Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

Postal Subscription Code 80-968

2018 Impact Factor: 1.272

Front. Struct. Civ. Eng.    2023, Vol. 17 Issue (4) : 584-605    https://doi.org/10.1007/s11709-023-0916-7
RESEARCH ARTICLE
Free vibration analysis of functionally graded porous curved nanobeams on elastic foundation in hygro–thermo–magnetic environment
Quoc-Hoa PHAM1, Parviz MALEKZADEH2, Van Ke TRAN3, Trung NGUYEN-THOI4,5,6()
1. Faculty of Engineering and Technology, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
2. Department of Mechanical Engineering, Persian Gulf University, Bushehr 7516913817, Iran
3. Faculty of Mechanical Engineering, Le Quy Don Technical University, Hanoi 100000, Vietnam
4. Laboratory for Applied and Industrial Mathematics, Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City 700000, Vietnam
5. Faculty of Mechanical-Electrical and Computer Engineering, School of Technology, Van Lang University, Ho Chi Minh City 700000, Vietnam
6. Bualuang ASEAN Chair Professor, Thammasat School of Engineering, Thammasat University, Pathumtani 12120, Thailand
 Download: PDF(10254 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Herein, a two-node beam element enriched based on the Lagrange and Hermite interpolation function is proposed to solve the governing equation of a functionally graded porous (FGP) curved nanobeam on an elastic foundation in a hygro–thermo–magnetic environment. The material properties of curved nanobeams change continuously along the thickness via a power-law distribution, and the porosity distributions are described by an uneven porosity distribution. The effects of magnetic fields, temperature, and moisture on the curved nanobeam are assumed to result in axial loads and not affect the mechanical properties of the material. The equilibrium equations of the curved nanobeam are derived using Hamilton’s principle based on various beam theories, including the classical theory, first-order shear deformation theory, and higher-order shear deformation theory, and the nonlocal elasticity theory. The accuracy of the proposed method is verified by comparing the results obtained with those of previous reliable studies. Additionally, the effects of different parameters on the free vibration behavior of the FGP curved nanobeams are investigated comprehensively.

Keywords functionally graded porous material      curved nanobeam      hygro–thermo–magnetic      enriched finite element method     
Corresponding Author(s): Trung NGUYEN-THOI   
About author:

* These authors contributed equally to this work.

Just Accepted Date: 22 February 2023   Online First Date: 26 May 2023    Issue Date: 25 June 2023
 Cite this article:   
Quoc-Hoa PHAM,Parviz MALEKZADEH,Van Ke TRAN, et al. Free vibration analysis of functionally graded porous curved nanobeams on elastic foundation in hygro–thermo–magnetic environment[J]. Front. Struct. Civ. Eng., 2023, 17(4): 584-605.
 URL:  
https://academic.hep.com.cn/fsce/EN/10.1007/s11709-023-0916-7
https://academic.hep.com.cn/fsce/EN/Y2023/V17/I4/584
Fig.1  Modeling of FGP curved nanobeams embedded in an elastic medium.
materialproperties
E (GPa)ρ (kg/m3)vαK?1β (%H2O)?1
aluminum (Al): metal7027070.323 × 10?60.44
alumina (Al2O3): ceramic38038000.37 × 10?60.001
Tab.1  Properties of the FG material [40]
a/hμNefirst modesecond mode
CLTFSDTHSDTCLTFSDTHSDT
5014.48444.31094.278831.366727.745127.1676
24.48444.31094.278831.354327.520327.1520
34.48454.31094.278831.244427.376426.9898
Navier-present4.48454.31094.278831.244427.376426.9898
FEM [39]4.48444.31094.279131.172827.543926.9737
114.27834.11274.082126.555123.488122.9989
24.27834.11274.082126.485423.367222.7918
34.27834.11274.082126.413223.281122.7175
Navier-present4.27834.11274.082126.413223.281122.7175
FEM [39]4.27834.11274.082426.395023.322322.8395
213.79713.65023.623019.524717.268616.9088
23.79713.65023.623019.413017.150516.8419
33.79713.65023.623019.410517.119316.7931
Navier-present3.79713.65003.623019.410517.119316.7931
FEM [39]3.79713.65023.623219.410517.150916.7958
50014.56304.56104.560636.898936.813636.7966
24.56144.55954.559133.269733.208933.4682
34.56144.55954.559133.272633.197133.1985
44.56144.55954.559133.272633.197133.1985
Navier-present4.56144.55954.559133.272633.197133.1985
114.35324.35144.351031.142531.069831.0554
24.35174.34994.349528.187628.121428.1542
34.35174.34984.349528.170328.114928.1083
44.35174.34984.349528.170328.114928.1083
Navier-present4.35174.34984.349528.170328.114928.1083
213.86363.86203.861622.814222.760422.7497
23.86233.86073.860320.718820.681320.6899
33.86233.86063.860320.715220.684720.6774
43.86233.86063.860320.715220.684720.6774
Navier-present3.86233.86063.860320.715220.684720.6774
Tab.2  Convergence and comparison of first and second nondimensional frequencies of SS curved nanobeam (Kw=0, Ks=0, ΔT=0, ΔC=0, Hx*=0, φ=120o)
a/hμNefirst modesecond mode
CLTFSDTHSDTCLTFSDTHSDT
5013.80163.73653.724014.850513.276513.0321
23.80133.73583.723314.848013.217412.9765
43.80133.73553.723114.848013.188612.9595
53.80133.73553.723114.848013.182912.9581
63.80133.73553.723114.848013.179112.9575
FEM [39]3.80143.73573.723414.848313.201312.9772
113.71123.64923.637313.401712.040011.8249
23.71093.64863.636613.400311.996311.7837
43.71093.64843.636513.400311.974611.7709
53.71093.64833.636513.400311.970311.7698
63.71093.64833.636513.400311.967511.7694
FEM [39]3.71103.64853.636813.400611.984211.7847
213.47313.41863.408110.68169.67659.5133
23.47283.41813.407510.68109.65339.4914
43.47283.41803.407510.68109.64169.4845
53.47283.41803.407510.68109.63939.4839
63.47283.41803.407510.68109.63779.4837
FEM [39]3.47283.41813.407710.68129.64699.4927
50013.84963.84883.848716.144516.119616.1146
23.84303.84233.842116.059416.035016.0301
43.84303.84223.842116.057616.032716.0278
53.84303.84223.842116.057616.032616.0276
63.84303.84223.842116.057616.032616.0276
FEM [39]3.85003.84933.849116.084516.059816.0549
113.75823.75743.757314.347114.326814.3227
23.75153.75083.750614.295414.275514.2715
43.75143.75083.750614.293914.273614.2696
53.75143.75083.750614.293914.273614.2695
63.75143.75083.750614.293914.273514.2695
FEM [39]3.75833.75763.757514.317714.317714.2936
213.51753.51683.516711.219411.205411.2026
23.51063.51003.509911.194411.180711.1779
43.51063.51003.509911.193311.179411.1767
53.51063.51003.509911.193311.179411.1766
63.51063.51003.509911.193311.179411.1766
FEM [39]3.51693.51633.516211.212011.198211.1955
Tab.3  Convergence and comparison of first and second nondimensional frequencies of CF curved nanobeams with respect to nonlocal coefficient (φ=120o)
a/hμNefirst modesecond mode
CLTFSDTHSDTCLTFSDTHSDT
50134.384833.132432.930743.462535.955734.9067
234.372533.089432.882743.050835.328034.3044
434.372333.079332.875643.050835.183334.2203
534.372333.077432.875043.050835.154234.2130
634.372333.076132.874843.050835.134834.2101
FEM [39]34.372833.084132.884843.052534.042033.1013
1131.952630.616530.381538.410631.381930.4234
231.933230.510529.859937.890230.798530.2652
431.932930.482629.814037.890030.716430.2472
531.932930.477229.810137.890030.699830.2457
631.932930.473629.808737.890030.688830.2452
FEM [39]31.933629.734828.851137.891930.494930.2667
2126.731023.635422.903028.980224.899024.5287
226.685123.126822.405028.432724.620524.2346
426.684723.103022.392328.432324.557824.1995
526.684723.098222.391328.432324.545824.1970
626.684723.095022.390928.432324.537824.1960
FEM [39]26.685522.440021.735028.434024.584824.2400
500169.871369.386269.2911133.8935133.2674133.1444
251.894051.688151.6473102.5468101.7561101.6006
451.888751.679251.6376102.1855101.3698101.2097
551.888651.678351.6366102.1846101.3626101.2014
651.888651.677851.6360102.1846101.3583101.1964
FEM [39]51.968751.724151.6761102.3418101.5397101.3836
1159.993559.577959.496499.811499.330499.2360
243.884143.719143.686474.914774.375774.2696
443.871643.705343.672374.706974.159574.0517
543.871543.704843.671874.705974.156274.0480
643.871543.704643.671574.705874.154574.0462
FEM [39]43.939643.746743.708974.822674.280374.1745
2144.853944.544244.483465.165464.847364.7849
232.145932.031032.008248.191047.859447.7940
432.124032.009031.986248.082947.748947.6831
532.123932.008831.986048.082047.747347.6813
632.123932.008831.985948.081947.746747.6807
FEM [39]32.174232.042832.017048.158447.826247.7613
Tab.4  Convergence and comparison of first and second nondimensional frequencies of CC curved nanobeam with respect to nonlocal coefficient (φ=120o)
Fig.2  Effect of magnetic ?eld Hx* on nondimensional natural frequency Ω1 of FGP curved nanobeam for different boundary conditions. (a) SS; (b) CC; (c) CS; (d) CF.
Fig.3  Effect of temperature change ΔT(K) on nondimensional natural frequency Ω1 of FGP curved nanobeam for different boundary conditions. (a) SS; (b) CC; (c) CS; (d) CF.
Fig.4  Effect of moisture change ΔC(%H2O) on nondimensional natural frequency Ω1 of FGP curved nanobeam for different boundary conditions. (a) SS; (b) CC; (c) CS; (d) CF.
a/hμHxφ=30°φ=120°
first modesecond modefirst modesecond mode
CLTFSDTHSDTCLTFSDTHSDTCLTFSDTHSDTCLTFSDTHSDT
50021.514119.733719.759042.895138.142538.064529.890729.299229.242235.863131.175631.1084
121.890320.116520.146343.114338.701838.622630.169029.607029.548836.188231.644731.5831
523.326321.565321.612143.791540.660340.573531.246430.768130.708037.372833.349533.3073
1020.951519.580619.548938.470834.579334.334128.229527.709127.642832.477829.228928.9938
121.429320.096420.063939.059635.493635.241828.587128.111428.045733.037130.003129.7669
523.237122.035622.000540.905538.656638.397629.955129.593329.530035.022132.713932.4820
2019.796618.973318.928831.020929.189428.966924.882424.548924.480827.188025.704425.4856
120.480819.709919.664632.071830.498830.272225.411625.137525.072628.118426.842326.6255
523.009122.408322.360635.577434.867234.654227.368927.221527.164631.279530.602630.4088
100023.828323.325623.320248.706845.521545.475640.698038.098838.039449.546148.438248.4425
124.187223.683923.679149.310646.156946.112441.227438.655838.597949.795348.746648.7505
525.563625.053025.050651.644948.601948.562543.255540.779040.726750.752149.908749.9106
1022.938422.509822.501441.512039.216139.153435.688133.766833.692945.026043.462843.4199
123.403522.980522.972142.399440.168640.105236.497434.637334.562845.462944.068944.0265
525.171024.766524.758345.768743.761443.696639.537837.885337.809647.030746.125646.0902
2021.045920.734620.725932.247230.902930.853428.653427.523527.463836.009634.449834.3731
121.745621.445121.436633.602432.340232.290529.929028.876628.816837.001935.705035.6355
524.337724.072624.064438.539937.530737.480134.516633.699033.638640.101239.469639.4250
200030.020829.918929.918045.110444.077944.062037.921137.042037.023670.227267.724667.6879
130.333030.233530.232745.805244.783744.768138.568837.699637.681570.825368.360568.3246
531.536431.443831.443248.477547.493147.478641.044240.207140.190073.121570.800170.7677
1027.716127.595927.595935.320134.452534.442030.116029.353329.340750.647748.377748.3623
128.149228.038128.037336.424035.584935.573631.180130.445330.431951.886749.725949.6472
529.781629.690629.690240.535339.781939.770335.101434.447934.433956.490254.620654.5826
2020.451519.798219.773721.899719.712019.705417.168916.482616.473226.130124.483024.4749
122.659521.997821.986322.893021.992422.507319.423518.817918.808528.928226.626426.8116
525.901725.799725.799929.899829.404729.398826.575626.141926.134037.970536.799036.7734
Tab.5  First two nondimensional fundamental frequencies Ω of CC FGP curved nanobeam with porosity on an elastic foundation in hygro–thermo–magnetic environment
Fig.5  Effect of porosity coefficient χ on nondimensional natural frequency Ω1 of FGP curved nanobeam for different boundary conditions. (a) SS; (b) CC; (c) CS; (d) CF.
a/hμHxφ=30°φ=120°
first modesecond modefirst modesecond mode
CLTFSDTHSDTCLTFSDTHSDTCLTFSDTHSDTCLTFSDTHSDT
50013.187413.085313.082932.730430.618830.57699.90889.88359.883028.273326.598926.5827
113.663013.567013.564633.438431.416331.373610.350510.327610.327028.985827.395927.3782
515.416015.339915.337436.128434.415434.369711.944211.928711.928131.665030.360230.3376
1013.005512.913512.911229.037227.412427.37549.84759.82559.825025.267924.003423.9869
113.487113.401013.398729.832028.298528.260610.290510.270810.270226.059524.879124.8612
515.258715.191615.189232.812831.584731.544011.886911.874111.873528.993628.087028.0646
2012.603812.534612.532524.031023.118523.08879.70929.69449.693921.224820.549820.5335
113.099113.035113.033024.981024.155224.124610.154510.141610.141122.149421.550021.5325
514.911714.864314.862128.450227.894427.862211.753111.745611.745125.476125.102825.0828
100012.521612.484712.484233.284532.415132.40409.22669.21589.215728.749528.041828.0361
113.043413.008213.007734.070633.226133.21509.72419.71419.714029.554928.872028.8662
514.948714.918914.918437.048036.288636.277811.498111.490211.490032.575631.975031.9690
1012.324212.290212.289829.191728.487128.47789.16369.15399.153825.375424.807524.8026
112.853912.821612.821130.084829.406529.39739.66419.65519.654926.283925.741625.7366
514.783514.756314.755833.418732.826732.817611.446111.439111.438929.636729.176029.1708
2011.888311.861011.860623.552323.091923.08529.02589.01839.018220.770220.408020.4042
112.436412.410612.410224.650224.216524.20999.53279.52589.525721.868821.531621.5277
514.421214.399814.399428.622028.269228.262711.331611.326411.326225.790525.526725.5226
20007.82247.80627.806027.374627.066127.06264.13454.12734.127322.516122.246822.2444
18.64308.62838.628128.357228.059928.05655.16605.16035.160223.581523.325123.3228
511.346411.335311.335231.986931.725131.72218.06498.06148.061427.431727.213627.2115
107.49907.48367.483422.029421.753821.75073.99293.98623.986117.800717.555417.5533
18.35148.33768.337423.239122.978522.97565.05335.04815.048019.130618.903318.9014
511.125911.115611.115527.551627.333927.33137.99317.98997.989823.714823.534223.5325
206.75116.73766.737513.346213.098113.09543.66983.66413.66409.78329.53829.5362
17.68697.67517.675015.260515.044815.04244.80214.79784.797712.035011.837911.8363
510.636010.627610.627521.258421.106321.10457.83627.83377.833718.473218.348518.3473
Tab.6  First two nondimensional fundamental frequencies Ω of SS FGP curved nanobeam with porosity on an elastic foundation in hygro–thermo–magnetic environment
Fig.6  Effect of power-law index pz on nondimensional natural frequency Ω1 of FGP curved nanobeam for different boundary conditions. (a) SS; (b) CC; (c) CS; (d) CF.
a/hμHxφ=30°φ=120°
first modesecond modefirst modesecond mode
CLTFSDTHSDTCLTFSDTHSDTCLTFSDTHSDTCLTFSDTHSDT
50015.399214.852814.849024.224624.113124.114310.11839.77559.777128.250326.057526.0497
115.784615.245815.243824.298824.194224.196010.412410.064210.067928.623826.570826.5664
517.161016.649216.653424.633924.534924.539411.459611.087711.099029.970428.400928.4054
1015.201514.766514.746923.771523.660323.656210.19049.92279.910426.234424.531024.4183
115.632415.216115.196223.852123.753923.751810.519410.257910.245426.747325.210125.1003
517.160816.814316.793224.211624.127024.129611.685311.446311.433628.514427.510127.4173
2014.758714.475914.456222.628622.508922.495410.343510.172110.159122.754221.813421.7001
115.285115.024315.004422.735822.651322.643810.747110.587110.574123.517722.718322.6102
517.115916.930816.910723.158323.103823.103912.152112.028412.015725.977025.578125.4977
100015.264215.072115.070239.542437.817937.79209.91929.80549.804232.840531.326431.2995
115.731515.539815.538240.146338.474238.449510.278310.161810.160933.481031.993431.9679
517.457017.262417.262142.316240.883240.863111.572211.442711.443035.901834.504034.4837
1014.958014.791614.788534.582133.203133.16549.93139.83159.829229.105427.958727.9181
115.479315.316215.313035.425634.097334.059410.335610.236010.233629.927628.824328.7833
517.394017.241317.238138.538837.398937.361111.787211.688011.685532.977732.017831.9769
2014.289314.167214.164527.566126.708226.67889.95649.88199.879723.826623.131923.0986
114.927314.810714.808028.765527.960127.930910.462010.390410.388224.965524.319424.2862
517.234917.135317.132733.092232.450732.421612.252712.190612.188429.024728.523528.4906
200011.330511.268711.270035.566234.940334.93246.62246.58716.588328.800928.265128.2564
111.991911.932611.933836.377935.762835.75527.21207.17887.180029.623229.098329.0900
514.305314.250714.251939.455338.875738.86919.14129.10979.110732.701932.211532.2041
1010.450110.390310.391328.272227.738427.32306.10246.06896.068422.948522.482122.3953
111.223411.165511.163329.395126.113615.72156.81096.77986.779124.093523.477123.4696
513.862813.813113.814533.513233.056933.05189.04229.01369.013828.211327.822327.8163
208.33268.27488.277416.782716.314016.30874.69524.65524.658013.054512.604412.6079
19.43139.39239.382318.800518.380518.37415.79205.76385.762815.204914.818314.8153
512.888612.848612.850625.316825.010825.00908.81028.78728.786921.786421.525821.5231
Tab.7  First two nondimensional fundamental frequencies Ω of CS FGP curved nanobeam with porosity on an elastic foundation in hygro–thermo–magnetic environment
Fig.7  Effect of stiffness foundation (Kw,Ks) on nondimensional natural frequency Ω1 of FGP curved nanobeam for different boundary conditions. (a) CC; (b) CS; (c) CC; (d) CS.
a/hμHxφ=30°φ=120°
first modesecond modefirst modesecond mode
CLTFSDTHSDTCLTFSDTHSDTCLTFSDTHSDTCLTFSDTHSDT
5009.93859.86299.866319.710718.849718.88548.03107.90477.912416.470315.557215.5923
110.159910.071910.076220.175819.379119.41818.17378.03918.048117.053116.136716.1758
510.954910.823810.832221.395420.853820.89848.70798.54068.554618.996718.085218.1375
109.92859.87179.871718.743618.100818.09188.02947.93517.936115.730715.106215.0960
110.159110.095310.095219.312618.725618.71878.18748.09078.091816.343215.738515.7284
510.998110.915210.914820.878520.511820.51628.77858.67348.674918.412517.883317.8754
209.88759.85479.854416.735216.371116.35577.99177.92747.929114.302913.971213.9616
110.135110.100010.099617.413217.083517.06948.17878.11378.115714.936714.626414.6179
511.053811.014111.013519.520019.311519.30718.86998.80238.805217.104416.858616.8551
10009.53549.52019.521020.833920.404220.40467.79137.76107.761916.560516.209216.2100
19.78479.76559.766421.758621.321121.32227.94657.91367.914617.362017.000717.0022
510.652310.619010.620324.982424.508624.51258.52808.48408.485620.101519.700119.7045
109.51449.50139.502019.054218.749718.74577.76237.73627.736715.537315.278115.2746
19.77049.75469.755219.980419.679419.67527.93427.90647.907016.352716.094116.0904
510.677710.653310.653823.255522.962722.95828.57658.54308.543619.181318.924418.9203
209.45339.44439.444916.240016.070916.06797.67067.64957.650413.755013.606713.6046
19.72189.71159.712117.133016.972616.96977.87567.85337.854214.562014.419514.4176
510.702010.688610.689220.308420.173620.17088.62978.60328.604417.387217.262317.2611
20005.16025.10525.110812.189912.069712.07226.47576.47286.47387.12456.98396.9889
16.68916.67296.676113.660913.536813.53956.68176.67696.67789.37099.26099.2647
58.89748.89448.895818.971218.850818.85327.41197.40497.405814.879614.782614.7847
107.12456.98396.988910.694510.602110.60156.01065.90345.90156.44226.41246.4132
19.37099.26099.264712.008711.901911.87746.51276.50426.50488.38288.27148.2888
514.879614.782614.784717.106917.015317.01797.34457.33787.338813.772913.695813.6981
205.06935.00025.00678.44878.40268.40453.98563.84783.87306.02865.96015.9901
16.72216.71386.70389.45419.40699.39305.78895.75495.75646.95227.01786.8797
58.80338.80078.802214.258714.201714.20447.16827.16227.163311.934111.884711.8872
Tab.8  First two nondimensional fundamental frequencies Ω of CF FGP curved nanobeam with porosity on an elastic foundation in hygro–thermo–magnetic environment
Fig.8  First two vibration mode shapes of CC FGP curved nanobeam on an elastic medium. (a) Mode 1; (b) Mode 2.
1 A C Eringen. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. Journal of Applied Physics, 1983, 54(9): 4703–4710
https://doi.org/10.1063/1.332803
2 A C Eringen. Nonlocal Continuum Field Theories. New York (NY): Springer, 2002
3 F Yang, A Chong, D C C Lam, P Tong. Couple stress-based strain gradient theory for elasticity. International Journal of Solids and Structures, 2002, 39(10): 2731–2743
https://doi.org/10.1016/S0020-7683(02)00152-X
4 D C Lam, F Yang, A Chong, J Wang, P Tong. Experiments and theory in strain gradient elasticity. Journal of the Mechanics and Physics of Solids, 2003, 51(8): 1477–1508
https://doi.org/10.1016/S0022-5096(03)00053-X
5 H A Fleck, J W Hutchinson. A phenomenological theory for strain gradient effects in plasticity. Journal of the Mechanics and Physics of Solids, 1993, 41(12): 1825–1857
https://doi.org/10.1016/0022-5096(93)90072-N
6 J S Stölken, A G Evans. A microbend test method for measuring the plasticity length scale. Acta Materialia, 1998, 46(14): 5109–5115
https://doi.org/10.1016/S1359-6454(98)00153-0
7 A Chong, F Yang, D Lam, P Tong. Torsion and bending of micron-scaled structures. Journal of Materials Research, 2001, 16(4): 1052–1058
https://doi.org/10.1557/JMR.2001.0146
8 N Triantafyllidis, E C Aifantis. A gradient approach to localization of deformation. I. Hyperelastic materials. Journal of Elasticity, 1986, 16(3): 225–237
https://doi.org/10.1007/BF00040814
9 J N Reddy. Nonlocal theories for bending, buckling and vibration of beams. International Journal of Engineering Science, 2007, 45(2−8): 288−307
10 J N ReddyS D Pang. Nonlocal continuum theories of beams for the analysis of carbon nanotubes. Journal of Applied Physics, 2008, 2008, 103(2): 023511
11 J N Reddy. Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates. International Journal of Engineering Science, 2010, 48(11): 1507–1518
https://doi.org/10.1016/j.ijengsci.2010.09.020
12 C M C Roque, A J M Ferreira, J N Reddy. Analysis of Timoshenko nanobeams with a nonlocal formulation and meshless method. International Journal of Engineering Science, 2011, 49(9): 976–984
https://doi.org/10.1016/j.ijengsci.2011.05.010
13 C W Lim, G Zhang, J N Reddy. A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. Journal of the Mechanics and Physics of Solids, 2015, 78: 298–313
https://doi.org/10.1016/j.jmps.2015.02.001
14 C Wang, Y Zhang, X He. Vibration of nonlocal Timoshenko beams. Nanotechnology, 2007, 18(10): 105401
https://doi.org/10.1088/0957-4484/18/10/105401
15 T Murmu, S Pradhan. Buckling analysis of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity and Timoshenko beam theory and using DQM. Physica E, Low-Dimensional Systems and Nanostructures, 2009, 41(7): 1232–1239
https://doi.org/10.1016/j.physe.2009.02.004
16 S C PradhanJ K Phadikar. Nonlocal elasticity theory for vibration of nanoplates. Journal of Sound and Vibration, 2009, 325(1−2): 206−223
17 R AghababaeiJ N Reddy. Nonlocal third-order shear deformation plate theory with application to bending and vibration of plates. Journal of Sound and Vibration, 2009, 326(1−2): 277−289
18 H T Thai. A nonlocal beam theory for bending, buckling, and vibration of nanobeams. International Journal of Engineering Science, 2012, 52: 56–64
https://doi.org/10.1016/j.ijengsci.2011.11.011
19 V K Tran, Q H Pham, T Nguyen-Thoi. A finite element formulation using four-unknown incorporating nonlocal theory for bending and free vibration analysis of functionally graded nanoplates resting on elastic medium foundations. Engineering with Computers, 2022, 38(2): 1465–1490
https://doi.org/10.1007/s00366-020-01107-7
20 V K Tran, T T Tran, M V Phung, Q H Pham, T Nguyen-Thoi. A finite element formulation and nonlocal theory for the static and free vibration analysis of the sandwich functionally graded nanoplates resting on elastic foundation. Journal of Nanomaterials, 2020, 2020: 8786373
https://doi.org/10.1155/2020/8786373
21 T T Tran, V K Tran, Q H Pham, A M Zenkour. Extended four-unknown higher-order shear deformation nonlocal theory for bending, buckling and free vibration of functionally graded porous nanoshell resting on elastic foundation. Composite Structures, 2021, 264: 113737
https://doi.org/10.1016/j.compstruct.2021.113737
22 S A HosseiniO RahmaniS Bayat. Thermal effect on forced vibration analysis of FG nanobeam subjected to moving load by Laplace transform method. Mechanics Based Design of Structures and Machines, 2021 (in press)
23 P Phung-Van, C H Thai, H Nguyen-Xuan, M Abdel Wahab. Porosity-dependent nonlinear transient responses of functionally graded nanoplates using isogeometric analysis. Composites. Part B, Engineering, 2019, 164: 215–225
https://doi.org/10.1016/j.compositesb.2018.11.036
24 C L Thanh, T N Nguyen, T H Vu, S Khatir, M Abdel Wahab. A geometrically nonlinear size-dependent hypothesis for porous functionally graded micro-plate. Engineering with Computers, 2022, 38(S1): 449–460
https://doi.org/10.1007/s00366-020-01154-0
25 P Phung-Van, A J M Ferreira, H Nguyen-Xuan, M Abdel Wahab. An isogeometric approach for size-dependent geometrically nonlinear transient analysis of functionally graded nanoplates. Composites. Part B, Engineering, 2017, 118: 125–134
https://doi.org/10.1016/j.compositesb.2017.03.012
26 T Cuong-Le, K D Nguyen, M Hoang-Le, T Sang-To, P Phan-Vu, M A Wahab. Nonlocal strain gradient IGA numerical solution for static bending, free vibration and buckling of sigmoid FG sandwich nanoplate. Physica B, Condensed Matter, 2022, 631: 413726
https://doi.org/10.1016/j.physb.2022.413726
27 V Mahesh, D Harursampath. Nonlinear vibration of functionally graded magneto-electro-elastic higher order plates reinforced by CNTs using FEM. Engineering with Computers, 2022, 38(2): 1029–1051
https://doi.org/10.1007/s00366-020-01098-5
28 M Vinyas, D Harursampath. Nonlinear vibrations of magneto-electro-elastic doubly curved shells reinforced with carbon nanotubes. Composite Structures, 2020, 253: 112749
https://doi.org/10.1016/j.compstruct.2020.112749
29 V Mahesh. Active control of nonlinear coupled transient vibrations of multifunctional sandwich plates with agglomerated FG-CNTs core/magneto−electro−elastic facesheets. Thin-walled Structures, 2022, 179: 109547
https://doi.org/10.1016/j.tws.2022.109547
30 V Mahesh. Nonlinear damping of auxetic sandwich plates with functionally graded magneto-electro-elastic facings under multiphysics loads and electromagnetic circuits. Composite Structures, 2022, 290: 115523
https://doi.org/10.1016/j.compstruct.2022.115523
31 A Assadi, B Farshi. Size dependent vibration of curved nanobeams and rings including surface energies. Physica E, Low-Dimensional Systems and Nanostructures, 2011, 43(4): 975–978
https://doi.org/10.1016/j.physe.2010.11.031
32 R Ansari, R Gholami, S Sahmani. Size-dependent vibration of functionally graded curved microbeams based on the modified strain gradient elasticity theory. Archive of Applied Mechanics, 2013, 83(10): 1439–1449
https://doi.org/10.1007/s00419-013-0756-3
33 L Medina, R Gilat, B Ilic, S Krylov. Experimental investigation of the snap-through buckling of electrostatically actuated initially curved pre-stressed micro beams. Sensors and Actuators. A, Physical, 2014, 220: 323–332
https://doi.org/10.1016/j.sna.2014.10.016
34 F EbrahimiM Barati. Size-dependent dynamic modeling of inhomogeneous curved nanobeams embedded in elastic medium based on nonlocal strain gradient theory. Proceedings of the institution of mechanical engineers, Part C: Journal of mechanical engineering science, 2017, 231: 4457–4469
35 S A H Hosseini, O Rahmani. Free vibration of shallow and deep curved FG nanobeam via nonlocal Timoshenko curved beam model. Applied Physics. A, Materials Science & Processing, 2016, 122(3): 169
https://doi.org/10.1007/s00339-016-9696-4
36 A M Zenkour, M Arefi, N A Alshehri. Size-dependent analysis of a sandwich curved nanobeam integrated with piezomagnetic face-sheets. Results in Physics, 2017, 7: 2172–2182
https://doi.org/10.1016/j.rinp.2017.06.032
37 G L She, Y R Ren, F G Yuan, W S Xiao. On vibrations of porous nanotubes. International Journal of Engineering Science, 2018, 125: 23–35
https://doi.org/10.1016/j.ijengsci.2017.12.009
38 F Ebrahimi, M R Barati. Hygrothermal effects on vibration characteristics of viscoelastic FG nanobeams based on nonlocal strain gradient theory. Composite Structures, 2017, 159: 433–444
https://doi.org/10.1016/j.compstruct.2016.09.092
39 M Ganapathi, T Merzouki, O Polit. Vibration study of curved nanobeams based on nonlocal higher-order shear deformation theory using finite element approach. Composite Structures, 2018, 184: 821–838
https://doi.org/10.1016/j.compstruct.2017.10.066
40 M Rezaiee-Pajand, N Rajabzadeh-Safaei, A R Masoodi. An efficient curved beam element for thermo-mechanical nonlinear analysis of functionally graded porous beams. Structures, 2020, 28: 1035–1049
41 C L Thanh, L V Tran, T Vu-Huu, M Abdel-Wahab. The size-dependent thermal bending and buckling analyses of composite laminate microplate based on new modified couple stress theory. Computer Methods in Applied Mechanics and Engineering, 2019, 350: 337–361
https://doi.org/10.1016/j.cma.2019.02.028
42 N Vu-Bac, T X Duong, T Lahmer, X Zhuang, R A Sauer, H S Park, T Rabczuk. A NURBS-based inverse analysis for reconstruction of nonlinear deformations of thin shell structures. Computer Methods in Applied Mechanics and Engineering, 2018, 331: 427–455
https://doi.org/10.1016/j.cma.2017.09.034
43 N Vu-Bac, T X Duong, T Lahmer, P Areias, R A Sauer, H S Park, T Rabczuk. A NURBS-based inverse analysis of thermal expansion induced morphing of thin shells. Computer Methods in Applied Mechanics and Engineering, 2019, 350: 480–510
https://doi.org/10.1016/j.cma.2019.03.011
44 N Vu-Bac, T Rabczuk, H S Park, X Fu, X Zhuang. A NURBS-based inverse analysis of swelling induced morphing of thin stimuli-responsive polymer gels. Computer Methods in Applied Mechanics and Engineering, 2022, 397: 115049
https://doi.org/10.1016/j.cma.2022.115049
45 T Merzouki, M Ganapathi, O Polit. A nonlocal higher-order curved beam finite model including thickness stretching effect for bending analysis of curved nanobeams. Mechanics of Advanced Materials and Structures, 2019, 26(7): 614–630
46 M Ganapathi, S Aditya, S Shubhendu, O Polit, T B Zineb. Nonlinear supersonic flutter study of porous 2D curved panels including graphene platelets reinforcement effect using trigonometric shear deformable fnite element. International Journal of Non-linear Mechanics, 2020, 125: 103543
https://doi.org/10.1016/j.ijnonlinmec.2020.103543
47 M O Belarbi, M S A Houari, H Hirane, A A Daikh, S P A Bordas. On the finite element analysis of functionally graded sandwich curved beams via a new refined higher order shear deformation theory. Composite Structures, 2022, 279: 114715
https://doi.org/10.1016/j.compstruct.2021.114715
48 M Vinyas. Interphase effect on the controlled frequency response of three-phase smart magneto-electro-elastic plates embedded with active constrained layer damping: FE study. Materials Research Express, 2020, 6(12): 125707
https://doi.org/10.1088/2053-1591/ab6649
49 V Mahesh, V Mahesh, S Mukunda, D Harursampath. Influence of micro-topological textures of BaTiO3–CoFe2O4 composites on the nonlinear pyrocoupled dynamic response of blast loaded magneto-electro-elastic plates in thermal environment. European Physical Journal Plus, 2022, 137(6): 675
https://doi.org/10.1140/epjp/s13360-022-02829-x
50 V Mahesh, S Kattimani. Subhaschandra Kattimani. Finite element simulation of controlled frequency response of skew multiphase magneto-electro-elastic plates. Journal of Intelligent Material Systems and Structures, 2019, 30(12): 1757–1771
https://doi.org/10.1177/1045389X19843674
51 A R KhoeiM VahabM HirmandA R KhoeiM VahabM Hirmand. An enriched-FEM technique for numerical simulation of interacting discontinuities in naturally fractured porous media. Computer Methods in Applied Mechanics and Engineering, 2018, 331: 197–231
52 C Y Tai, Y J Chan. A hierarchic high-order Timoshenko beam finite element. Computers & Structures, 2016, 165: 48–58
https://doi.org/10.1016/j.compstruc.2015.12.002
53 A M Aragón, C A Duarte, P H Geubelle. Generalized finite element enrichment functions for discontinuous gradient fields. International Journal for Numerical Methods in Engineering, 2010, 82(2): 242–268
https://doi.org/10.1002/nme.2772
54 M Arndt, R D Machado, A Scremin. The generalized finite element method applied to free vibration of framed structures. IntechOpen, 2011, 187–212
55 C I Le, A T Ngoc, D K Nguyen. Free vibration and buckling of bidirectional functionally graded sandwich beams using an enriched third-order shear deformation beam element. Composite Structures, 2021, 261: 113309
https://doi.org/10.1016/j.compstruct.2020.113309
56 D K Nguyen, A N T Vu, V N Pham, T T Truong. Vibration of a three-phase bidirectional functionally graded sandwich beam carrying a moving mass using an enriched beam element. Engineering with Computers, 2022, 38(5): 4629–4650
https://doi.org/10.1007/s00366-021-01496-3
57 D Shahsavari, B Karami, H R Fahham, L Li. On the shear buckling of porous nanoplates using a new size-dependent quasi-3D shear deformation theory. Acta Mechanica, 2018, 229(11): 4549–4573
https://doi.org/10.1007/s00707-018-2247-7
58 F Ebrahimi, M R Barati. A nonlocal strain gradient refined beam model for buckling analysis of size-dependent shear-deformable curved FG nanobeams. Composite Structures, 2017, 159: 174–182
https://doi.org/10.1016/j.compstruct.2016.09.058
59 H N Nguyen, T T Hong, P V Vinh, N D Quang, D V Thom. A refined simple first-order shear deformation theory for static bending and free vibration analysis of advanced composite plates. Materials (Basel), 2019, 12(15): 2385
https://doi.org/10.3390/ma12152385
60 F Ebrahimi, M R Barati. Wave propagation analysis of quasi-3D FG nanobeams in thermal environment based on nonlocal strain gradient theory. Applied Physics. A, Materials Science & Processing, 2016, 122(9): 843
https://doi.org/10.1007/s00339-016-0368-1
61 A Anjomshoa, A R Shahidi, B Hassani, E Jomehzadeh. Finite element buckling analysis of multi-layered graphene sheets on elastic substrate based on nonlocal elasticity theory. Applied Mathematical Modelling, 2014, 38(24): 5934–5955
https://doi.org/10.1016/j.apm.2014.03.036
62 M Ganapathi, O Polit. Dynamic characteristics of curved nanobeams using nonlocal higher-order curved beam theory. Physica E, Low-Dimensional Systems and Nanostructures, 2017, 91: 190–202
https://doi.org/10.1016/j.physe.2017.04.012
63 J N Reddy. Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. 2nd ed. Boca Raton: CRC Press, 2003
64 O C ZienkiewiczR L Taylor. The Finite Element Method. 4th ed. London: Mc Graw-Hill Book Company, 1997
65 P Solin. Partial Differential Equations and the Finite Element Method. Hoboken: John Wiley & Sons Inc., 2006
[1] FSC-22916-OF-QHP_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed