Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

Postal Subscription Code 80-968

2018 Impact Factor: 1.272

Front. Struct. Civ. Eng.    2020, Vol. 14 Issue (6) : 1372-1386    https://doi.org/10.1007/s11709-020-0671-y
RESEARCH ARTICLE
Ranking of design scenarios of TMD for seismically excited structures using TOPSIS
Sadegh ETEDALI()
Department of Civil Engineering, Birjand University of Technology, Birjand 97175-569, Iran
 Download: PDF(2139 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, design scenarios of a tuned mass damper (TMD) for seismically excited structures are ranked. Accordingly, 10 design scenarios in two cases, namely unconstrained and constrained for the maximum TMD, are considered in this study. A free search of the TMD parameters is performed using a particle swarm optimization (PSO) algorithm for optimum tuning of TMD parameters. Furthermore, nine criteria are adopted with respect to functional, operational, and economic views. A technique for order performance by similarity to ideal solution (TOPSIS) is utilized for ranking the adopted design scenarios of TMD. Numerical studies are conducted on a 10-story building equipped with TMD. Simulation results indicate that the minimization of the maximum story displacement is the optimum design scenario of TMD for the seismic-excited structure in the unconstrained case for the maximum TMD stroke. Furthermore, H2 of the displacement vector of the structure exhibited optimum ranking among the adopted design scenarios in the constrained case for the maximum TMD stroke. The findings of this study can be useful and important in the optimum design of TMD parameters with respect to functional, operational, and economic perspectives.

Keywords seismic-excited building      TMD      optimum design      PSO      design scenario      TOPSIS     
Corresponding Author(s): Sadegh ETEDALI   
Just Accepted Date: 30 October 2020   Online First Date: 21 December 2020    Issue Date: 12 January 2021
 Cite this article:   
Sadegh ETEDALI. Ranking of design scenarios of TMD for seismically excited structures using TOPSIS[J]. Front. Struct. Civ. Eng., 2020, 14(6): 1372-1386.
 URL:  
https://academic.hep.com.cn/fsce/EN/10.1007/s11709-020-0671-y
https://academic.hep.com.cn/fsce/EN/Y2020/V14/I6/1372
scenario objective function
A1 minimize: 12π Trace[ GDisp(jω)TGDisp(jω )]dω 12π Trace[ G Disp(j ω)TGDisp(jω )]dω
A2 minimize: 12π Trace[ GDrift(jω) T GDrift( jω)]dω 12π Trace[ GDrift(jω) T GDrift( jω)]dω
A3 minimize: supω σmax?[ GDisp(jω)]*supωσ max?[ G Di sp(jω)]
A4 minimize: supω σmax?[ GDrift(jω)] supωσmax?[ G Dr if t( jω)]
A5 minimize: max?t x¨i(t) max?t x¨¯? (t),?i=1 ,...,N
A6 minimize: max?t imix¨i (t)max?ti mix¨¯i( t),? i=1,...,N
A7 minimize: max? t 0tf (XTKX+ XTMX)d t max?t 0tf (XTKX+XTMX)dt
A8 minimize: max?tx i(t) max?t x¯ i(t ),?i=1,... ,N
A9 minimize: max?tdi( t)max ?t d¯i( t),? i=1,...,N
A10 minimize: max? t 0tf XT Mrx˙ gdtmax?t0tfXTMrxgdt
Tab.1  The design scenarios of TMD for the unconstrained case
criteria definition
C1 (mTMD?) Opt?( mTMD?)max?×100
C2 (cTMD?) Opt?( cTMD?)max?×100
C3 (kTMD?) Opt?( kTMD?)max?×100
C4 AverageForj=1: 44[( 1 max?txi(t) max?tx¯i(t ))×100],i=1, ,N
C5 AverageForj=1: 44[( 1 max?txi(t) max?tx¯i(t ))×100],i=1, ,N
C6 AverageForj=1: 44[( 1 max?tx¨i (t) max?t x¨¯i(t))× 100],i=1,,N
C7 AverageForj=1: 44[( 1 max?ti mix¨ i(t)max?t i mi x¨¯i(t))×100],i=1, ,N
C8 AverageForj=1: 44[( 1 max?t0 tfX ˙TMrx¨g dtmax?t 0t f X˙^T Mr x ¨gdt) ×100],i=1, ,N
C9 AverageForj=1: 44[( 1 max?t0tfX ˙TKX˙+ X˙MX¨dt max?t0tf( X˙^ TKX ˙^+ X˙ ^M X¨^)dt )× 100],i=1,,N
Tab.2  The criteria adopted for utilization in TOPSIS
earthquake no. year name component 1 component 2 PGAmax (g)
1 1994 Northridge NORTHR/MUL009 NORTHR/MUL279 0.52
2 1994 Northridge NORTHR/LOS000 NORTHR/LOS270 0.48
3 1999 Duzce, Turkey DUZCE/BOL000 DUZCE/BOL090 0.82
4 1999 Hector Mine HECTOR/HEC000 HECTOR/HEC090 0.34
5 1979 Imperial Valley IMPVALL/H-DLT262 IMPVALL/H-DLT352 0.35
6 1979 Imperial Valley IMPVALL/H-E11140 IMPVALL/H-E11230 0.38
7 1995 Kobe, Japan KOBE/NIS000 KOBE/NIS090 0.51
8 1995 Kobe, Japan KOBE/SHI000 KOBE/SHI090 0.24
9 1999 Kocaeli, Turkey KOCAELI/DZC180 KOCAELI/DZC270 0.36
10 1999 Kocaeli, Turkey KOCAELI/ARC000 KOCAELI/ARC090 0.22
11 1992 Landers LANDERS/YER270 LANDERS/YER360 0.24
12 1992 Landers LANDERS/CLW-LN LANDERS/CLW-TR 0.42
13 1989 Loma Prieta LOMAP/CAP000 LOMAP/CAP090 0.53
14 1989 Loma Prieta LOMAP/G03000 LOMAP/G03090 0.56
15 1990 Manjil, Iran MANJIL/ABBAR–L MANJIL/ABBAR–T 0.51
16 1987 Superstition Hills SUPERST/B-ICC000 SUPERST/B-ICC090 0.36
17 1987 Superstition Hills SUPERST/B-POE270 SUPERST/B-POE360 0.45
18 1992 Cape Mendocino CAPEMEND/RIO270 CAPEMEND/RIO360 0.55
19 1999 Chi-Chi, Taiwan, China CHICHI/CHY101-E CHICHI/CHY101-N 0.44
20 1999 Chi-Chi, Taiwan, China CHICHI/TCU045-E CHICHI/TCU045-N 0.51
21 1971 San Fernando SFERN/PEL090 SFERN/PEL180 0.21
22 1076 Friuli, Italy FRIULI/A-TMZ000 FRIULI/A-TMZ270 0.35
Tab.3  The detailed information of 44 far-field ground records [47]
Fig.1  The convergence histories of the PSO for different alternative design scenarios in the unconstrained case for different design scenarios. (a) Scenario A1; (b) scenario A2; (c) scenario A3; (d) scenario A4; (e) scenario A5; (f) scenario A6; (g) scenario A7; (h) scenario A8; (i) scenario A9; (j) scenario A10.
Fig.2  The convergence histories of the PSO for different alternative design scenarios in the constrained case for different design scenarios. (a) Scenario A1; (b) scenario A2; (c) scenario A3; (d) scenario A4; (e) scenario A5; (f) scenario A6; (g) scenario A7; (h) scenario A8; (i) scenario A9; (j) scenario A10.
Fig.3  The cost function for different design scenarios of the TMD parameters.
Fig.4  The optimum damping coefficient of the TMD for different design scenarios.
Fig.5  The optimum stiffness coefficient of the TMD for different design scenarios.
Fig.6  The ranking of the design scenarios of TMD parameters for the unconstrained cases.
Fig.7  The ranking of the design scenarios of TMD parameters for the constrained cases.
scenario C1 C2 C3 C4 C5 C6 C7 C8 C9
A1 100 15.082 75.016 14.127 14.704 9.915 10.137 9.438 19.256
A2 100 15.209 74.961 14.133 14.714 9.927 10.152 9.466 19.317
A3 100 19.017 74.367 14.212 14.969 10.302 10.541 9.846 20.872
A4 100 19.295 74.399 14.213 14.981 10.330 10.566 9.836 20.949
A5 100 7.092 100.000 9.646 11.496 10.697 10.448 1.300 19.629
A6 100 12.066 89.969 12.916 14.749 11.005 11.028 5.856 20.819
A7 100 11.557 96.511 11.803 13.951 11.574 11.457 4.069 21.695
A8 100 5.763 64.820 9.244 9.338 5.581 5.757 7.129 8.954
A9 100 7.696 100.000 9.987 11.919 10.892 10.662 1.661 20.089
A10 100 3.443 93.299 7.332 8.007 8.141 7.446 3.707 14.428
A11 100 11.515 75.000 13.472 13.755 9.054 9.275 8.536 16.832
A12 100 27.179 82.539 13.592 15.262 11.197 11.368 8.415 22.987
A13 100 14.460 71.732 14.077 14.270 9.474 9.654 9.488 18.452
Tab.4  The decision matrix for the unconstrained case
scenario C1 C2 C3 C4 C5 C6 C7 C8 C9
A1 100 15.132 75.013 14.130 14.710 9.921 10.145 9.448 19.283
A2 100 15.243 74.966 14.134 14.719 9.931 10.158 9.472 19.336
A3 100 19.266 74.391 14.213 14.980 10.327 10.563 9.838 20.941
A4 100 19.169 74.387 14.213 14.977 10.318 10.555 9.841 20.914
A5 100 21.641 85.075 13.762 15.631 11.259 11.488 8.316 22.688
A6 100 21.678 86.163 13.690 15.644 11.335 11.549 8.090 22.799
A7 100 21.376 80.526 14.060 15.393 10.928 11.179 9.089 22.147
A8 100 21.493 82.421 13.935 15.496 11.071 11.318 8.788 22.400
A9 100 21.541 83.195 13.885 15.537 11.126 11.370 8.670 22.482
A10 100 21.262 95.774 12.857 15.344 11.788 11.924 6.132 23.488
Tab.5  The decision matrix for the constrained case
criteria C1 C2 C3 C4 C5 C6 C7 C8 C9
unconstrained 0.000 0.352 0.029 0.057 0.048 0.041 0.042 0.369 0.062
constrained 0.000 0.330 0.129 0.016 0.010 0.064 0.058 0.308 0.084
Tab.6  Criteria weighting by Entropy method
scenario unconstrained constrained
di+ di CCi+ di+ di CCi+
A1 0.119 0.142 0.546 0.005 0.056 0.916
A2 0.120 0.141 0.541 0.005 0.055 0.915
A3 0.159 0.112 0.414 0.031 0.034 0.523
A4 0.161 0.110 0.405 0.031 0.035 0.531
A5 0.083 0.205 0.712 0.051 0.017 0.249
A6 0.094 0.159 0.628 0.051 0.015 0.228
A7 0.097 0.161 0.625 0.048 0.023 0.324
A8 0.036 0.224 0.862 0.049 0.020 0.294
A9 0.083 0.199 0.705 0.049 0.019 0.282
A10 0.055 0.243 0.816 0.055 0.005 0.091
A11 0.083 0.172 0.674
A12 0.242 0.063 0.207
A13 0.112 0.148 0.569
Tab.7  The distance from ideal and nadir ideal solution and the closeness coefficient of each alternative for both unconstrained and constrained cases
Fig.8  Time histories of the top floor displacement during the Northridge earthquake.
Fig.9  Time histories of the first floor drift during the Northridge earthquake.
Fig.10  Time histories of the top floor acceleration during the Northridge earthquake.
Fig.11  Time histories of the base shear during the Northridge earthquake.
1 J P Den Hartog. Mechanical Vibrations. New York: Courier Corporation, 1985
2 A G Thompson. Optimum tuning and damping of a dynamic vibration absorber applied to a force excited and damped primary system. Journal of Sound and Vibration, 1981, 77(3): 403–415
https://doi.org/10.1016/S0022-460X(81)80176-9
3 G B Warburton. Optimum absorber parameters for various combinations of response and excitation parameters. Earthquake Engineering & Structural Dynamics, 1982, 10(3): 381–401
https://doi.org/10.1002/eqe.4290100304
4 S V Bakre, R S Jangid. Optimum parameters of tuned mass damper for damped main system. Structural Control and Health Monitoring, 2007, 14(3): 448–470
https://doi.org/10.1002/stc.166
5 A Y T Leung, H Zhang. Particle swarm optimization of tuned mass dampers. Engineering Structures, 2009, 31(3): 715–728
https://doi.org/10.1016/j.engstruct.2008.11.017
6 J Salvi, E Rizzi. A numerical approach towards best tuning of Tuned Mass Dampers. In: The 25th International Conference on Noise and Vibration Engineering. Leuven, 2010, 17–19: 2419–2434
7 S Etedali, N Mollayi. Cuckoo search-based least squares support vector machine models for optimum tuning of tuned mass dampers. International Journal of Structural Stability and Dynamics, 2018, 18(2): 1850028
https://doi.org/10.1142/S0219455418500281
8 K Narmashiri, S M T Hosseini-Tabatabai. An energy dissipation device for earthquake/wind resistant buildings. LAP Lambert Academic Publishing, 2013
9 F Giuliano. Note on the paper “Optimum parameters of tuned liquid column-gas damper for mitigation of seismic-induced vibrations of offshore jacket platforms” by Seyed Amin Mousavi, Khosrow Bargi, and Seyed Mehdi Zahrai. Structural Control and Health Monitoring, 2013, 20(5): 852
https://doi.org/10.1002/stc.1499
10 A Farshidianfar, S Soheili. Ant colony optimization of tuned mass dampers for earthquake oscillations of high-rise structures including soil-structure interaction. Soil Dynamics and Earthquake Engineering, 2013, 51: 14–22
https://doi.org/10.1016/j.soildyn.2013.04.002
11 A Kaveh, S Mohammadi, O K Hosseini, A Keyhani, V R Kalatjari. Optimum parameters of tuned mass dampers for seismic applications using charged system search. Civil Engineering (Shiraz), 2015, 39(C1): 21–40
12 H Y Zhang, L J Zhang. Tuned mass damper system of high-rise intake towers optimized by improved harmony search algorithm. Engineering Structures, 2017, 138: 270–282
https://doi.org/10.1016/j.engstruct.2017.02.011
13 S M Nigdeli, G Bekdaş, X S Yang. Optimum tuning of mass dampers by using a hybrid method using harmony search and flower pollination algorithm. In: International Conference on Harmony Search Algorithm. Singapore: Springer, 2017, 222–231
14 G Bekdaş, S M Nigdeli, X S Yang. A novel bat algorithm based optimum tuning of mass dampers for improving the seismic safety of structures. Engineering Structures, 2018, 159: 89–98
https://doi.org/10.1016/j.engstruct.2017.12.037
15 M Yucel, G Bekdaş, S M Nigdeli, S Sevgen. Estimation of optimum tuned mass damper parameters via machine learning. Journal of Building Engineering, 2019, 26: 100847
https://doi.org/10.1016/j.jobe.2019.100847
16 S M Nigdeli, G Bekdas. Optimum tuned mass damper approaches for adjacent structures. Earthquakes and Structures, 2014, 7(6): 1071–1091
https://doi.org/10.12989/eas.2014.7.6.1071
17 S M Nigdeli, G Bekdas. Optimum design of multiple positioned tuned mass dampers for structures constrained with axial force capacity. Structural Design of Tall and Special Buildings, 2019, 28(5): e1593
https://doi.org/10.1002/tal.1593
18 Z Lu, K Li, Y Ouyang, J Shan. Performance-based optimal design of tuned impact damper for seismically excited nonlinear building. Engineering Structures, 2018, 160: 314–327
https://doi.org/10.1016/j.engstruct.2018.01.042
19 G Bekdaş, S M Nigdeli. Metaheuristic based optimization of tuned mass dampers under earthquake excitation by considering soil-structure interaction. Soil Dynamics and Earthquake Engineering, 2017, 92: 443–461
https://doi.org/10.1016/j.soildyn.2016.10.019
20 R N Jabary, S P G Madabhushi. Structure-soil-structure interaction effects on structures retrofitted with tuned mass dampers. Soil Dynamics and Earthquake Engineering, 2017, 100: 301–315
https://doi.org/10.1016/j.soildyn.2017.05.017
21 S Etedali, M Seifi, M Akbari. A numerical study on optimal FTMD parameters considering soil-structure interaction effects. Geomechanics and Engineering, 2018, 16(5): 527–538
22 J Salvi, F Pioldi, E Rizzi. Optimum tuned mass dampers under seismic soil-structure interaction. Soil Dynamics and Earthquake Engineering, 2018, 114: 576–597
https://doi.org/10.1016/j.soildyn.2018.07.014
23 M Shahi, M R Sohrabi, S Etedali. Seismic control of high-rise buildings equipped with ATMD including soil-structure interaction effects. Journal of Earthquake and Tsunami, 2018, 12(3): 1850010
https://doi.org/10.1142/S1793431118500100
24 E Nazarimofrad, S M Zahrai. Fuzzy control of asymmetric plan buildings with active tuned mass damper considering soil-structure interaction. Soil Dynamics and Earthquake Engineering, 2018, 115: 838–852
https://doi.org/10.1016/j.soildyn.2017.09.020
25 S Etedali, M Akbari, M Seifi. MOCS-based optimum design of TMD and FTMD for tall buildings under near-field earthquakes including SSI effects. Soil Dynamics and Earthquake Engineering, 2019, 119: 36–50
https://doi.org/10.1016/j.soildyn.2018.12.027
26 S Etedali. A new modified independent modal space control approach toward control of seismic-excited structures. Bulletin of Earthquake Engineering, 2017, 15(10): 4215–4243
https://doi.org/10.1007/s10518-017-0134-6
27 S Etedali, H Rakhshani. Optimum design of tuned mass dampers using multi-objective cuckoo search for buildings under seismic excitations. Alexandria Engineering Journal, 2018, 57(4): 3205–3218
28 F Sadek, B Mohraz, A W Taylor, R M Chung. A method of estimating the parameters of tuned mass dampers for seismic applications. Earthquake Engineering & Structural Dynamics, 1997, 26(6): 617–635
https://doi.org/10.1002/(SICI)1096-9845(199706)26:6<617::AID-EQE664>3.0.CO;2-Z
29 M N Hadi, Y Arfiadi. Optimum design of absorber for MDOF structures. Journal of Structural Engineering, 1998, 124(11): 1272–1280
https://doi.org/10.1061/(ASCE)0733-9445(1998)124:11(1272)
30 C L Lee, Y T Chen, L L Chung, Y P Wang. Optimal design theories and applications of tuned mass dampers. Engineering Structures, 2006, 28(1): 43–53
https://doi.org/10.1016/j.engstruct.2005.06.023
31 S M Nigdeli, G Bekdaş. Optimum tuned mass damper design in frequency domain for structures. KSCE Journal of Civil Engineering, 2017, 21(3): 912–922
32 G Bekdaş, A E Kayabekir, S M Nigdeli, Y C Toklu. Transfer function amplitude minimization for structures with tuned mass dampers considering soil-structure interaction. Soil Dynamics and Earthquake Engineering, 2019, 116: 552–562
https://doi.org/10.1016/j.soildyn.2018.10.035
33 A H Heidari, S Etedali, M R Javaheri-Tafti. A hybrid LQR-PID control design for seismic control of buildings equipped with ATMD. Frontiers of Structural and Civil Engineering, 2018, 12(1): 44–57
https://doi.org/10.1007/s11709-016-0382-6
34 E K Zavadskas, S Suūinskas, A Daniūnas, Z Turskis, H Sivilevičius. Multiple criteria selection of pile-column construction technology. Journal of Civil Engineering and Management, 2012, 18(6): 834–842
https://doi.org/10.3846/13923730.2012.744537
35 N Caterino, I Iervolino, G Manfredi, E Cosenza. Multi-criteria decision making for seismic retrofitting of RC structures. Journal of Earthquake Engineering, 2008, 12(4): 555–583
https://doi.org/10.1080/13632460701572872
36 N Caterino, I Iervolino, G Manfredi, E Cosenza. Comparative analysis of multi-criteria decision-making methods for seismic structural retrofitting. Computer-Aided Civil and Infrastructure Engineering, 2009, 24(6): 432–445
https://doi.org/10.1111/j.1467-8667.2009.00599.x
37 A M Billah, M S Alam. Performance-based prioritisation for seismic retrofitting of reinforced concrete bridge bent. Structure and Infrastructure Engineering, 2014, 10(8): 929–949
https://doi.org/10.1080/15732479.2013.772641
38 A Formisano, F M Mazzolani. On the selection by MCDM methods of the optimal system for seismic retrofitting and vertical addition of existing buildings. Computers & Structures, 2015, 159: 1–13
https://doi.org/10.1016/j.compstruc.2015.06.016
39 G Terracciano, G Di Lorenzo, A Formisano, R Landolfo. Cold-formed thin-walled steel structures as vertical addition and energetic retrofitting systems of existing masonry buildings. European Journal of Environmental and Civil Engineering, 2015, 19(7): 850–866
https://doi.org/10.1080/19648189.2014.974832
40 J Kennedy. Particle swarm optimization. Encyclopedia of Machine Learning. New York: Springer, 2010, 760–766
41 Y Shi. Particle swarm optimization: developments, applications and resources. In: Proceedings of the 2001 Congress on Evolutionary Computation. Seoul, 2001, 1: 81–86
42 Y Shi, R Eberhart. A modified particle swarm optimizer. In: International Conference on Evolutionary Computation Proceedings. IEEE, 1998, 69–73
43 C L Hwang, K Yoon. Multiple Attribute Decision Making. New York: Springer, 2012
44 O A Sianaki. Intelligent decision support system for energy management in demand response programs and residential and industrial sectors of the smart grid. Dissertation for the Doctoral Degree. Perth: Curtin University, 2015
45 C E Shannon. A mathematical theory of communication. Bell System Technical Journal, 1948, 27(3): 379–423
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
46 M Behzadian, S Khanmohammadi Otaghsara, M Yazdani, J Ignatius. A state-of the-art survey of TOPSIS applications. Expert Systems with Applications, 2012, 39(17): 13051–13069
https://doi.org/10.1016/j.eswa.2012.05.056
47 FEMA P-695. Quantification of Building Seismic Performance Factors. Washington D.C.: Federal Emergency Management Agency, 2009
48 B Keshtegar, S Etedali. Nonlinear mathematical modeling and optimum design of tuned mass dampers using adaptive dynamic harmony search algorithm. Structural Control and Health Monitoring, 2018, 25(7): e2163
https://doi.org/10.1002/stc.2163
[1] Babak DIZANGIAN, Mohammad Reza GHASEMI. Border-search and jump reduction method for size optimization of spatial truss structures[J]. Front. Struct. Civ. Eng., 2019, 13(1): 123-134.
[2] Nazim Abdul NARIMAN. Control efficiency optimization and Sobol’s sensitivity indices of MTMDs design parameters for buffeting and flutter vibrations in a cable stayed bridge[J]. Front. Struct. Civ. Eng., 2017, 11(1): 66-89.
[3] Yimin SHI, Ziyang ZHU, Yeming FAN. New form of geodetic coordinate system taking two length quantity as coordinate parameters[J]. Front Arch Civil Eng Chin, 2009, 3(1): 105-110.
[4] SHI Yimin, WANG Lihua, LUO Yan. Coordinate system applied to magnetic suspension project between Shanghai and Hangzhou[J]. Front. Struct. Civ. Eng., 2008, 2(3): 288-292.
[5] GU Ming. Control of wind-induced vibration of long-span bridges and tall buildings[J]. Front. Struct. Civ. Eng., 2007, 1(1): 51-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed