Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

Postal Subscription Code 80-968

2018 Impact Factor: 1.272

Front. Struct. Civ. Eng.    2021, Vol. 15 Issue (1) : 80-98    https://doi.org/10.1007/s11709-021-0682-3
TRANSDISCIPLINARY INSIGHT
Evaluation of liquefaction-induced lateral displacement using Bayesian belief networks
Mahmood AHMAD1,2, Xiao-Wei TANG1, Jiang-Nan QIU3(), Feezan AHMAD4
1. State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China
2. Department of Civil Engineering, University of Engineering and Technology Peshawar (Bannu Campus), Bannu 28100, Pakistan
3. Faculty of Management and Economics, Dalian University of Technology, Dalian 116024, China
4. Department of Civil Engineering, Abasyn University, Peshawar 25000, Pakistan
 Download: PDF(1198 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Liquefaction-induced lateral displacement is responsible for considerable damage to engineered structures during major earthquakes. Therefore, an accurate estimation of lateral displacement in liquefaction-prone regions is an essential task for geotechnical experts for sustainable development. This paper presents a novel probabilistic framework for evaluating liquefaction-induced lateral displacement using the Bayesian belief network (BBN) approach based on an interpretive structural modeling technique. The BBN models are trained and tested using a wide-range case-history records database. The two BBN models are proposed to predict lateral displacements for free-face and sloping ground conditions. The predictive performance results of the proposed BBN models are compared with those of frequently used multiple linear regression and genetic programming models. The results reveal that the BBN models are able to learn complex relationships between lateral displacement and its influencing factors as cause–effect relationships, with reasonable precision. This study also presents a sensitivity analysis to evaluate the impacts of input factors on the lateral displacement.

Keywords Bayesian belief network      seismically induced soil liquefaction      interpretive structural modeling      lateral displacement     
Corresponding Author(s): Jiang-Nan QIU   
Just Accepted Date: 07 February 2021   Online First Date: 24 March 2021    Issue Date: 12 April 2021
 Cite this article:   
Mahmood AHMAD,Xiao-Wei TANG,Jiang-Nan QIU, et al. Evaluation of liquefaction-induced lateral displacement using Bayesian belief networks[J]. Front. Struct. Civ. Eng., 2021, 15(1): 80-98.
 URL:  
https://academic.hep.com.cn/fsce/EN/10.1007/s11709-021-0682-3
https://academic.hep.com.cn/fsce/EN/Y2021/V15/I1/80
method technique reference
simplified analytical methods sliding block model Newmark [3], Olson and Johnson [4], Yegian et al. [5], Baziar [6],
minimum potential energy model Towhata et al. [7]
shear strength loss and strain re-hardening model Byrne [8]
viscous model Hamada et al. [9]
numerical
methods
finite element method and finite difference techniques Soroush and Koohi [10], Finn et al. [11]
soft computing methods neural networks Baziar and Ghorbani [12], Wang and Rahman [13]
genetic programming (GP) Javadi et al. [14]
adaptive neuro-fuzzy inference system Javdanian [15]
empirical methods regression analysis Jafarian and Nasri [16], Youd et al. [17], Youd and Perkins [18], Raunch [19], Bardet et al. [20], Hamada et al. [21]
Tab.1  Methods for lateral displacement evaluation
Fig.1  Working procedure for BBN-based liquefaction-induced lateral displacement evaluation.
Fig.2  Topography-related descriptive variables.
earthquake year no. of records no. of free face records no. of ground slope records fault type input and output parameters
W (%) S (%) R (km) PGA (g) M D5015 (mm) T15 (m) F15 (%) DH (m)
San Francisco, California, United States 1906 ??2 ??2 ??0 SS 17.76–22.02 NA 24–27 0.24–0.26 7.9 0.16–0.25 1.50–7.20 23–30 0.92–1.84
Anchorage, Alaska, United States 1964 ??7 ??4 ??3 R 7.03–48.98 0.05–0.10 35–100 0.20–0.24 9.2 0.07–1.47 3.10–19.70 12.0–66.0 0.31–2.45
Niigata, Japan 1964 299 139 160 R 1.64–55.68 0.11–1.09 21 0.32 7.5 0.10–0.59 0.50–16.70 2.0–32.0 0.42–10.16
San Fernando, California, United States 1971 ?23 ?18 ??5 RO 4.70–20.47 1.23 0.2–0.5 0.68–0.70 6.4 0.06–0.08 1.00–6.50 47–59 0.47–3.26
Imperial Valley, California, United States 1979 ?31 ?29 ??2 SS 3.08–10.66 0.56 2.0–6.0 0.36–0.49 6.5–6.6 0.04–0.12 0.20–4.00 15–70 0.01–4.25
Nihonkai-Chubu, Japan 1983 ?72 ?0 ?72 R NA 0.20–5.90 27 0.29 7.7 0.35 1.00–3.70 0–4 0.38–3.11
Borah Peak, Idaho, United States 1983 ??4 ?0 ??4 N NA 11 2 0.51 6.9 2.30–12.00 0.01–3.00 16–29 0.01–1.01
Superstition Hills, California United States 1987 ??6 ?6 ??0 SS 7.50–41.38 NA 23 0.15 6.6 0.07–0.09 1.70–3.60 22–44 0.01–0.24
Loma Prieta, California, United States 1989 ??2 ?2 ??0 RO 29.73–33.54 NA 27.2 0.2 7 0.60–0.80 2.70–3.40 1.0–2.0 0.26–0.29
Hyogo-Ken Nanbu (Kobe), Japan 1995 ?19 ?19 ??0 SS 5.16–56.80 NA 5.5–8.0 0.34–0.39 6.8 0.47–1.98 12.50–16.0 10–14.60 0.34–2.83
Chi-Chi, Taiwan China 1999 ?26 ?26 ??0 R 5.70–57.70 NA 5.00 0.67 7.6 0.10–0.18 0.45–1.80 13.00–48.50 0–2.96
Koacaeli, Turkey 1999 ??2 ??2 ??0 SS 6–8 NA 0.50 0.57 7.4 0.55–7.70 1.20–1.70 11.00–31.00 0.10–0.90
Tab.2  Summary of case studies in database and their respective parameter statistics
category factor (FRi) factors of liquefaction-induced lateral displacement number of grade explanation range
seismic parameter FR1 earthquake magnitude, M 4 super
big
strong
medium
8≤M
7≤M<8
6≤M<7
4.5≤M<6
FR2 closest horizontal distance to seismic energy source, R (km) 4 super
far
medium
near
100<R
50<R≤100
10<R≤50
0<R≤10
FR3 peak ground acceleration (PGA), amax (g) 4 super
high
medium
low
0.40≤amax
0.30≤amax<0.40
0.15≤amax<0.30
0≤amax<0.15
geotechnical parameter FR4 average fines content (particles<0.075 mm) in T15, F15 (%) 3 many
medium
less
50<F15
30<F15≤50
0≤F15≤30
FR5 average mean grain size in T15, D5015 (mm) 4 super
big
medium
small
2≤D5015
0.425≤D5015<2
0.075≤D5015<0.425
0<D5015<0.075
FR6 cumulative thickness of saturated layers with corrected SPT number (N1)60<15, T15 (m) 3 thick
medium
thin
10≤T15
5≤T15<10
0<T15<5
topographic parameters FR7 free-face ratio, W (%) 3 high
medium
low
20<W
10≤W≤20
1<W<10
slope of surface topography, S (%) 2 steep
gentle
6<S
S≤6
output FR8 lateral displacement (LD), DH (m) 4 none
small
medium
large
0
0<DH≤0.1
0.1<DH≤0.3
0.3<DH
Tab.3  Grading standards for liquefaction-induced lateral displacement factors
category factors of liquefaction-induced lateral displacement data set minimum maximum mean standard deviation
seismic parameter earthquake magnitude, M T 6.4 9.2 7.26 0.51
T* 6.4 9.2 7.3 0.49
closest horizontal distance to seismic energy source, R (km) T 0.5 100 15.1 11.61
T* 0.5 60 16.1 10.61
peak ground acceleration (PGA), amax (g) T 0.15 0.68 0.4 0.15
T* 0.15 0.68 0.38 0.13
geotechnical parameter average fines content (particles<0.075 mm) in T15, F15 (%) T 1 70 18.83 13.71
T* 2 66 13.96 12.14
average mean grain size in T15, D5015 (mm) T 0.04 7.7 0.36 0.65
T* 0.07 1.98 0.39 0.42
cumulative thickness of saturated layers with corrected SPT number (N1)60<15, T15 (m) T 0.2 16.7 7.8 5.16
T* 0.5 16 7.98 5.2
topographic parameters free-face ratio, W (%) T 1.64 57.7 11.69 9.96
T* 2.11 48.98 10.08 9.77
output lateral displacement (LD), DH (m) T 0 10.16 2.45 2.26
T* 0 8.39 2.17 2.21
Tab.4  Parameter statistics used in development of free-face model
category factors of liquefaction-induced lateral displacement data set minimum maximum mean standard deviation
seismic parameter earthquake magnitude, M T 6.4 9.2 7.53 0.29
T* 6.6 9.2 7.59 0.29
closest horizontal distance to seismic energy source, R (km) T 0.2 100 22.16 7.82
T* 6 100 24.39 11.65
peak ground acceleration (PGA), amax (g) T 0.2 0.7 0.32 0.07
T* 0.2 0.36 0.3 0.02
geotechnical parameter average fines content (particles<0.075 mm) in T15, F15 (%) T 0 59 9.03 10.62
T* 0 68 7.69 10.33
average mean grain size in T15, D5015 (mm) T 0.06 12 0.46 1.11
T* 0.07 0.65 0.34 0.08
cumulative thickness of saturated layers with corrected SPT number (N1)60<15, T15 (m) T 0.01 19.7 6.69 3.8
T* 0.07 13.1 6.35 3.75
topographic parameters slope of surface topography, S (%) T 0.1 11 0.96 1.61
T* 0.05 5.9 0.99 1.27
output lateral displacement (LD), DH (m) T 0.01 5.36 1.91 0.95
T* 0.01 3.5 1.87 0.89
Tab.5  Parameter statistics used in development of sloping ground model
FR1 FR2 FR3 FR4 FR5 FR6 FR7 FR8 factor (FRi)
O V O O O O V FR1
V O O O O V FR2
O O O O V FR3
V O O V FR4
O O V FR5
O V FR6
V FR7
FR8
Tab.6  SSIM for liquefaction-induced lateral displacement factors
FR1 FR2 FR3 FR4 FR5 FR6 FR7 FR8 factor (FRi)
1 0 1 0 0 0 0 1 FR1
0 1 1 0 0 0 0 1 FR2
0 0 1 0 0 0 0 1 FR3
0 0 0 1 1 0 0 1 FR4
0 0 0 0 1 0 0 1 FR5
0 0 0 0 0 1 0 1 FR6
0 0 0 0 0 0 1 1 FR7
0 0 0 0 0 0 0 1 FR8
Tab.7  IRM for liquefaction-induced lateral displacement factors
FRi FR1 FR2 FR3 FR4 FR5 FR6 FR7 FR8 driving power
FR1 1 0 1 0 0 0 0 1 3
FR2 0 1 1 0 0 0 0 1 3
FR3 0 0 1 0 0 0 0 1 2
FR4 0 0 0 1 1 0 0 1 3
FR5 0 0 0 0 1 0 0 1 2
FR6 0 0 0 0 0 1 0 1 2
FR7 0 0 0 0 0 0 1 1 2
FR8 0 0 0 0 0 0 0 1 1
dependence power 1 1 3 1 2 1 1 8 18/18
Tab.8  FRM for liquefaction-induced lateral displacement factors
iteration factor (FRi) reachability set R(FRi) antecedent set A(FRi) intersection set R(FRi) ∩ A(FRi) level (Li)
1 1 1,3,8 1 1
2 2,3,8 2 2
3 3,8 1,2,3 3
4 4,5,8 4 4
5 5,8 4,5 5
6 6,8 6 6
7 7,8 7 7
8 8 1,2,3,4,5,6,7,8 8 L1
2 1 1,3 1 1
2 2,3 2 2
3 3 1,2,3 3 L2
4 4,5 4 4
5 5 4,5 5 L2
6 6 6 6 L2
7 7 7 7 L2
3 1 1 1 1 L3
2 2 2 2 L3
4 4 4 4 L3
Tab.9  Level partitions by iteration
Fig.3  Interpretive structural modeling of LD for (a) free-face and (b) sloping ground conditions.
Fig.4  Graphical result presentation of BBN-based LD models for (a) free-face and (b) sloping ground conditions.
predicted actual total UA (%)
1 2 m
1 r11 r21 r1m r1+ (r11/r1+ ) × 100%
2 r21 r22 r2m r2+ (r22/r2+ ) × 100%
m rm1 rm2 rmm rm+ (rmm/rm + ) × 100%
total r+1 r+1 r+m
PA (%) (r11/r+1) × 100% (r22/r+2) × 100% (rmm/r+m) × 100%
Tab.10  Confusion matrix
kappa statistic interpretation
0.81–1.00 almost perfect
0.61–0.80 substantial
0.41–0.60 moderate
0.21–0.40 fair
0.00–0.20 slight
- 1.00–0.00 poor
Tab.11  Strength agreement measure related to kappa statistic
predicted observed total UA (%)
none small medium large
none 0 0 0 0 0
small 0 3 0 0 3 100
medium 0 0 4 1 5 80
large 3 0 0 187 190 98.421
total 3 3 4 188 198
PA (%) 0 100 100 99.5 OA= 97.98% kappa= 0.771
Tab.12  Confusion matrix and performance measures of BBN–W model based on training data set of lateral displacement for free-face condition
predicted observed total UA (%)
none small medium large
none 0 0 0 0 0
small 0 1 0 0 1 100
medium 0 0 0 0 0
large 0 1 0 195 196 99.49
total 0 2 0 195 197
PA (%) 50 100 OA= 99.492% kappa= 0.664
Tab.13  Confusion matrix and performance measures of BBN–S model based on training data set of lateral displacement for sloping ground condition
predicted observed total UA (%)
none small medium large
BBN–W model
none 0 1 0 1 2 0
small 0 0 0 0 0 -
medium 0 0 3 0 3 100
large 1 1 3 39 44 88.636
total 1 2 6 40 49
PA (%) 0 0 50 97.5 OA= 85.714% kappa= 0.448
Javadi et al. [14]–GP model
none 0 0 0 0 0 -
small 0 0 0 0 0 -
medium 0 0 1 0 1 100
large 1 2 5 40 48 83.33
total 1 2 6 40 49
PA (%) 0 0 16.67 100 OA= 83.673% kappa= 0.175
Bardet et al. [20]–MLR model
none 0 0 0 0 0 -
small 0 0 1 2 3 0
medium 0 0 0 2 2 0
large 1 2 5 36 44 81.8181
total 1 2 6 40 49
PA (%) 0 0 0 90 OA= 73.469% kappa= - 0.022
Jafarian and Nasri [16]–MLR model
none 0 0 0 0 0 -
small 0 0 1 0 1 0
medium 0 0 1 0 1 100
large 1 2 4 40 47 85.106
total 1 2 6 40 49
PA (%) 0 0 16.67 100 OA= 83.673% kappa= 0.236
Tab.14  Confusion matrices and performance measures based on testing data set of lateral displacement for free-face condition
predicted observed total UA (%)
none small medium large
BBN–S model
none 0 0 0 0 0 -
small 0 1 0 0 1 100
medium 0 0 0 0 0 -
large 0 0 0 48 48 100
total 0 1 0 48 49
PA (%) - 100 - 100 OA= 100% kappa= 1.0
Javadi et al. [14]–GP model
none 0 1 0 0 1 0
small 0 0 0 0 0 -
medium 0 0 0 1 1 0
large 0 0 0 47 47 100
total 0 1 0 48 49
PA (%) - 0 - 97.92 OA= 95.918% kappa= 0.324
Bardet et al. [20]–MLR model
none 0 1 0 0 1 0
small 0 0 0 0 0 -
medium 0 0 0 1 1 0
large 0 0 0 47 47 100
total 0 1 0 48 49
PA (%) - 0 - 97.92 OA= 95.918% kappa= 0.324
Jafarian and Nasri [16]–MLR model
none 0 0 0 0 0 -
small 0 1 0 0 1 100
medium 0 0 0 0 0 -
large 0 0 0 48 48 100
total 0 1 0 48 49
PA (%) - 100 - 100 OA= 100% kappa= 1.0
Tab.15  Confusion matrices and performance measures based on testing data set of lateral displacement for sloping ground condition
node BBN–W BBN–S
mutual variance of mutual variance of
info beliefs info beliefs
lateral displacement 1.74898 0.4540909 1.42415 0.3294491
peak ground acceleration 0.07718 0.0129344 0.12110 0.0209899
D5015 0.02282 0.0032952 0.05334 0.0070218
earthquake magnitude, M 0.01737 0.0031323 0.01358 0.0023004
free-face ratio, W 0.01363 0.0025745 - -
R 0.00494 0.0009073 0.01185 0.0020273
F15 0.00103 0.0001581 0.01884 0.0024999
T15 0.00097 0.0001781 0.00557 0.0012092
slope of surface topography, S - - 0.01413 0.0015986
Tab.16  Sensitivity analysis of “lateral displacement” using proposed BBN models
  Fig. A-1 Graphical result of lateral displacement prediction of single sample when evidence states are known in proposed BBN models for (a) free-face and (b) sloping ground conditions.
1 M Rezania, A Faramarzi, A A Javadi. An evolutionary based approach for assessment of earthquake-induced soil liquefaction and lateral displacement. Engineering Applications of Artificial Intelligence, 2011, 24(1): 142–153
https://doi.org/10.1016/j.engappai.2010.09.010
2 W M K Al Bawwab. Probabilistic assessment of liquefaction-induced lateral ground deformations. Dissertation for the Doctoral Degree. Ankara: Middle East Technical University, 2005
3 N M Newmark. Effects of earthquakes on dams and embankments. Geotechnique, 1965, 15(2): 139–160
https://doi.org/10.1680/geot.1965.15.2.139
4 S M Olson, C I Johnson. Analyzing liquefaction-induced lateral spreads using strength ratios. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(8): 1035–1049
https://doi.org/10.1061/(ASCE)1090-0241(2008)134:8(1035)
5 M Yegian, E Marciano, V G Ghahraman. Earthquake-induced permanent deformations: Probabilistic approach. Journal of Geotechnical Engineering, 1991, 117(1): 35–50
https://doi.org/10.1061/(ASCE)0733-9410(1991)117:1(35)
6 M H. BaziarEngineering evaluation of permanent ground deformations due to seismically induced liquefaction. Dissertation for the Doctoral Degree. New York: Rensselaer Polytechnic Institute, 1991
7 I Towhata, Y Sasaki, K I Tokida, H Matsumoto, Y Tamar, K Yamada. Prediction of permanent displacement of liquefied ground by means of minimum energy principle. Soil and Foundation, 1992, 32(3): 97–116
https://doi.org/10.3208/sandf1972.32.3_97
8 P M Byrne, M Beaty. Liquefaction induced displacements, Seismic behaviour of ground and geotechnical structures. In: Proceeding of Discussion Special Technical Session on Earthquake Geotechnical Engineering during International Conference on Soil Mechanics and Foundation Engineering. Rotterdam: A.A. Balkema, 1997, 185–195
9 M Hamada, H Sato, T Kawakami. A Consideration of the Mechanism for Liquefaction-Related Large Ground Displacement. Technical Report NCEER-94–0026. 1994
10 A Soroush, S Koohi. Liquefaction-induced lateral spreading—An overview and numerical analysis. International Journal of Civil Engineering, 2004, 2(4): 232–245
11 W Finn, R H Ledbetter, G Wu. Liquefaction in silty soils: Design and analysis. In: Ground failures under seismic conditions. Noe York: American Society of Civil Engineers Geotechnical, 1994
12 M Baziar, A Ghorbani. Evaluation of lateral spreading using artificial neural networks. Soil Dynamics and Earthquake Engineering, 2005, 25(1): 1–9
https://doi.org/10.1016/j.soildyn.2004.09.001
13 J Wang, M A Rahman. Neural network model for liquefaction-induced horizontal ground displacement. Soil Dynamics and Earthquake Engineering, 1999, 18(8): 555–568
https://doi.org/10.1016/S0267-7261(99)00027-5
14 A A Javadi, M Rezania, M M Nezhad. Evaluation of liquefaction induced lateral displacements using genetic programming. Computers and Geotechnics, 2006, 33(4–5): 222–233
https://doi.org/10.1016/j.compgeo.2006.05.001
15 H Javdanian. Field data-based modeling of lateral ground surface deformations due to earthquake-induced liquefaction. European Physical Journal Plus, 2019, 134(6): 297
https://doi.org/10.1140/epjp/i2019-12630-2
16 Y Jafarian, E Nasri. Evaluation of uncertainties in the available empirical models and probabilistic prediction of liquefaction induced lateral spreading. Amirkabir Journal of Civil and Environmental Engineering, 2016, 48(3): 275–290
17 T L Youd, C M Hansen, S F Bartlett. Revised multilinear regression equations for prediction of lateral spread displacement. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(12): 1007–1017
https://doi.org/10.1061/(ASCE)1090-0241(2002)128:12(1007)
18 T L Youd, D M Perkins. Mapping of liquefaction severity index. Journal of Geotechnical Engineering, 1987, 113(11): 1374–1392
https://doi.org/10.1061/(ASCE)0733-9410(1987)113:11(1374)
19 A F Rauch. EPOLLS: An empirical method for prediciting surface displacements due to liquefaction-induced lateral spreading in earthquakes. Dissertation for the Doctoral Degree. Blacksburg: Virginia Tech, 1997
20 J Bardet, N Mace, T Tobita. Liquefaction-induced Ground Deformation and Failure. A Report to PEER/PG&E. Task 4A-Phase 1. Los Angeles: University of Southern California, 1999
21 M Hamada, S Yasuda, R Isoyama, K Emoto. Study on Liquefaction Induced Permanent Ground Displacements. Report of Association for the Development of Earthquake Prediction. 1986
22 H Guo, X Zhuang, T Rabczuk. A deep collocation method for the bending analysis of Kirchhoff plate. Computers, Materials & Continua, 2019, 59(2): 433–456
https://doi.org/10.32604/cmc.2019.06660
23 C Anitescu, E Atroshchenko, N Alajlan, T Rabczuk. Artificial neural network methods for the solution of second order boundary value problems. Computers, Materials & Continua, 2019, 59(1): 345–359
https://doi.org/10.32604/cmc.2019.06641
24 J P Bardet, F Liu. Motions of gently sloping ground during earthquakes. Journal of Geophysical Research. Earth Surface, 2009, 114(F2): 1–13
https://doi.org/10.1029/2008JF001107
25 S F Bartlett, T L Youd. Empirical Prediction of Lateral Spread Displacement. Technical Report NCEER, 1, 92-0019. 1992
26 S F Bartlett, T L Youd. Empirical prediction of liquefaction-induced lateral spread. Journal of Geotechnical Engineering, 1995, 121(4): 316–329
https://doi.org/10.1061/(ASCE)0733-9410(1995)121:4(316)
27 D B Chu, J P Stewart, T L Youd, B Chu. Liquefaction-induced lateral spreading in near-fault regions during the 1999 Chi-Chi, Taiwan earthquake. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(12): 1549–1565
https://doi.org/10.1061/(ASCE)1090-0241(2006)132:12(1549)
28 K O Cetin, T L Youd, R B Seed, J D Bray, J P Stewart, H T Durgunoglu, W Lettis, M T Yilmaz. Liquefaction-induced lateral spreading at Izmit Bay during the Kocaeli (Izmit)-Turkey earthquake. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(12): 1300–1313
https://doi.org/10.1061/(ASCE)1090-0241(2004)130:12(1300)
29 T L Youd, D W DeDen, J D Bray, R Sancio, K O Cetin, T M Gerber. Zero-displacement lateral spreads, 1999 Kocaeli, Turkey, earthquake. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(1): 46–61
https://doi.org/10.1061/(ASCE)1090-0241(2009)135:1(46)
30 A Kanibir. Investigation of the Lateral Spreading at Sapanca and Suggestion of Empirical Relationships for Predicting Lateral Spreading. Turkey: Department of Geological Engineering, Hacettepe University, 2003
31 M Baziar, A Saeedi Azizkandi. Evaluation of lateral spreading utilizing artificial neural network and genetic programming. International Journal of Civil Engineering Transaction B. Geotechnical Engineering, 2013, 11(2): 100–111
32 J Pearl. Probabilistic Reasoning in Intelligent Systems: Representation & Reasoning. San Mateo, CA: Morgan Kaufmann Publishers, 1988
33 J N Warfield. Developing interconnection matrices in structural modeling. IEEE Transactions on Systems, Man, and Cybernetics, 1974, SMC-4(1): 81–87
https://doi.org/10.1109/TSMC.1974.5408524
34 K Mathiyazhagan, K Govindan, A NoorulHaq, Y Geng. An ISM approach for the barrier analysis in implementing green supply chain management. Journal of Cleaner Production, 2013, 47: 283–297
https://doi.org/10.1016/j.jclepro.2012.10.042
35 S Sushil. Interpreting the interpretive structural model. Global Journal of Flexible Systems Management, 2012, 13(2): 87–106
https://doi.org/10.1007/s40171-012-0008-3
36 K Sadigh, C Y Chang, J Egan, F Makdisi, R Youngs. Attenuation relationships for shallow crustal earthquakes based on California strong motion data. Seismological Research Letters, 1997, 68(1): 180–189
https://doi.org/10.1785/gssrl.68.1.180
37 X W Tang, X Bai, J L Hu, J N Qiu. Assessment of liquefaction-induced hazards using Bayesian networks based on standard penetration test data. Natural Hazards and Earth System Sciences, 2018, 18(5): 1451–1468
https://doi.org/10.5194/nhess-18-1451-2018
38 J L Hu, X W Tang, J N Qiu. A Bayesian network approach for predicting seismic liquefaction based on interpretive structural modeling. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 2015, 9(3): 200–217
https://doi.org/10.1080/17499518.2015.1076570
39 L Zhang. Predicting seismic liquefaction potential of sands by optimum seeking method. Soil Dynamics and Earthquake Engineering, 1998, 17(4): 219–226
https://doi.org/10.1016/S0267-7261(98)00004-9
40 M Ahmad, X W Tang, J N Qiu, F Ahmad. Interpretive structural modeling and MICMAC analysis for identifying and benchmarking significant factors of seismic soil liquefaction. Applied Sciences (Basel, Switzerland), 2019, 9(2): 233
https://doi.org/10.3390/app9020233
41 H C Pfohl, P Gallus, D Thomas. Interpretive structural modeling of supply chain risks. International Journal of Physical Distribution & Logistics Management, 2011, 41(9): 839–859
https://doi.org/10.1108/09600031111175816
42 J Saxena, , Sushil P Vrat. Impact of indirect relationships in classification of variables—A micmac analysis for energy conservation. Systems Research, 1990, 7(4): 245–253
https://doi.org/10.1002/sres.3850070404
43 M Kuhn, K Johnson. Applied Predictive Modeling. New York: Springer, 2013
44 J R Landis, G G Koch. An application of hierarchical kappa-type statistics in the assessment of majority agreement among multiple observers. Biometrics, 1977, 33(2): 363–374
https://doi.org/10.2307/2529786
45 Y Sakiyama, H Yuki, T Moriya, K Hattori, M Suzuki, K Shimada, T Honma. Predicting human liver microsomal stability with machine learning techniques. Journal of Molecular Graphics & Modelling, 2008, 26(6): 907–915
https://doi.org/10.1016/j.jmgm.2007.06.005
46 R G Congalton, K Green. Assessing the accuracy of remotely sensed data: principles and practices. Boca Raton: CRC press, 2008
47 N Vu-Bac, T Lahmer, X Zhuang, T Nguyen-Thoi, T Rabczuk. A software framework for probabilistic sensitivity analysis for computationally expensive models. Advances in Engineering Software, 2016, 100: 19–31
https://doi.org/10.1016/j.advengsoft.2016.06.005
48 J Cheng, R Greiner, J Kelly, D Bell, W Liu. Learning Bayesian networks from data: An information-theory based approach. Artificial Intelligence, 2002, 137(1–2): 43–90
https://doi.org/10.1016/S0004-3702(02)00191-1
[1] Mahmood AHMAD, Xiao-Wei TANG, Jiang-Nan QIU, Feezan AHMAD, Wen-Jing GU. A step forward towards a comprehensive framework for assessing liquefaction land damage vulnerability: Exploration from historical data[J]. Front. Struct. Civ. Eng., 2020, 14(6): 1476-1491.
[2] Chin-Yee ONG, Jin-Chun CHAI. Lateral displacement of soft ground under vacuum pressure and surcharge load[J]. Front Arch Civil Eng Chin, 2011, 5(2): 239-248.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed