Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

Postal Subscription Code 80-968

2018 Impact Factor: 1.272

Front. Struct. Civ. Eng.    2022, Vol. 16 Issue (5) : 589-599    https://doi.org/10.1007/s11709-022-0789-1
RESEARCH ARTICLE
Influence of accelerated curing on the compressive strength of polymer-modified concrete
Izhar AHMAD1,2(), Kashif Ali KHAN3, Tahir AHMAD1, Muhammad ALAM4, Muhammad Tariq BASHIR3
1. College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, China
2. Department of Civil Engineering, Muslim Youth University, Islamabad 44000, Pakistan
3. Department of Civil Engineering, CECOS University of IT & Emerging Sciences, Peshawar 25000, Pakistan
4. Department of Civil Engineering, University of Engineering & Technology, Mardan 23200, Pakistan
 Download: PDF(3923 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In recent building practice, rapid construction is one of the principal requisites. Furthermore, in designing concrete structures, compressive strength is the most significant of all parameters. While 3-d and 7-d compressive strength reflects the strengths at early phases, the ultimate strength is paramount. An effort has been made in this study to develop mathematical models for predicting compressive strength of concrete incorporating ethylene vinyl acetate (EVA) at the later phases. Kolmogorov-Smirnov (KS) goodness-of-fit test was used to examine distribution of the data. The compressive strength of EVA-modified concrete was studied by incorporating various concentrations of EVA as an admixture and by testing at ages of 28, 56, 90, 120, 210, and 365 d. An accelerated compressive strength at 3.5 hours was considered as a reference strength on the basis of which all the specified strengths were predicted by means of linear regression fit. Based on the results of KS goodness-of-fit test, it was concluded that KS test statistics value (D) in each case was lower than the critical value 0.521 for a significance level of 0.05, which demonstrated that the data was normally distributed. Based on the results of compressive strength test, it was concluded that the strength of EVA-modified specimens increased at all ages and the optimum dosage of EVA was achieved at 16% concentration. Furthermore, it was concluded that predicted compressive strength values lies within a 6% difference from the actual strength values for all the mixes, which indicates the practicability of the regression equations. This research work may help in understanding the role of EVA as a viable material in polymer-based cement composites.

Keywords compressive strength prediction      polymer-modified concrete      linear regression fit      early age strength      ethylene vinyl acetate     
Corresponding Author(s): Izhar AHMAD   
About author:

Tongcan Cui and Yizhe Hou contributed equally to this work.

Just Accepted Date: 06 May 2022   Online First Date: 01 August 2022    Issue Date: 30 August 2022
 Cite this article:   
Izhar AHMAD,Kashif Ali KHAN,Tahir AHMAD, et al. Influence of accelerated curing on the compressive strength of polymer-modified concrete[J]. Front. Struct. Civ. Eng., 2022, 16(5): 589-599.
 URL:  
https://academic.hep.com.cn/fsce/EN/10.1007/s11709-022-0789-1
https://academic.hep.com.cn/fsce/EN/Y2022/V16/I5/589
Fig.1  EVA. (a) Waste of shoe soles; (b) EVA powder.
polymer visual aspect pH (20 °C) avg grain size (µm) transitioning temp. (°C) viscosity (m·Pa·s) at 20 °C
EVA White in color 7.4 408 –7.8 2320
Tab.1  EVA physical properties
specimen no. temperature rise (°F) as each incursion
1 mm 2 mm 3 mm 4 mm
1 158.2 161.6 165.4 167.7
2 157.9 161.8 163.7 168.6
average 158.1 161.6 164.5 168.1
Tab.2  Temperature at which EVA soften (vicat test)
Fig.2  Mix design and preparation of specimens.
mix notation materials (kg/m3)
cement EVA F.A C.A water super plasticizer
E0(a) 480 0 786 984 197 9
E4(b) 480 19.2 786 984 197 9
E8(c) 480 38.4 786 984 197 9
E12(d) 480 57.6 786 984 197 9
E16(e) 480 76.8 786 984 197 9
E20(f) 480 96.0 786 984 197 9
Tab.3  Mix design results
Fig.3  Selected size of accelerated curing tank. (a) Plan; (b) elevation.
Fig.4  View of the tank with immersed screw heaters.
Fig.5  Accelerating tank power operation. (a) Digital meter; (b) power supply.
Fig.6  Curing of samples in an accelerating tank.
mix ID no. of samples tested compressive strength in N/mm2 (at 3.5 h) compressive strength in N/mm2 (at specified days)
µ(a) σ(b) CV(c) (%) 3 7 28 56 90 120 210 365
µ σ CV (%) µ σ CV (%) µ σ CV (%) µ σ CV (%) µ σ CV (%) µ σ CV (%) µ σ CV (%) µ σ CV (%)
E0 3 5.35 0.05 0.9 8.21 0.15 1.8 13.92 0.06 0.4 22.6 0.31 1.4 23.12 0.11 0.5 23.91 0.13 0.5 26.71 0.25 0.9 28.43 0.26 0.9 30.13 0.25 0.8
E4 3 7.22 0.05 0.7 8.9 0.09 1.0 14.61 0.11 0.7 24.7 0.26 1.2 24.97 0.11 0.4 25.84 0.18 0.7 28.32 0.32 1.1 29.78 0.15 0.5 31.51 0.31 1.0
E8 3 7.97 0.06 0.8 9.32 0.15 1.6 15.03 0.07 0.5 25.6 0.26 1.0 25.89 0.2 0.8 26.99 0.17 0.6 28.96 0.16 0.6 30.54 0.35 1.1 32.33 0.21 0.6
E12 3 8.68 0.09 1.0 9.8 0.08 0.8 15.61 0.16 1.1 26.3 0.15 0.6 26.48 0.15 0.6 27.9 0.10 0.3 29.69 0.20 0.7 31.01 0.22 0.7 33.02 0.10 0.3
E16 3 11.33 0.14 1.2 10.3 0.12 1.1 16 0.08 0.5 28.0 0.22 0.8 28.32 0.22 0.8 29.77 0.20 0.7 31.56 0.30 0.9 32.73 0.21 0.6 34.61 0.26 0.8
E20 3 10.91 0.07 0.7 9.81 0.07 0.7 15.91 0.13 0.8 27.1 0.23 0.9 27.43 0.27 1.0 29.12 0.26 0.9 30.64 0.40 1.3 31.99 0.21 0.7 34.33 0.31 0.9
Tab.4  Results of compressive strength
Fig.7  Compressive strength versus Curing (EVA modified concrete).
Fig.8  Compressive strength testing.
curing age coefficients R2
intercept slope
3 6.69 0.31 0.89
7 12.16 0.35 0.94
28 18.67 0.82 0.95
56 19.18 0.80 0.96
90 19.17 0.94 0.97
120 22.87 0.75 0.98
210 24.97 0.67 0.98
365 26.23 0.75 0.99
Tab.5  Regression coefficients of EVA modified mixes with slope and intercept values from models
mix id curing age (d) strength (N/mm2) age error (%)
facc(a) fact(b) fpr(c)
E0 3 5.35 8.2 8.46 1.86
E4 3 7.22 8.9 9.04 0.39
E8 3 7.97 9.3 9.27 1.44
E12 3 8.68 9.8 9.49 1.34
E16 3 11.33 10.3 10.31 0.89
E20 3 10.91 9.8 10.18 2.77
E0 7 5.35 13.9 14.13 0.92
E4 7 7.22 14.6 14.78 0.57
E8 7 7.97 15 15.05 0.36
E12 7 8.68 15.6 15.29 1.80
E16 7 11.33 16 16.22 0.76
E20 7 10.91 15.9 16.08 0.47
E0 28 5.35 22.70 23.15 1.96
E4 28 7.22 24.80 24.68 0.49
E8 28 7.97 25.70 25.30 1.61
E12 28 8.68 26.40 25.88 2.03
E16 28 11.33 28.21 27.85 0.22
E20 28 10.91 27.20 27.71 1.85
E0 56 5.35 23.22 23.55 1.43
E4 56 7.22 24.87 24.85 0.08
E8 56 7.97 25.99 25.65 1.35
E12 56 8.68 26.58 26.22 1.38
E16 56 11.33 28.42 28.34 0.28
E20 56 10.91 27.53 27.89 1.68
E0 90 5.35 23.81 24.29 1.17
E4 90 7.22 25.94 25.85 0.42
E8 90 7.97 26.89 26.75 1.28
E12 90 8.68 27.80 27.42 2.13
E16 90 11.33 29.87 29.91 0.15
E20 90 10.91 29.22 29.52 1.02
E0 120 5.35 26.81 26.98 0.62
E4 120 7.22 28.42 28.38 0.16
E8 120 7.97 28.86 28.94 0.43
E12 120 8.68 29.79 29.47 1.09
E16 120 11.33 31.66 31.46 0.65
E20 120 10.91 30.74 31.15 1.31
E0 210 5.35 28.53 28.65 0.42
E4 210 7.22 29.88 29.90 0.08
E8 210 7.97 30.64 30.40 0.79
E12 210 8.68 31.11 30.88 0.76
E16 210 11.33 32.83 32.65 0.55
E20 210 10.91 31.89 32.37 0.89
E0 365 5.35 30.23 30.34 0.36
E4 365 7.22 31.61 31.74 0.41
E8 365 7.97 32.43 32.30 0.41
E12 365 8.68 33.12 32.83 0.89
E16 365 11.33 34.71 34.82 0.33
E20 365 10.91 34.43 34.51 0.23
avg error 0.85
Tab.6  Results of accelerated, actual and predicted compressive strength at various curing periods
Fig.9  Linear regression analysis: (a) 3 d; (b) 7 d; (c) 28 d; (d) 56 d; (e) 90 d; (f) 120 d; (g) 210 d; (h) 365 d.
1 318M-05 ACI. Building Code Requirement for Structural Concrete and Commentary. Farmington Hills: American Concrete Institute, 2005
2 NBR 6118 ABNT. Design of Concrete Structures—Procedures. Rio de Janeiro: Brazilian Association of Technical Standards, 2014 (in Portuguese)
3 1992-1-1 EN. Eurocode 2: Design of Concrete Structures: Part 1-1: General Rules and Rules for Buildings. London: British Standards Institution, 2004
4 M L Berndt. Properties of sustainable concrete containing fly ash, slag and recycled concrete aggregate. Construction & Building Materials, 2009, 23( 7): 2606– 2613
https://doi.org/10.1016/j.conbuildmat.2009.02.011
5 F Zahiri, H Eskandari-Naddaf. Optimizing the compressive strength of concrete containing micro-silica, nano-silica, and polypropylene fibers using extreme vertices mixture design. Frontiers of Structural and Civil Engineering, 2019, 13( 4): 821– 830
https://doi.org/10.1007/s11709-019-0518-6
6 K A Khan, I Ahmad, M Alam. Effect of ethylene vinyl acetate (EVA) on the setting time of cement at different temperatures as well as on the mechanical strength of concrete. Arabian Journal for Science and Engineering, 2019, 44( 5): 4075– 4084
https://doi.org/10.1007/s13369-018-3249-4
7 K A Khan, H Nasir, M Alam, S Wali Khan, I Ahmad, Z U Rehman. Investigation of fresh and hardened characteristics of self-compacting concrete with the incorporation of ethylene vinyl acetate and steel-making slag. Advances in Civil Engineering, 2019, 2019 : 9146343
https://doi.org/10.1155/2019/9146343
8 S Chandra Y Ohama. Polymers in Concrete. Boca Raton: CRC Press, 1994
9 M Miller. Polymers in Cementitious Materials. Shawbury Rapra Technology Limited, 2005
10 Y Ohama. Handbook of Polymer-Modified Concrete and Mortars: Properties and Process Technology. Park Ridge: Noyes Publications, 1995
11 Y Ohama. Polymer-based admixtures. Cement and Concrete Composites, 1998, 20( 2−3): 189– 212
https://doi.org/10.1016/S0958-9465(97)00065-6
12 I Ahmad, K A Khan, T Ahmad. Influence of chloroprene rubber latex on set times and early hydration of cement. Arabian Journal for Science and Engineering, 2020, 45( 10): 7975– 7986
13 S Zhong, Z Chen. Properties of latex blends and its modified cement mortars. Cement and Concrete Research, 2002, 32( 10): 1515– 1524
https://doi.org/10.1016/S0008-8846(02)00813-X
14 S Zhong, M Shi, Z Chen. The AC response of polymer-coated mortar specimens. Cement and Concrete Research, 2002, 32( 6): 983– 987
https://doi.org/10.1016/S0008-8846(02)00741-X
15 Z Yang, X Shi, A T Creighton, M M Peterson. Effect of styrene–butadiene rubber latex on the chloride permeability and microstructure of Portland cement mortar. Construction & Building Materials, 2009, 23( 6): 2283– 2290
https://doi.org/10.1016/j.conbuildmat.2008.11.011
16 J Mirza, M S Mirza, R Lapointe. Laboratory and field performance of polymer-modified cement-based repair mortars in cold climates. Construction & Building Materials, 2002, 16( 6): 365– 374
https://doi.org/10.1016/S0950-0618(02)00027-2
17 R Wang, P Wang. Function of styrene-acrylic ester copolymer latex in cement mortar. Materials and Structures, 2010, 43( 4): 443– 451
https://doi.org/10.1617/s11527-009-9501-3
18 M M Al-Zahrani, M Maslehuddin, S U Al-Dulaijan, M Ibrahim. Mechanical properties and durability characteristics of polymer-and cement-based repair materials. Cement and Concrete Composites, 2003, 25( 4−5): 527– 537
https://doi.org/10.1016/S0958-9465(02)00092-6
19 Y Ohama. Polymer-based materials for repair and improved durability: Japanese experience. Construction & Building Materials, 1996, 10( 1): 77– 82
https://doi.org/10.1016/0950-0618(95)00063-1
20 L K Aggarwal, P C Thapliyal, S R Karade. Properties of polymer-modified mortars using epoxy and acrylic emulsions. Construction & Building Materials, 2007, 21( 2): 379– 383
https://doi.org/10.1016/j.conbuildmat.2005.08.007
21 E Sakai, J Sugita. Composite mechanism of polymer modified cement. Cement and Concrete Research, 1995, 25( 1): 127– 135
https://doi.org/10.1016/0008-8846(94)00120-N
22 V P Berardi, G Mancusi. A mechanical model for predicting the long term behavior of reinforced polymer concretes. Mechanics Research Communications, 2013, 50 : 1– 7
https://doi.org/10.1016/j.mechrescom.2013.02.001
23 R Siddique, J Khatib, I Kaur. Use of recycled plastic in concrete: A review. Waste Management, 2008, 28( 10): 1835– 1852
https://doi.org/10.1016/j.wasman.2007.09.011
24 P Panyakapo, M Panyakapo. Reuse of thermosetting plastic waste for lightweight concrete. Waste Management, 2008, 28( 9): 1581– 1588
https://doi.org/10.1016/j.wasman.2007.08.006
25 T Staikos, S Rahimifard. Post-consumer waste management issues in the footwear industry. Proceedings of the Institution of Mechanical Engineers. Part B, Journal of Engineering Manufacture, 2007, 221( 2): 363– 368
https://doi.org/10.1243/09544054JEM732SC
26 S K Al-Hubboubi, Z K Abbas. Regression analysis models to predict the 28-day compressive strength using accelerated curing tests. Journal of Engineering (Stevenage, England), 2018, 24( 1): 1– 19
27 M H Ozkul. Efficiency of accelerated curing in concrete. Cement and Concrete Research, 2001, 31( 9): 1351– 1357
https://doi.org/10.1016/S0008-8846(01)00564-6
28 S B Murugan, G M Ganesh, A S Santhi. Regression models for prediction of compressive strength of high volume fly ash (HVFA) concrete. Arabian Journal for Science and Engineering, 2014, 39( 3): 1659– 1669
https://doi.org/10.1007/s13369-013-0783-y
29 T Pheeraphan, L Cayliani, M I Jr Dumangas, P Nimityongskul. Prediction of later-age compressive strength of normal concrete based on the accelerated strength of concrete cured with microwave energy. Cement and Concrete Research, 2002, 32( 4): 521– 527
https://doi.org/10.1016/S0008-8846(01)00715-3
30 K H Younis, K Pilakoutas. Strength prediction model and methods for improving recycled aggregate concrete. Construction & Building Materials, 2013, 49 : 688– 701
https://doi.org/10.1016/j.conbuildmat.2013.09.003
31 D Kong, T Lei, J Zheng, C Ma, J Jiang, J Jiang. Effect and mechanism of surface-coating pozzalanics materials around aggregate on properties and ITZ microstructure of recycled aggregate concrete. Construction & Building Materials, 2010, 24( 5): 701– 708
https://doi.org/10.1016/j.conbuildmat.2009.10.038
32 J K Kim, Y H Moon, S H Eo. Compressive strength development of concrete with different curing time and temperature. Cement and Concrete Research, 1998, 28( 12): 1761– 1773
https://doi.org/10.1016/S0008-8846(98)00164-1
33 J K Kim, S Hun Han, S Kyun Park. Effect of temperature and aging on the mechanical properties of concrete: Part II. Prediction model. Cement and Concrete Research, 2002, 32( 7): 1095– 1100
https://doi.org/10.1016/S0008-8846(02)00745-7
34 M F M Zain S M Abd K Sopian M Jamil AI Che-Ani. Mathematical regression model for the prediction of concrete strength. In: Proceedings of the 10th WSEAS international conference on Mathematical methods, computational techniques and intelligent systems. Corfu: WSEAS, 2008
35 M Nikoo, Moghadam F Torabian, Ł Sadowski. Prediction of concrete compressive strength by evolutionary artificial neural networks. Advances in Materials Science and Engineering, 2015, 2015 : 849126
https://doi.org/10.1155/2015/849126
36 R N Jyothi, B K Rao. Effect of accelerated curing on compressive strength of high strength concrete with fly ash. International Journal of Recent Technology and Engineering, 2019, 7 : 193– 198
37 R Cook, J Lapeyre, H Ma, A Kumar. Prediction of compressive strength of concrete: critical comparison of performance of a hybrid machine learning model with standalone models. Journal of Materials in Civil Engineering, 2019, 31( 11): 04019255
https://doi.org/10.1061/(ASCE)MT.1943-5533.0002902
38 A T A Dantas, M Batista Leite, K de Jesus Nagahama. Prediction of compressive strength of concrete containing construction and demolition waste using artificial neural networks. Construction & Building Materials, 2013, 38 : 717– 722
https://doi.org/10.1016/j.conbuildmat.2012.09.026
39 E Q R Santiago, P R L Lima, M B Leite, R D Toledo Filho. Mechanical behavior of recycled lightweight concrete using EVA waste and CDW under moderate temperature. RIEM-IBRACON Structures and Materials Journal, 2009, 2 : 211– 221
40 211.1 ACI. Standard Practice for Selecting Proportions for Conventional, Heavyweight and Mass Concrete. Farmington Hills: American Concrete Institute, 1991
41 H Abdelgader, R Suleiman, A Adam, J Khatib. Concrete mix design using simple equations. BAU Journal-Science and Technology, 2020, 2( 1): 2
42 H S Abdelgader, A S El-Baden, J M Shilstone. Bolomeya model for normal concrete mix design. CPI-Concrete Plant International, 2012, 2 : 68– 74
43 ASTM. Standard Specifications for Portland Cement, ASTM C150/ C150M-18. West Conshohocken, PA: ASTM, 2018
44 ASTM. Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate, ASTM C127-15. West Conshohocken, PA: ASTM, 2015
45 ASTM. Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates, ASTM C136/C136M-14. West Conshohocken, PA: ASTM, 2014
46 ASTM. Standard Test Method for Bulk Density (Unit Weight) and Voids in Aggregate, ASTM C29/C29M-17a. West Conshohocken, PA: ASTM, 2017
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed