The paper presents numerical findings of reinforced concrete interior beam-column joints under monotonic antisymmetrical load. The finite element models considered compression and tension damage were calibrated by test results in terms of the load-displacement, failure modes, and strains of longitudinal steel. The emphasis was put on studying the effects of hoop reinforcement ratio in joint core and the axial compression ratio on the responses of the joints. The results show that, in addition to the truss and strut-and-tie mechanisms, the confinement mechanism also existed in the joint core. A certain amount of stirrup is not only able to enhance the confinement in joint core, undertake a part of shear force and thus to increase the shear capacity, prevent the outward buckling of steel bars in column, improve the stress distribution in joint core, delay cracking and restrain the propagation of cracks, but also to increase the yield load, decrease the yield displacement of beam and improve the joint ductility. However, excessive horizontal stirrups contribute little to the joint performance. In a certain range, larger axial compression ratio is beneficial for the joint mechanical behavior, while it is negative when axial compression ratio is too large.

Keywords RC beam-column joint      reinforcement ratio in joint core      axial compression ratio      finite element      test     
Corresponding Author(s): Biao HU   
Just Accepted Date: 04 September 2019   Online First Date: 22 October 2019    Issue Date: 21 November 2019
 Cite this article:   
Fei GAO,Zhiqiang TANG,Biao HU, et al. Investigation of the interior RC beam-column joints under monotonic antisymmetrical load[J]. Front. Struct. Civ. Eng., 2019, 13(6): 1474-1494.
 URL:  
https://academic.hep.com.cn/fsce/EN/10.1007/s11709-019-0572-0
https://academic.hep.com.cn/fsce/EN/Y2019/V13/I6/1474
Fig.1  Details of test specimens. (a) SP1; (b) SP2 and SP3.
specimens longitudinal steel bar beam, longitudinal steel bar (one side) column, longitudinal steel bar transverse reinforcement ratio in joint core axial load ratio
v
shear compression ratios
λ
Mcu Mbu
number
N
ρsv,j
SP1 HRB335 2Φ20 12Φ20 6Φ10 1.03% 0.3 0.12 4.95
SP2 HRB500E 3Φ20 12Φ20 6Φ10+8Φ10 1.72% 0.3 0.27 2.27
SP3 HRB600 3Φ20 12Φ20 6Φ10+8Φ10 1.72% 0.3 0.32 1.90
Tab.1  General information of RC interior beam-to-column joints specimens
specimen steel bar concrete
grade yield strength
fy0( MPa)
yield strain
εy0
tensile strength fts0 (MPa) Young’s modulus
Es0 (GPa)
grade compression strength
fcu0 (MPa)
tensile strength
ftc0 (MPa)
SP1 HRB335 427.5 0.0021 548.5 204 C50 48.4 3.3
SP2 HRB500E 543.9 0.0028 703.7 197 C50 48.8 3.4
SP3 HRB600 607.8 0.0031 774.1 194 C50 49.1 3.7
Tab.2  Materials properties
Fig.2  Test setup.
Fig.3  Steel constitutive model.
Fig.4  Damage plasticity model for concrete under uniaxial compression and tension. (a) Compression; (b) tension.
Fig.5  The influence of mesh sizes on the load-displacement curves. (a) Concrete; (b) reinforcement in beam; (c) reinforcement in column.
Fig.6  The influence of concrete damage parameters on the load-displacement curves.
Fig.7  The comparison of load-displacement curves between FE models and experimental results. (a) SP1; (b) SP2; (c) SP3.
Fig.8  The comparison of failure modes between FE models and experimental results. (a) SP1: test; (b) SP1: PEMAG; (c) SP1: PEEQ; (d) SP2: test; (e) SP3: PEMAG; (f) SP3: PEEQ; (g) SP3: test; (h) SP3: PEMAG; (i) SP3: PEEQ.
Fig.9  The comparison of steel bar strain between FE models and experimental results. (a) SP1; (b) SP2; (c) SP3.
Fig.10  The joint core transverse reinforcement ratio ( ρsv,j) and the stirrup numbering. (a) ρsv,j at 0.17%; (b) ρsv,j at 0.51%; (c) ρsv,j at 0.86%; (d) ρsv,j at 1.20%.
group ID of FE model steel bar kind beam column stirrup in joint core v λ
cross
section (mm)
tension steel cross section (mm) longitudinal steel number ρsv,j
1 NS1 HRB335 300×400 2Φ20 400×400 12Φ20 1Φ10 0.17 0.3 0.12
NS2 HRB335 300×400 2Φ20 400×400 12Φ20 3Φ10 0.51 0.3 0.12
NS3 HRB335 300×400 2Φ20 400×400 12Φ20 5Φ10 0.86 0.3 0.12
NS4 HRB335 300×400 2Φ20 400×400 12Φ20 7Φ10 1.20 0.3 0.12
2 NS5 HRB500E 300×400 3Φ20 400×400 12Φ20 1Φ10 0.17 0.3 0.27
NS6 HRB500E 300×400 3Φ20 400×400 12Φ20 3Φ10 0.51 0.3 0.27
NS7 HRB500E 300×400 3Φ20 400×400 12Φ20 5Φ10 0.86 0.3 0.27
NS8 HRB500E 300×400 3Φ20 400×400 12Φ20 7Φ10 1.20 0.3 0.27
3 NS9 HRB600 300×400 3Φ20 400×400 12Φ20 1Φ10 0.17 0.3 0.32
NS10 HRB600 300×400 3Φ20 400×400 12Φ20 3Φ10 0.51 0.3 0.32
NS11 HRB600 300×400 3Φ20 400×400 12Φ20 5Φ10 0.86 0.3 0.32
NS12 HRB600 300×400 3Φ20 400×400 12Φ20 7Φ10 1.20 0.3 0.32
Tab.3  Summary of FE models for parametric study
Fig.11  The relationship between the stirrup strain in joint core and axial force applied on column end. (a) ρsv,j at 0.51% for NS2; (b) ρsv,jat 0.86% for NS2; (c) ρsv,j at 1.20% for NS2.
Fig.12  Effect of joint core transverse reinforcement ratio on cracking and yielding load of beam element. (a) Group 1; (b) group 2; (c) group 3.
Fig.13  Effect of joint core transverse reinforcement ratio on yielding displacement of beam element. (a) Group 1; (b) group 2; (c) group 3.
Fig.14  Effect of joint core transverse reinforcement ratio on cracking load of joint core. (a) Group 1; (b) group 2; (c) group 3.
Fig.15  Effect of joint core transverse reinforcement ratio on stirrup strain vs. Δ/Δy curves. (a) Group 1; (b) group 2; (c) group 3.
Fig.16  The effect of applying the column end axial force on strain of steel element 3. (a) NS1; (b) NS5; (c) NS9.
Fig.17  The effect of compression axial ratio on strain of steel in beam near joint core. (a) NS1; (b) NS5; (c) NS9.
Fig.18  Numbering and location of steel elements of longitudinal steel bars in beam element.
Fig.19  Effect of axial load ratio on cracking and yielding load of beam element. (a) NS1; (b) NS5; (c) NS9.
Fig.20  Effect of axial load ratio on cracking and yielding displacement of beam element. (a) NS1; (b) NS5; (c) NS9.
Fig.21  Effect of axial load ratio on cracking load of joint core concrete. (a) NS1; (b) NS5; (c) NS9.
1 R Park, T Paulay. Behavior of reinforced concrete external beam-column joints under cyclic loading. In: Proceedings of the 5th World Conference on Earthquake Engineering. Rome, 1973, 772–781
2 T Paulay, R Park, M J N Preistley. Reinforced concrete beam-column joints under seismic actions. ACI Journal Proceedings, 1978, 75(11): 585–593
3 M R Ehsani, J K Wight. Exterior reinforced concrete beam-column connections subjected to earthquake type loading. ACI Journal Proceedings, 1985, 82(4): 492–499
4 A J Durrani, J K Wight. Behavior of interior beam-to-column connections under earthquake-type loading. ACI Journal Proceedings, 1985, 82(3): 343–349
5 J G MacGregor, J K Wight, S Teng, P Irawan. Reinforced concrete: Mechanics and design. Upper Saddle River, NJ: Prentice Hall, 1997
6 P Alaee, B Li. High-strength concrete exterior beam-column joints with high-yield strength steel reinforcements. Journal of Structural Engineering, 2017, 143(7): 04017038
https://doi.org/10.1016/j.engstruct.2017.05.024
7 P Alaee, B Li. High-strength concrete exterior beam-column joints with high-yield strength steel reinforcements. Engineering Structures, 2017, 145: 305–321
https://doi.org/10.1016/j.engstruct.2017.05.024
8 S Park, K M Mosalam. Analytical model for predicting shear strength of unreinforced exterior beam-column joints. ACI Structural Journal, 2012, 109(2): 149–159
9 J Kim, J M LaFave. Key influence parameters for the joint shear behaviour of reinforced concrete (RC) beam-column connections. Engineering Structures, 2007, 29(10): 2523–2539
https://doi.org/10.1016/j.engstruct.2006.12.012
10 A Sharma, R Eligehausen, G R Reddy. A new model to simulate joint shear behavior of poorly detailed beam-column connections in RC structures under seismic loads, Part I: Exterior joints. Engineering Structures, 2011, 33(3): 1034–1051
https://doi.org/10.1016/j.engstruct.2010.12.026
11 Standards New Zealand. Concrete Structures Standard: Part 1—The Design of Concrete Structure. NZS 3101, Standards New Zealand, Wellington, New Zealand, 2006
12 ACI. Building Code Requirements for Structural Concrete. ACI 318-08, American Concrete Institute, 2008
13 Eurocode 8. Design Provisions for Earthquake Resistance of Structures. Brussels: European Committee for Standardization, 1994
14 GB50010-2010. Design of Reinforced Concrete Structures. Beijing: Ministry of Housing and Urban-Rural Development, 2010
15 J Bonacci, S Pantazoupoulou. Parametric investigation of joint mechanics. ACI Structural Journal, 1993, 90(1): 61–71
16 B Li, C T N Tran, T C Pan. Experimental and numerical investigations on the seismic behavior of lightly reinforced concrete beam-column joints. Journal of Structural Engineering, 2009, 135(9): 1007–1018
https://doi.org/10.1061/(ASCE)ST.1943-541X.0000040
17 S J Hwang, Lee H J, T F Liao, K C Wang. Role of hoops on shear strength of reinforced concrete beam-column joints. ACI Structural Journal, 2005, 102(3): 445–453
18 C V R Murty, D Rai, K K Bajpai, S K Jain. Effectiveness of reinforcement details in exterior reinforced concrete beam-column joints for earthquake resistance. ACI Structural Journal, 2003, 100(2): 149–156
19 P G Bakir, H M Boduroğlu. A new design equation for predicting the joint shear strength of monotonically loaded exterior beam-column joints. Engineering Structures, 2002, 24(8): 1105–1117
https://doi.org/10.1016/S0141-0296(02)00038-X
20 V G Haach, A Lúcia Homce De Cresce El Debs, M Khalil El Debs. Evaluation of the influence of the column axial load on the behavior of monotonically loaded R/C exterior beam-column joints through numerical simulations. Engineering Structures, 2008, 30(4): 965–975
https://doi.org/10.1016/j.engstruct.2007.06.005
21 J Hegger, A Sherif, W Roeser. Nonseismic design of beam-column joints. ACI Structural Journal, 2003, 100(5): 654–664
22 D C Feng, J Xu. An efficient fiber beam-column element considering flexure-shearinteraction and anchorage bond-slip effect for cyclic analysis of RC structures. Bulletin of Earthquake Engineering, 2018, 16(11): 5425–5452
https://doi.org/10.1007/s10518-018-0392-y
23 B Li, C L Leong. Experimental and numerical investigations of the seismic behavior of high-strength concrete beam-column joints with column axial load. Journal of Structural Engineering, 2015, 141(9): 04014220
https://doi.org/10.1061/(ASCE)ST.1943-541X.0001191
24 P Z Zhang, S Hou, J P Ou. A beam-column joint element for analysis of reinforced concrete frame structures. Engineering Structures, 2016, 118: 125–136
https://doi.org/10.1016/j.engstruct.2016.03.030
25 D C Feng, X Ren, J Li. Cyclic behavior modeling of reinforced concrete shear walls based on softened damage-plasticity model. Engineering Structures, 2018, 166: 363–375
https://doi.org/10.1016/j.engstruct.2018.03.085
26 D C Feng, X Ren, J Li. Softened damage-plasticity model for analysis of cracked reinforced concrete structures. Journal of Structural Engineering, 2018, 144(6): 04018044
https://doi.org/10.1061/(ASCE)ST.1943-541X.0002015
27 D C Feng, J Li. Stochastic nonlinear behavior of reinforced concrete frames. II: Numerical simulation. Journal of Structural Engineering, 2016, 142(3): 04015163
https://doi.org/10.1061/(ASCE)ST.1943-541X.0001443
28 K M Hamdia, M Silani, X Zhuang, P He, T Rabczuk. Stochastic analysis of the fracture toughness of polymeric nanoparticle composites using polynomial chaos expansions. International Journal of Fracture, 2017, 206(2): 215–227
https://doi.org/10.1007/s10704-017-0210-6
29 N Vu-Bac, T Lahmer, X Zhuang, T Nguyen-Thoi, T Rabczuk. A software framework for probabilistic sensitivity analysis for computationally expensive models. Advances in Engineering Software, 2016, 100: 19–31
https://doi.org/10.1016/j.advengsoft.2016.06.005
30 T Rabczuk, J Akkermann, J Eibl. A numerical model for reinforced concrete structures. International Journal of Solids and Structures, 2005, 42(5–6): 1327–1354
https://doi.org/10.1016/j.ijsolstr.2004.07.019
31 T Rabczuk, T Belytschko. Cracking particles: A simplified meshfree method for arbitrary evolving cracks. International Journal for Numerical Methods in Engineering, 2004, 61(13): 2316–2343
https://doi.org/10.1002/nme.1151
32 T Rabczuk, T Belytschko. A three-dimensional large deformation meshfree method for arbitrary evolving cracks. Computer Methods in Applied Mechanics and Engineering, 2007, 196(29–30): 2777–2799
https://doi.org/10.1016/j.cma.2006.06.020
33 T Rabczuk, T Belytschko. Application of particle methods to static fracture of reinforced concrete structures. International Journal of Fracture, 2006, 137(1–4): 19–49
https://doi.org/10.1007/s10704-005-3075-z
34 T Rabczuk, S Bordas, G Zi. On three-dimensional modelling of crack growth using partition of unity methods. Computers & Structures, 2010, 88(23–24): 1391–1411
https://doi.org/10.1016/j.compstruc.2008.08.010
35 T Rabczuk, G Zi, S Bordas, H Nguyen-Xuan. A simple and robust three-dimensional cracking-particle method without enrichment. Computer Methods in Applied Mechanics and Engineering, 2010, 199(37–40): 2437–2455
https://doi.org/10.1016/j.cma.2010.03.031
36 T Rabczuk, J Eibl. Numerical analysis of prestressed concrete beams using a coupled element free Galerkin/finite element approach. International Journal of Solids and Structures, 2004, 41(3–4): 1061–1080
https://doi.org/10.1016/j.ijsolstr.2003.09.040
37 T Rabczuk, G Zi, S Bordas, H Nguyen-Xuan. A geometrically non-linear three-dimensional cohesive crack method for reinforced concrete structures. Engineering Fracture Mechanics, 2008, 75(16): 4740–4758
https://doi.org/10.1016/j.engfracmech.2008.06.019
38 K F Sarsam, M E Phipps. The shear design of in situ reinforced concrete beam-column joints subjected to monotonic loading. Magazine of Concrete Research, 1985, 37(130): 16–28
https://doi.org/10.1680/macr.1985.37.130.16
39 ACI-ASCE Committee 352. Recommendations for Design of Beam-Column Joints in Monolithic Reinforced Concrete Structures (ACI 352R-02). Farmington Hills: American Concrete Institute, 2002
40 H G Kwak, F C Filippou. Nonlinear FE analysis of RC structures under monotonic loads. Computers & Structures, 1997, 65(1): 1–16
https://doi.org/10.1016/S0045-7949(96)00299-4
41 J Hegger, A Sherif, W Roeser. Nonlinear finite element analysis of reinforced concrete beam-column connections. ACI Structural Journal, 2004, 101(5): 604–614
42 ABAQUS. ABAQUS Standard User’s Manual, Version 6.9. Providence, RI: DassaultSystèmes Corp., 2009
43 D C Feng, G Wu, Y Lu. Finite element modelling approach for precast reinforced concrete beam-to-column connections under cyclic loading. Engineering Structures, 2018, 174: 49–66
https://doi.org/10.1016/j.engstruct.2018.07.055
44 A Braconi, W Salvatore, R Tremblay, O S Bursi. Behaviour and modelling of partial-strength beam-to-column composite joints for seismic applications. Earthquake Engineering & Structural Dynamics, 2007, 36(1): 142–161
https://doi.org/10.1002/eqe.629
45 S El-Tawil, C F Sanz-Picon, G G Deierlein. Evaluation of ACI-318 and AISC (LRFD) strength provisions for composite columns. Journal of Constructional Steel Research, 1995, 34(1): 103–123
https://doi.org/10.1016/0143-974X(94)00009-7
46 J F Hajjar, B C Gourley. Representation of concrete filled steel tube cross-section strength. Journal of Structural Engineering, 1996, 122(11): 1327–1336
https://doi.org/10.1061/(ASCE)0733-9445(1996)122:11(1327)
47 B Li, Y Wu, T C Pan. Seismic behavior of nonseismically detailed interior beam-wide column joints-Part II: Theoretical comparisons and analytical studies. ACI Structural Journal, 2003, 100(1): 56–65
48 S S Mahini, H R Ronagh. Numerical modelling of FRP strengthened RC beam-column joints. Structural Engineering and Mechanics, 2009, 32(5): 649–665
https://doi.org/10.12989/sem.2009.32.5.649
49 S A Mirza, V Hyttinen, E Hyttinen. Physical tests and analysis of composite steel-concrete beam-columns. Journal of Structural Engineering, 1996, 122(11): 1317–1326
https://doi.org/10.1061/(ASCE)0733-9445(1996)122:11(1317)
50 G Monti, E Spacone. Reinforced concrete fiber beam element with bond-slip. Journal of Structural Engineering, 2000, 126(6): 654–661
https://doi.org/10.1061/(ASCE)0733-9445(2000)126:6(654)
51 G Sagbas, F J Vecchio, C Christopoulos. Computational modeling of the seismic performance of beam-column subassemblies. Journal of Earthquake Engineering, 2011, 15(4): 640–663
https://doi.org/10.1080/13632469.2010.508963
52 S Sasmal, B Novák, K Ramanjaneyulu. Numerical analysis of fiber composite-steel plate upgraded beam-column sub-assemblages under cyclic loading. Composite Structures, 2011, 93(2): 599–610
https://doi.org/10.1016/j.compstruct.2010.08.019
53 E Spacone, S El-Tawil. Nonlinear analysis of steel-concrete composite structures: State of the art. Journal of Structural Engineering, 2004, 130(2): 159–168
https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(159)
54 J Lubliner, J Oliver, S Oller, E Oñate. A plastic-damage model for concrete. International Journal of Solids and Structures, 1989, 25(3): 299–326
https://doi.org/10.1016/0020-7683(89)90050-4
55 G M Chen, J F Chen, J G Teng. On the finite element modelling of RC beams shear-strengthened with FRP. Construction & Building Materials, 2012, 32: 13–26
https://doi.org/10.1016/j.conbuildmat.2010.11.101
56 J P Lin, Y F Wu, S T Smith. Width factor for externally bonded FRP-to-concrete joints. Construction & Building Materials, 2017, 155: 818–829
https://doi.org/10.1016/j.conbuildmat.2017.08.104
57 GB/T50152–2012. Standard for Test Method of Concrete Structures. Beijing: Ministry of Housing and Urban-Rural Development, 2012
58 Z H Guo. The Strength and Deformation of Concrete: Experimental Basis and Constitutive Models. Beijing: Tsinghua University Press, 1997
59 X M Zhao, Y F Wu, A Y T Leung. Analyses of plastic hinge regions in reinforced concrete beams under monotonic loading. Engineering Structures, 2012, 34: 466–482
https://doi.org/10.1016/j.engstruct.2011.10.016
60 J P Lin, Y F Wu. Numerical analysis of interfacial bond behavior of externally bonded FRP-to-concrete joints. Journal of Composites for Construction, 2016, 20(5): 04016028
https://doi.org/10.1061/(ASCE)CC.1943-5614.0000678
61 Y S Chung, C Meyer, M Shinozuka. Modeling of concrete damage. ACI Structural Journal, 1989, 86(3): 259–271
62 J Lee, G L Fenves. Plastic-damage model for cyclic loading of concrete structures. Journal of Engineering Mechanics, 1998, 124(8): 892–900
https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892)
63 C Comi, U Perego. Fracture energy based bi-dissipative damage model for concrete. International Journal of Solids and Structures, 2001, 38(36–37): 6427–6454
https://doi.org/10.1016/S0020-7683(01)00066-X
64 J Shayanfar, H Akbarzadeh. A practical model for simulating nonlinear behaviour of FRP strengthened RC beam-column joints. Steel and Composite Structures, 2018, 27(1): 49–74
65 J P Fu, D C Zhang, T Chen, S L Bai. Experimental research on mechanics of force transmission and performance of shock-resistant joints with upper moderate shear-compression ratio. Journal of Chongqing University (Natural Science Edition), 2005, 28(6): 84–90
66 J P Fu, X Y Chen, T Chen, S L Bai. Experimental study on shock-resistant mechanism of frame joints with low to moderate shear-compression ratio. Journal of Chongqing Architecture University (Natural Science Edition), 2005, 27(1): 41–47
67 Y Zhang, Z Wang. Seismic behavior of reinforced concrete shear walls subjected to high axial loading. ACI Structural Journal, 2000, 97(5): 739–750
68 P D Li, Y F Wu. Stress-strain model of FRP confined concrete under cyclic loading. Composite Structures, 2015, 134: 60–71
https://doi.org/10.1016/j.compstruct.2015.08.056
69 P D Li, Y F Wu, Y W Zhou, F Xing. Cyclic stress-strain model for FRP-confined concrete considering post-peak softening. Composite Structures, 2018, 201: 902–915
https://doi.org/10.1016/j.compstruct.2018.06.088
70 C Quan, W Wang, J Zhou, R Wang. Cyclic behavior of stiffened joints between concrete-filled steel tubular column and steel beam with narrow outer diaphragm and partial joint penetration welds. Frontiers of Structural and Civil Engineering, 2016, 10(3): 333–344
https://doi.org/10.1007/s11709-016-0357-7
71 Y F Wu, B Hu. Shear strength components in reinforced concrete members. Journal of Structural Engineering, 2017, 143(9): 04017092
https://doi.org/10.1061/(ASCE)ST.1943-541X.0001832
72 B Hu, Y F Wu. Quantification of shear cracking in reinforced concrete beams. Engineering Structures, 2017, 147: 666–678
https://doi.org/10.1016/j.engstruct.2017.06.035
73 B Hu, Y F Wu. Effect of shear span-to-depth ratio on shear strength components of RC beams. Engineering Structures, 2018, 168: 770–783
https://doi.org/10.1016/j.engstruct.2018.05.017
[1] Mahmood AHMAD, Xiao-Wei TANG, Jiang-Nan QIU, Feezan AHMAD, Wen-Jing GU. A step forward towards a comprehensive framework for assessing liquefaction land damage vulnerability: Exploration from historical data[J]. Front. Struct. Civ. Eng., 2020, 14(6): 1476-1491.
[2] Nabarun DEY, Aniruddha SENGUPTA. Effect of a less permeable stronger soil layer on the stability of non-homogeneous unsaturated slopes[J]. Front. Struct. Civ. Eng., 2020, 14(6): 1462-1475.
[3] Alireza GHAVIDEL, Mohsen RASHKI, Hamed GHOHANI ARAB, Mehdi AZHDARY MOGHADDAM. Reliability mesh convergence analysis by introducing expanded control variates[J]. Front. Struct. Civ. Eng., 2020, 14(4): 1012-1023.
[4] Sanku KONAI, Aniruddha SENGUPTA, Kousik DEB. Seismic behavior of cantilever wall embedded in dry and saturated sand[J]. Front. Struct. Civ. Eng., 2020, 14(3): 690-705.
[5] Iman FATTAHI, Hamid Reza MIRDAMADI, Hamid ABDOLLAHI. Application of consistent geometric decomposition theorem to dynamic finite element of 3D composite beam based on experimental and numerical analyses[J]. Front. Struct. Civ. Eng., 2020, 14(3): 675-689.
[6] Rwayda Kh. S. AL-HAMD, Martin GILLIE, Safaa Adnan MOHAMAD, Lee S. CUNNINGHAM. Influence of loading ratio on flat slab connections at elevated temperature: A numerical study[J]. Front. Struct. Civ. Eng., 2020, 14(3): 664-674.
[7] Yi RUI, Mei YIN. Finite element modeling of thermo-active diaphragm walls[J]. Front. Struct. Civ. Eng., 2020, 14(3): 646-663.
[8] Mohammad Abubakar NAVEED, Zulfiqar ALI, Abdul QADIR, Umar Naveed LATIF, Saad HAMID, Umar SARWAR. Geotechnical forensic investigation of a slope failure on silty clay soil—A case study[J]. Front. Struct. Civ. Eng., 2020, 14(2): 501-517.
[9] Hassan YOUSEFI, Alireza TAGHAVI KANI, Iradj MAHMOUDZADEH KANI, Soheil MOHAMMADI. Wavelet-based iterative data enhancement for implementation in purification of modal frequency for extremely noisy ambient vibration tests in Shiraz-Iran[J]. Front. Struct. Civ. Eng., 2020, 14(2): 446-472.
[10] Farhoud KALATEH, Farideh HOSSEINEJAD. Uncertainty assessment in hydro-mechanical-coupled analysis of saturated porous medium applying fuzzy finite element method[J]. Front. Struct. Civ. Eng., 2020, 14(2): 387-410.
[11] Zhuang CHENG, Jianfeng WANG, Matthew Richard COOP, Guanlin YE. A miniature triaxial apparatus for investigating the micromechanics of granular soils with in situ X-ray micro-tomography scanning[J]. Front. Struct. Civ. Eng., 2020, 14(2): 357-373.
[12] Lingyun YOU, Kezhen YAN, Nengyuan LIU. Assessing artificial neural network performance for predicting interlayer conditions and layer modulus of multi-layered flexible pavement[J]. Front. Struct. Civ. Eng., 2020, 14(2): 487-500.
[13] Michaela GKANTOU, Marios THEOFANOUS, Charalampos BANIOTOPOULOS. A numerical study of prestressed high strength steel tubular members[J]. Front. Struct. Civ. Eng., 2020, 14(1): 10-22.
[14] Walid Khalid MBARAK, Esma Nur CINICIOGLU, Ozer CINICIOGLU. SPT based determination of undrained shear strength: Regression models and machine learning[J]. Front. Struct. Civ. Eng., 2020, 14(1): 185-198.
[15] Elmira SHOUSHTARI, M. Saiid SAIIDI, Ahmad ITANI, Mohamed A. MOUSTAFA. Pretest analysis of shake table response of a two-span steel girder bridge incorporating accelerated bridge construction connections[J]. Front. Struct. Civ. Eng., 2020, 14(1): 169-184.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed