Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

Postal Subscription Code 80-968

2018 Impact Factor: 1.272

Front. Struct. Civ. Eng.    2020, Vol. 14 Issue (4) : 983-997    https://doi.org/10.1007/s11709-020-0633-4
RESEARCH ARTICLE
Simplified theoretical analysis and numerical study on the dynamic behavior of FCP under blast loads
Chunfeng ZHAO1,2,3(), Xin YE3, Avinash GAUTAM4, Xin LU3, Y. L. MO4
1. Anhui Key Laboratory of Civil Engineering Structures and Materials, Hefei University of Technology, Hefei 230009, China
2. State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China
3. School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
4. Department of Civil and Environmental Engineering, University of Houston, Houston, TX 77024, USA
 Download: PDF(6042 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Precast concrete structures have developed rapidly in the last decades due to the advantages of better quality, non-pollution and fast construction with respect to conventional cast-in-place structures. In the present study, a theoretical model and nonlinear 3D model are developed and established to assess the dynamic behavior of precast concrete slabs under blast load. At first, the 3D model is validated by an experiment performed by other researchers. The verified model is adopted to investigate the blast performance of fabricated concrete panels (FCPs) in terms of parameters of the explosive charge, panel thickness, and reinforcement ratio. Finally, a simplified theoretical model of the FCP under blast load is developed to predict the maximum deflection. It is indicated that the theoretical model can precisely predict the maximum displacement of FCP under blast loads. The results show that the failure modes of the panels varied from bending failure to shear failure with the mass of TNT increasing. The thickness of the panel, reinforcement ratio, and explosive charges have significant effects on the anti-blast capacity of the FCPs.

Keywords precast structure      fabricated concrete panel      blast resistance      theory model      empirical equation     
Corresponding Author(s): Chunfeng ZHAO   
Just Accepted Date: 25 May 2020   Online First Date: 28 June 2020    Issue Date: 27 August 2020
 Cite this article:   
Chunfeng ZHAO,Xin YE,Avinash GAUTAM, et al. Simplified theoretical analysis and numerical study on the dynamic behavior of FCP under blast loads[J]. Front. Struct. Civ. Eng., 2020, 14(4): 983-997.
 URL:  
https://academic.hep.com.cn/fsce/EN/10.1007/s11709-020-0633-4
https://academic.hep.com.cn/fsce/EN/Y2020/V14/I4/983
no. dimensions (cm) concrete RRH* (%) RRV* (%) TNT charge (kg) detonation distance (cm) scale distance(cm/g1/3)
FCP 1-1 180×264×20 C40 0.324 0.444 2.0 60 4.76
FCP 1-2 180×264×20 C40 0.324 0.444 2.5 60 4.42
FCP 1-3 180×264×20 C40 0.324 0.444 3.0 60 4.16
FCP 1-4 180×264×20 C40 0.324 0.444 1.0 60 6.00
FCP 1-5 180×264×20 C40 0.324 0.444 4.0 60 3.78
FCP 2-1 180×264×22 C40 0.294 0.404 2.0 60 4.76
FCP 2-2 180×264×25 C40 0.259 0.355 2.0 60 4.76
FCP 2-3 180×264×22 C40 0.294 0.404 2.5 60 4.42
FCP 2-4 180×264×22 C40 0.294 0.404 3.0 60 4.16
FCP 2-5 180×264×25 C40 0.259 0.355 2.5 60 4.42
FCP 2-6 180×264×25 C40 0.259 0.355 3.0 60 4.16
FCP 3-1 180×264×20 C40 0.506 0.444 2.0 60 4.76
FCP 3-2 180×264×20 C40 0.728 0.444 2.0 60 4.76
FCP 3-3 180×264×20 C40 0.324 0.769 2.0 60 4.76
FCP 3-4 180×264×20 C40 0.324 0.967 2.0 60 4.76
FCP 4-1 180×264×20 C20 0.324 0.444 2.0 60 4.76
FCP 4-2 180×264×20 C60 0.324 0.444 2.0 60 4.76
Tab.1  The parameters of specimens
Fig.1  Mesh convergence analyses.
Fig.2  Damage modes of RC slab: (a) front surface of the experiment; (b) front surface of the numerical model; (c) bottom surface of the experiment; (d) bottom surface of the numerical model.
Fig.3  Displacement time history.
Fig.4  Dimension of FCP.
Fig.5  3D model of FCP.
parameter density ρ (kg/m3) elastic modulus (MPa) Passion’s ratio compressive strength (MPa)
value 2400 3.25×104 0.19 40
Tab.2  Material parameters of concrete
parameter density ρ (kg/m3) elastic modulus (MPa) Passion’s ratio yield strength (MPa) failure strain
value 7800 2.0×105 0.3 40 0.12
Tab.3  Material parameters of reinforcement bar
Fig.6  Failure modes of FCP. (a) 1.0 kg TNT, bottom surface of FCP; (b) 2.0 kg TNT, bottom surface of FCP; (c) 3.0 kg TNT, bottom surface of FCP; (d) 4.0 kg TNT, bottom surface of FCP; (e) 1.0 kg TNT, upper surface of FCP; (f) 2.0 kg TNT, upper surface of FCP; (g) 3.0 kg TNT, upper surface of FCP; (h) 4.0 kg TNT, upper surface of FCP.
no. specimens dimensions (cm) TNT charge (kg) scale distance (cm/g1/3) maximum displacement (cm)
1 FCP 1-1 180×264×20 2.0 4.76 0.615
2 FCP 1-2 180×264×20 2.5 4.42 0.759
3 FCP 1-3 180×264×20 3.0 4.16 0.952
Tab.4  Maximum displacements of FCPs with different explosive charges
Fig.7  Displacement time history curve.
Fig.8  Relationship of peak displacement and weight of TNT charge.
no. specimens dimensions (cm) TNT charge (kg) scale distance (cm/g1/3) maximum displacement (cm)
1 FCP 1-1 180×264×20 2.0 4.76 0.615
2 FCP 2-1 180×264×22 2.0 4.76 0.478
3 FCP 2-2 180×264×25 2.0 4.76 0.332
Tab.5  Maximum displacements of FCPs with different thicknesses
Fig.9  Displacement time history curve.
Fig.10  Relationship of peak displacement and thickness of FCP.
Fig.11  Failure mode of FCP in different thickness. (a) 200 mm, bottom surface; (b) 220 mm, bottom surface; (c) 250 mm, bottom surface; (d) 200 mm, upper surface; (e) 220 mm, upper surface; (f) 250 mm, upper surface.
no. specimens dimensions (cm) RRH (%) scaled distance (cm/g1/3) maximum displacement (cm)
1 FCP 1-1 180×264×20 0.324 4.76 0.615
2 FCP 3-1 180×264×20 0.506 4.76 0.586
3 FCP 3-2 180×264×20 0.728 4.76 0.573
Tab.6  Maximum displacements of FCPs with different horizontal reinforcement ratios
no. specimens dimensions (cm) RRV (%) scale distance (cm/g1/3) maximum displacement (cm)
1 FCP 1-1 180×264×20 0.444 4.76 0.615
2 FCP 3-3 180×264×22 0.769 4.76 0.575
3 FCP 3-4 180×264×25 0.968 4.76 0.565
Tab.7  Maximum displacements of FCPs with different vertical reinforcement ratios
Fig.12  Displacement time history curve.
Fig.13  Relationship between peak displacement and RRH.
Fig.14  Failure mode of FCP in different RRH. (a) 0.324%, bottom surface; (b) 0.506%, bottom surface; (c) 0.728%, bottom surface; (d) 0.324%, upper surface; (e) 0.506%, upper surface; (f) 0.728%, upper surface.
Fig.15  Displacement time history curve.
Fig.16  Relationship between peak displacement and reinforcement ratio in the vertical direction.
Fig.17  Failure mode of FCP in different RRVs. (a) 0.444%, bottom surface; (b) 0.769%, bottom surface; (c) 0.968%, bottom surface; (d) 0.444%, upper surface; (e) 0.769%, upper surface; (f) 0.968%, upper surface.
Fig.18  Rectangular plate of sides a and b with a thickness of h.
Fig.19  Equivalent principle of FCP.
No. thickness of FCP h/mm scale distance Z (cm·g-1/3) maximum displacement (mm) relative error (%)
FE model δ TM w TM and FE models
FCP 1-1 200 4.76 6.149 6.018 2.18%
FCP 1-2 200 4.42 7.591 7.769 2.27%
FCP 1-3 200 4.16 9.519 9.591 0.75%
FCP 2-1 220 4.76 4.782 4.431 7.91%
FCP 2-3 220 4.42 5.771 5.555 3.88%
FCP 2-4 220 4.16 7.352 7.063 4.09%
FCP 2-2 250 4.76 3.316 3.204 3.47%
FCP 2-5 250 4.42 4.004 4.165 3.87%
FCP 2-6 250 4.16 4.858 5.224 7.00%
Tab.8  Comparison of maximum displacements and relative errors
1 C Zhao, Z Zhang, J Wang, B Wang. Numerical and theoretical analysis on the mechanical properties of improved CP-GFRP splice sleeve. Thin-walled Structures, 2019, 137: 487–501
https://doi.org/10.1016/j.tws.2019.01.018
2 Y Qu, X Li, X Kong, W Zhang, X Wang. Numerical simulation on dynamic behavior of reinforced concrete beam with initial cracks subjected to air blast loading. Engineering Structures, 2016, 128: 96–110
https://doi.org/10.1016/j.engstruct.2016.09.032
3 C F Zhao, J Y Chen. Damage mechanism and mode of square reinforced concrete slab subjected to blast loading. Theoretical and Applied Fracture Mechanics, 2013, 63–64: 54–62
https://doi.org/10.1016/j.tafmec.2013.03.006
4 C F Zhao, J Y Chen, Y Wang, S J Lu. Damage mechanism and response of reinforced concrete containment structure under internal blast loading. Theoretical and Applied Fracture Mechanics, 2012, 61: 12–20
https://doi.org/10.1016/j.tafmec.2012.08.002
5 R Hajek, J Fladr, J Pachman, J Stoller, M Foglar. An experimental evaluation of the blast resistance of heterogeneous concrete-based composite bridge decks. Engineering Structures, 2019, 179: 204–210
https://doi.org/10.1016/j.engstruct.2018.10.070
6 Y Zheng, Z Tao. Compressive strength and stiffness of concrete-filled double-tube columns. Thin-walled Structures, 2019, 134: 174–188
https://doi.org/10.1016/j.tws.2018.10.019
7 C Zhao, Q Wang, X Lu, J Wang. Numerical study on dynamic behaviors of NRC slabs in containment dome subjected to close-in blast loading. Thin-walled Structures, 2019, 135: 269–284
https://doi.org/10.1016/j.tws.2018.11.013
8 C Zhao, X Lu, Q Wang, A Gautam, J Wang, Y L Mo. Experimental and numerical investigation of steel-concrete (SC) slabs under contact blast loading. Engineering Structures, 2019, 196: 109337
https://doi.org/10.1016/j.engstruct.2019.109337
9 L Chen, Q Fang, J Fan, Y Zhang, H Hao, J Liu. Responses of masonry infill walls retrofitted with CFRP, steel wire mesh and laminated bars to blast loadings. Advances in Structural Engineering, 2014, 17(6): 817–836
https://doi.org/10.1260/1369-4332.17.6.817
10 M Hanifehzadeh, B Gencturk. An investigation of ballistic response of reinforced and sandwich concrete panels using computational techniques. Frontiers of Structural and Civil Engineering, 2019, 13(5): 1120–1137
https://doi.org/10.1007/s11709-019-0540-8
11 C Zhao, Q Wang, X Lu, X Huang, Y L Mo. Blast resistance of small-scale RCS in experimental test and numerical analysis. Engineering Structures, 2019, 199: 109610
https://doi.org/org/10.1016/j.engstruct. 2019.109610
12 T Rabczuk, T Belytschko. Cracking particles: A simplified meshfree method for arbitrary evolving cracks. International Journal for Numerical Methods in Engineering, 2004, 61(13): 2316–2343
https://doi.org/10.1002/nme.1151
13 T Rabczuk, T Belytschko. A three-dimensional large deformation meshfree method for arbitrary evolving cracks. Computer Methods in Applied Mechanics and Engineering, 2007, 196(29–30): 2777–2799
https://doi.org/10.1016/j.cma.2006.06.020
14 T Rabczuk, S Bordas, G Zi. On three-dimensional modelling of crack growth using partition of unity methods. Computers & Structures, 2010, 88(23–24): 1391–1411
https://doi.org/10.1016/j.compstruc.2008.08.010
15 T Rabczuk, R Gracie, J H Song, T Belytschko. Immersed particle method for fluid-structure interaction. International Journal for Numerical Methods in Engineering, 2010, 81(1): 48–71
16 T Rabczuk, G Zi, S Bordas, H Nguyen-Xuan. A simple and robust three-dimensional cracking-particle method without enrichment. Computer Methods in Applied Mechanics and Engineering, 2010, 199(37–40): 2437–2455
https://doi.org/10.1016/j.cma.2010.03.031
17 L Wu, Y Tian, Y Su, H Chen. Seismic performance of precast composite shear walls reinforced by concrete-filled steel tubes. Engineering Structures, 2018, 162: 72–83
https://doi.org/10.1016/j.engstruct.2018.01.069
18 G Xu, Z Wang, B Wu, O S Bursi, X Tan, Q Yang, L Wen. Seismic performance of precast shear wall with sleeves connection based on experimental and numerical studies. Engineering Structures, 2017, 150: 346–358
https://doi.org/10.1016/j.engstruct.2017.06.026
19 Q Yan, B Sun, X Liu, J Wu. The effect of assembling location on the performance of precast concrete beam under impact load. Advances in Structural Engineering, 2018, 21(8): 1211–1222
https://doi.org/10.1177/1369433217737119
20 W Wang, D Zhang, F Lu, S C Wang, F Tang. Experimental study on scaling the explosion resistance of a one-way square reinforced concrete slab under a close-in blast loading. International Journal of Impact Engineering, 2012, 49: 158–164
https://doi.org/10.1016/j.ijimpeng.2012.03.010
21 Y Wu, D Wang, C T Wu. Three dimensional fragmentation simulation of concrete structures with a nodally regularized meshfree method. Theoretical and Applied Fracture Mechanics, 2014, 72: 89–99
https://doi.org/10.1016/j.tafmec.2014.04.006
22 Y Wu, D Wang, C T Wu, H Zhang. A direct displacement smoothing meshfree particle formulation for impact failure modeling. International Journal of Impact Engineering, 2016, 87: 169–185
https://doi.org/10.1016/j.ijimpeng.2015.03.013
23 X Lin, Y X Zhang, P J. Hazell Modelling the response of reinforced concrete panels under blast loading. Materials & Design (1980–2015), 2014, 56: 620–628
24 R P Glenn, A B Kenneth. Airblast Loading model for DYNA2D and DYNA3D. DTIC Document. 1997
25 W Chen, H Hao, S. Chen Numerical analysis of prestressed reinforced concrete beam subjected to blast loading. Materials & Design (1980–2015), 2015, 65: 662–674
26 J Li, H Hao. Numerical study of concrete spall damage to blast loads. International Journal of Impact Engineering, 2014, 68: 41–55
https://doi.org/10.1016/j.ijimpeng.2014.02.001
27 International Prestressed Concrete Committee. CEB-FIP Model Code 1990: Design Code. Thomas Telford, 1993
28 Standard of China. Atlas of National Building Standard Design. Beijing: China Planning Press, 2015 (in Chinese)
29 W E Baker. Explosions in Air. Austin, TX: University of Texas Press, 1973, 7–15
30 Y Wang, J Y R Liew, S C Lee. Theoretical models for axially restrained steel-concrete-steel sandwich panels under blast loading. International Journal of Impact Engineering, 2015, 76: 221–231
https://doi.org/10.1016/j.ijimpeng.2014.10.005
[1] Reza ASHEGHI, Seyed Abbas HOSSEINI. Prediction of bed load sediments using different artificial neural network models[J]. Front. Struct. Civ. Eng., 2020, 14(2): 374-386.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed