Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

Postal Subscription Code 80-968

2018 Impact Factor: 1.272

Front. Struct. Civ. Eng.    2019, Vol. 13 Issue (5) : 1082-1094    https://doi.org/10.1007/s11709-019-0537-3
RESEARCH ARTICLE
Variational mode decomposition based modal parameter identification in civil engineering
Mingjie ZHANG, Fuyou XU()
School of Civil Engineering, Dalian University of Technology, Dalian 116024, China
 Download: PDF(1765 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

An out-put only modal parameter identification method based on variational mode decomposition (VMD) is developed for civil structure identifications. The recently developed VMD technique is utilized to decompose the free decay response (FDR) of a structure into to modal responses. A novel procedure is developed to calculate the instantaneous modal frequencies and instantaneous modal damping ratios. The proposed identification method can straightforwardly extract the mode shape vectors using the modal responses extracted from the FDRs at all available sensors on the structure. A series of numerical and experimental case studies are conducted to demonstrate the efficiency and highlight the superiority of the proposed method in modal parameter identification using both free vibration and ambient vibration data. The results of the present method are compared with those of the empirical mode decomposition-based method, and the superiorities of the present method are verified. The proposed method is proved to be efficient and accurate in modal parameter identification for both linear and nonlinear civil structures, including structures with closely spaced modes, sudden modal parameter variation, and amplitude-dependent modal parameters, etc.

Keywords modal parameter identification      variational mode decomposition      civil structure      nonlinear system      closely spaced modes     
Corresponding Author(s): Fuyou XU   
Just Accepted Date: 05 May 2019   Online First Date: 06 June 2019    Issue Date: 11 September 2019
 Cite this article:   
Mingjie ZHANG,Fuyou XU. Variational mode decomposition based modal parameter identification in civil engineering[J]. Front. Struct. Civ. Eng., 2019, 13(5): 1082-1094.
 URL:  
https://academic.hep.com.cn/fsce/EN/10.1007/s11709-019-0537-3
https://academic.hep.com.cn/fsce/EN/Y2019/V13/I5/1082
Fig.1  FDR of a 3-DOF system and amplitude spectra
Fig.2  Modal responses of a 3-DOF system and instantaneous amplitudes
Fig.3  EMD results for FDR of a 3-DOF system. (a) IMF1 and IMF2; (b) IMF3–IMF8
Fig.4  Modal frequencies of a 3-DOF system
Fig.5  Modal damping ratios of a 3-DOF system
mode mean[f(t)] mean[x(t)]
1st DOF 2nd DOF 3rd DOF 1st DOF 2nd DOF 3rd DOF
1 0.567 0.567 0.568 0.010 0.010 0.010
2 1.006 unavailable 1.006 0.010 unavailable 0.010
3 1.095 1.094 1.095 0.010 0.010 0.010
Tab.1  Mean values of modal frequencies and modal damping ratios of a 3-DOF system
SNR (dB) mean[f(t)] mean[x(t)]
Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3
40 0.567 1.006 1.095 0.010 0.010 0.010
30 0.567 1.006 1.095 0.011 0.010 0.010
20 0.570 1.009 1.097 0.012 0.010 0.010
10 0.572 1.010 1.099 0.012 0.011 0.011
Tab.2  Mean values of modal frequencies and modal damping ratios of a 3-DOF system for different SNRs
Fig.6  Modal responses for Mode 1 of a 3-DOF system and instantaneous amplitudes
Fig.7  Amplitude ratios of modal responses for Mode 1
Mode Mode shape vector
identified theoretical
1 [1.00, 2.73, 1.00]T [1.00, 2.73, 1.00]T
2 [1.00, 0.00, - 1.00]T [1.00, 0.00, - 1.00]T
3 [1.00, - 0.72, 1.00]T [1.00, - 0.73, 1.00]T
Tab.3  Mode shape vectors a 3-DOF system
Fig.8  FDR of a 2-DOF system and amplitude spectra
Fig.9  Modal responses of a 2-DOF system
Fig.10  EMD results for FDR of a 2-DOF system. (a) IMF1 and IMF2; (b) IMF3 ~ IMF6
Fig.11  Modal frequencies of a 2-DOF system
Fig.12  Modal damping ratios of a 2-DOF system
Fig.13  Schematic diagram of a spring-suspended flat plate system
Fig.14  FDR of a SDOF system and amplitude spectra
Fig.15  Modal response of a SDOF system and amplitude spectra
Fig.16  Modal frequencies of a SDOF system
Fig.17  Modal damping ratios of a SDOF system
Fig.18  Comparison between extracted and calculated modal responses
Fig.19  Ambient vibration response of a 3-DOF system
Fig.20  Reconstructed FDR of a 3-DOF system and its amplitude spectra
Fig.21  Modal responses of a 3-DOF system extracted from ambient vibration and instantaneous amplitudes
Fig.22  Modal frequencies of a 3-DOF system extracted from ambient vibration
Fig.23  Modal damping ratios of a 3-DOF system extracted from ambient vibration
Mode mean[f(t)] mean[x(t)]
1st DOF 2nd DOF 3rd DOF 1st DOF 2nd DOF 3rd DOF
1 0.567 0.567 0.566 0.010 0.010 0.010
2 1.006 unavailable 1.005 0.010 unavailable 0.010
3 1.094 1.093 1.097 0.010 0.010 0.010
Tab.4  Mean values of modal frequencies and modal damping ratios of a 3-DOF system extracted from ambient vibrations
1 S S Nanthakumar, T Lahmer, X Zhuang, G Zi, T Rabczuk. Detection of material interfaces using a regularized level set method in piezoelectric structures. Inverse Problems in Science and Engineering, 2016, 24(1): 153–176
https://doi.org/10.1080/17415977.2015.1017485
2 S S Nanthakumar, N Valizadeh, H S Park, T Rabczuk. Surface effects on shape and topology optimization of nanostructures. Computational Mechanics, 2015, 56(1): 97–112
https://doi.org/10.1007/s00466-015-1159-9
3 P Q Xia, J M Brownjohn. Bridge structural condition assessment using systematically validated finite-element model. Journal of Bridge Engineering, 2004, 9(5): 418–423
https://doi.org/10.1061/(ASCE)1084-0702(2004)9:5(418)
4 K C Chang, C W Kim. Modal-parameter identification and vibration-based damage detection of a damaged steel truss bridge. Engineering Structures, 2016, 122: 156–173
https://doi.org/10.1016/j.engstruct.2016.04.057
5 A Shahdin, L Mezeix, C Bouvet, J Morlier, Y Gourinat. Monitoring the effects of impact damages on modal parameters in carbon fiber entangled sandwich beams. Engineering Structures, 2009, 31(12): 2833–2841
https://doi.org/10.1016/j.engstruct.2009.07.008
6 M J Zhang, F Y Xu, X Y Ying. Experimental investigations on the nonlinear torsional flutter of a bridge deck. Journal of Bridge Engineering, 2017, 22(8): 04017048
https://doi.org/10.1061/(ASCE)BE.1943-5592.0001082
7 K Xue, A Igarashi, T Kachi. Optimal sensor placement for active control of floor vibration considering spillover effect associated with modal filtering. Engineering Structures, 2018, 165: 198–209
https://doi.org/10.1016/j.engstruct.2018.03.024
8 S Yang, M S Allen. Output-only modal analysis using continuous-scan laser Doppler vibrometry and application to a 20 kW wind turbine. Mechanical Systems and Signal Processing, 2012, 31: 228–245
https://doi.org/10.1016/j.ymssp.2012.04.012
9 A Bagheri, O E Ozbulut, D K Harris. Structural system identification based on variational mode decomposition. Journal of Sound and Vibration, 2018, 417: 182–197
https://doi.org/10.1016/j.jsv.2017.12.014
10 J S Bendat, A G Piersol. Engineering Applications of Correlation and Spectral Analysis. New York: John Wiley & Sons, 1993
11 R Brincker, L Zhang, P Andersen. Modal identification of output-only systems using frequency domain decomposition. Smart Materials and Structures, 2001, 10(3): 441–445
https://doi.org/10.1088/0964-1726/10/3/303
12 N J Jacobsen, P Andersen, R Brincker. Using enhanced frequency domain decomposition as a robust technique to harmonic excitation in operational modal analysis. In: Proceedings of the International rational Modal Analysis Conference, 2006. Leuven: 2006, 18–20
13 L Zhang, Y Wang, T Tamura. A frequency-spatial domain decomposition (FSDD) method for operational modal analysis. Mechanical Systems and Signal Processing, 2010, 24(5): 1227–1239
https://doi.org/10.1016/j.ymssp.2009.10.024
14 S R Ibrahim. Random decrement technique for modal identification of structures. Journal of Spacecraft and Rockets, 1977, 14(11): 696–700
https://doi.org/10.2514/3.57251
15 J N Juang, R S Pappa. An eigensystem realization algorithm for modal parameters identification and model reduction. Journal of Guidance, Control, and Dynamics, 1985, 8(5): 620–627
https://doi.org/10.2514/3.20031
16 P E Gautier, C Gontier, M Smail. Robustness of an ARMA identification method for modal analysis of mechanical systems in the presence of noise. Journal of Sound and Vibration, 1995, 179(2): 227–242
https://doi.org/10.1006/jsvi.1995.0015
17 B Peeters, G De Roeck. Stochastic system identification for operational modal analysis: A review. Journal of Dynamic Systems, Measurement, and Control, 2001, 123(4): 659–667
https://doi.org/10.1115/1.1410370
18 G Berkooz, P Holmes, J L Lumley. The proper orthogonal decomposition in the analysis of turbulent flows. Annual Review of Fluid Mechanics, 1993, 25(1): 539–575
https://doi.org/10.1146/annurev.fl.25.010193.002543
19 N Vu-Bac, T Lahmer, X Zhuang, T Nguyen-Thoi, T Rabczuk. A software framework for probabilistic sensitivity analysis for computationally expensive models. Advances in Engineering Software, 2016, 100: 19–31
https://doi.org/10.1016/j.advengsoft.2016.06.005
20 K M Hamdia, H Ghasemi, X Zhuang, N Alajlan, T Rabczuk. Sensitivity and uncertainty analysis for flexoelectric nanostructures. Comput Method Appl Me, 2018, 337: 95–109
https://doi.org/10.1016/j.cma.2018.03.016
21 K M Hamdia, M Silani, X Zhuang, P He, T Rabczuk. Stochastic analysis of the fracture toughness of polymeric nanoparticle composites using polynomial chaos expansions. International Journal of Fracture, 2017, 206(2): 215–227
https://doi.org/10.1007/s10704-017-0210-6
22 T Kijewski, A Kareem. Wavelet transforms for system identification in civil engineering. Comput-Aided Civ Inf, 2003, 18(5): 339– 355
https://doi.org/10.1111/1467-8667.t01-1-00312
23 N E Huang, Z Shen, S R Long, M C Wu, H H Shih, Q Zheng. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London, Series A, 1998, 454: 903–95
24 G Rilling, P Flandrin, P Goncalves. On empirical mode decomposition and its algorithms. In: IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing, 2003, 8–11
25 J N Yang, Y Lei, S Pan, N Huang. System identification of linear structures based on Hilbert-Huang spectral analysis. Part 1: normal modes. Earthquake Engineering & Structural Dynamics, 2003, 32(9): 1443–1467
https://doi.org/10.1002/eqe.287
26 J N Yang, Y Lei, S Pan, N Huang. System identification of linear structures based on Hilbert-Huang spectral analysis. Part 2: Complex modes. Earthquake Engineering & Structural Dynamics, 2003, 32(10): 1533–1554
https://doi.org/10.1002/eqe.288
27 J Chen, Y L Xu, R C Zhang. Modal parameter identification of Tsing Ma suspension bridge under Typhoon Victor: EMD-HT method. Journal of Wind Engineering and Industrial Aerodynamics, 2004, 92(10): 805–827
https://doi.org/10.1016/j.jweia.2004.04.003
28 D Pines, L Salvino. Structural health monitoring using empirical mode decomposition and the Hilbert phase. Journal of Sound and Vibration, 2006, 294(1–2): 97–124
https://doi.org/10.1016/j.jsv.2005.10.024
29 X H He, X G Hua, Z Q Chen, F L Huang. EMD-based random decrement technique for modal parameter identification of an existing railway bridge. Engineering Structures, 2011, 33(4): 1348–1356
https://doi.org/10.1016/j.engstruct.2011.01.012
30 Z Y Shi, S S Law. Identification of linear time-varying dynamical systems using Hilbert transform and empirical mode decomposition method. Journal of Applied Mechanics, 2007, 74(2): 223–230
https://doi.org/10.1115/1.2188538
31 C Bao, H Hao, Z X Li, X Zhu. Time-varying system identification using a newly improved HHT algorithm. Computers & Structures, 2009, 87(23–24): 1611–1623
https://doi.org/10.1016/j.compstruc.2009.08.016
32 Z K Peng, W T Peter, F L Chu. An improved Hilbert–Huang transform and its application in vibration signal analysis. J Sound Vib 2005; 23; 286(1–2): 187–205
33 G Rilling, P Flandrin. One or two frequencies? The empirical mode decomposition answers. IEEE Transactions on Signal Processing, 2008, 56(1): 85–95
https://doi.org/10.1109/TSP.2007.906771
34 K Dragomiretskiy, D Zosso. Variational mode decomposition. IEEE Transactions on Signal Processing, 2014, 62(3): 531–544
https://doi.org/10.1109/TSP.2013.2288675
35 Y J Xue, J X Cao, D X Wang, H K Du, Y Yao. Application of the variational mode decomposition for seismic time-frequency analysis. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(8): 3821–3831
https://doi.org/10.1109/JSTARS.2016.2529702
36 P Poornachandran, S Athira, Harikumar K. Recursive variational mode decomposition algorithm for real time power signal decomposition. Procedia Technology, 2015, 21: 540–546
https://doi.org/10.1016/j.protcy.2015.10.048
37 A Upadhyay, R B Pachori. Instantaneous voiced/non-voiced detection in speech signals based on variational mode decomposition. Journal Franklin I, 2015, 352(7): 2679–2707
https://doi.org/10.1016/j.jfranklin.2015.04.001
38 Y Wang, R Markert, J Xiang, W Zheng. Research on variational mode decomposition and its application in detecting rub-impact fault of the rotor system. Mechanical Systems and Signal Processing, 2015, 60–61: 243–251
https://doi.org/10.1016/j.ymssp.2015.02.020
39 J D Zheng, J S Cheng, Y Yang. A new instantaneous frequency estimation approach-empirical envelope method. Journal of Vibration and Shock, 2012, 31(17): 86–90 (in Chinese)
40 M R Hestenes. Multiplier and gradient methods. Journal of Optimization Theory and Applications, 1969, 4(5): 303–320
https://doi.org/10.1007/BF00927673
41 Y Liu, G Yang, M Li, H Yin. Variational mode decomposition denoising combined the detrended fluctuation analysis. Signal Processing, 2016, 125: 349–364
https://doi.org/10.1016/j.sigpro.2016.02.011
42 R W Clough, J Penzien. Dynamics of Structures. Berkeley: Computers & Structures Inc, 2003
43 E A Bedrosian. Product theorem for Hilbert transforms. Proceedings of the IEEE, 1963, 51(5): 868–869
https://doi.org/10.1109/PROC.1963.2308
44 A H Nuttall, E Bedrosian. On the quadrature approximation to the Hilbert transform of modulated signals. Proceedings of the IEEE, 1966, 54(10): 1458–1459
https://doi.org/10.1109/PROC.1966.5138
45 N E Huang, Z H Wu, S R Long, K C Arnold, X Y Chen, K Blank. On instantaneous frequency. Advances in Adaptive Data Analysis, 2009, 1(2): 177–229
https://doi.org/10.1142/S1793536909000096
46 D M Siringoringo, Y Fujino. System identification of suspension bridge from ambient vibration response. Engineering Structures, 2008, 30(2): 462–477
https://doi.org/10.1016/j.engstruct.2007.03.004
47 M J Zhang, F Y Xu. Nonlinear vibration characteristics of bridge deck section models in still air. Journal of Bridge Engineering, 2018, 23(9): 04018059
https://doi.org/10.1061/(ASCE)BE.1943-5592.0001263
48 T Staubli. Calculation of the vibration of an elastically mounted cylinder using experimental data from forced oscillation. Journal of Fluids Engineering, 1983, 105(2): 225–229
https://doi.org/10.1115/1.3240968
49 J Knapp, E Altmann, J Niemann, K D Werner. Measurement of shock events by means of strain gauges and accelerometers. Measurement, 1998, 24(2): 87–96
https://doi.org/10.1016/S0263-2241(98)00036-0
50 C Acar, A M Shkel. Experimental evaluation and comparative analysis of commercial variable-capacitance MEMS accelerometers. Journal of Micromechanics and Microengineering, 2003, 13(5): 634–645
https://doi.org/10.1088/0960-1317/13/5/315
[1] JI Xiaodong, QIAN Jiaru, XU Longhe. Experimental study of modal parameter identification in a simulated ambient-excited structure[J]. Front. Struct. Civ. Eng., 2007, 1(3): 281-285.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed