Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2010, Vol. 1 Issue (7) : 627-637    https://doi.org/10.1007/s13238-010-0089-8      PMID: 21203935
Research articles
Recent advances in the understanding of the molecular mechanisms regulating platelet integrin αIIbβ3 activation
Lanlan Tao1,Xiaodong Xi1,Yue Zhang2,Nelly Kieffer2,
1.Sino-French Research Center for Life Sciences and Genomics (CNRS/LIA-124), Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China;State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China; 2.Sino-French Research Center for Life Sciences and Genomics (CNRS/LIA-124), Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China;
 Download: PDF(365 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Integrins are allosteric cell adhesion receptors that cycle from a low to a high affinity ligand binding state, a complex process of receptor activation that is of particular importance in blood cells such as platelets or leukocytes. Here we highlight recent progress in the understanding of the molecular pathways that regulate integrin activation in platelets and leukocytes, with a special focus on the structural changes in platelet integrin αIIbβ3 brought about by key intracellular proteins, namely talin and kindlins, that are of crucial importance in the regulation of integrin function. Evidence that the small GTPase Rap1 and its guanine exchange factor CalDAG-GEF1, together with RIAM, a Rap1GTP adaptor protein, promote the interaction of talin with the integrin β subunit, has greatly contributed to fill the gap in our understanding of the signaling pathway from G-coupled agonist receptors and their phospholipase C-dependant second messengers, to integrin activation. Studies of patients with the rare blood cell disorder LAD-III have contributed to the identification of kindlins as new co-regulators of the talin-dependent integrin activation process in platelets and leukocytes, underlining the relevance for the in-depth investigation of patients with rare genetic blood cell disorders.
Issue Date: 01 July 2010
 Cite this article:   
Xiaodong Xi,Lanlan Tao,Yue Zhang, et al. Recent advances in the understanding of the molecular mechanisms regulating platelet integrin αIIbβ3 activation[J]. Protein Cell, 2010, 1(7): 627-637.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-010-0089-8
https://academic.hep.com.cn/pac/EN/Y2010/V1/I7/627
Abram, C.L., and Lowell, C.A. (2009). The ins and outs of leukocyte integrin signaling. Annu Rev Immunol 27, 339–362.

doi: 10.1146/annurev.immunol.021908.132554
Anthis, N.J., Wegener, K.L., Ye, F., Kim, C., Goult, B.T., Lowe, E.D., Vakonakis, I., Bate, N., Critchley, D.R., Ginsberg, M.H., et al. (2009). The structure of an integrin/talincomplex reveals the basis of inside-out signal transduction. EMBO J 28, 3623–3632.

doi: 10.1038/emboj.2009.287
Arias-Salgado, E.G., Lizano, S., Sarkar, S., Brugge, J.S., Ginsberg, M.H., and Shattil, S.J. (2003). Src kinase activation by direct interaction with the integrin beta cytoplasmicdomain. Proc Natl Acad Sci U S A 100, 13298–13302.

doi: 10.1073/pnas.2336149100
Beckerle, M.C., Miller, D.E., Bertagnolli, M.E., and Locke, S.J. (1989). Activation-dependent redistribution of the adhesion plaque protein, talin, in intact humanplatelets. J Cell Biol 109, 3333–3346.

doi: 10.1083/jcb.109.6.3333
Bergmeier, W., Goerge, T., Wang, H.W., Crittenden, J.R., Baldwin, A.C., Cifuni, S.M., Housman, D.E., Graybiel, A.M., and Wagner, D.D. (2007). Mice lacking the signaling molecule CalDAG-GEFI represent a model for leukocyteadhesion deficiency type III. J Clin Invest 117, 1699–1707.
Bouaouina, M., Lad, Y., and Calderwood, D.A. (2008). The N-terminal domains of talin cooperate with the phosphotyrosine binding-likedomain to activate beta1 and beta3 integrins. J Biol Chem 283, 6118–6125.

doi: 10.1074/jbc.M709527200
Bunch, T.A. (2010). Integrin alphaIIbbeta3 activationin Chinese hamster ovary cells and platelets increases clusteringrather than affinity. J Biol Chem 285, 1841–1849.

doi: 10.1074/jbc.M109.057349
Calderwood, D.A., and Ginsberg, M.H. (2003). Talin forges the links between integrins and actin. Nat Cell Biol 5, 694–697.

doi: 10.1038/ncb0803-694
Calderwood, D.A., Zent, R., Grant, R., Rees, D.J., Hynes, R.O., and Ginsberg, M.H. (1999). The Talin head domain binds to integrin beta subunit cytoplasmic tailsand regulates integrin activation. J Biol Chem 274, 28071–28074.

doi: 10.1074/jbc.274.40.28071
Calderwood, D.A., Yan, B., de Pereda, J.M., Alvarez, B.G., Fujioka, Y., Liddington, R.C., and Ginsberg, M.H. (2002). The phosphotyrosine binding-like domain of talin activates integrins. J Biol Chem 277, 21749–21758.

doi: 10.1074/jbc.M111996200
Critchley, D.R. (2009). Biochemical and structural propertiesof the integrin-associated cytoskeletal protein talin. Annu Rev Biophys 38, 235–254.

doi: 10.1146/annurev.biophys.050708.133744
Crittenden, J.R., Bergmeier, W., Zhang, Y., Piffath, C.L., Liang, Y., Wagner, D.D., Housman, D.E., and Graybiel, A.M. (2004). CalDAG-GEFI integrates signaling for platelet aggregationand thrombus formation. Nat Med 10, 982–986.

doi: 10.1038/nm1098
Dowling, J.J., Vreede, A.P., Kim, S., Golden, J., and Feldman, E.L. (2008). Kindlin-2 is required for myocyte elongation and isessential for myogenesis. BMC Cell Biol 9, 36.

doi: 10.1186/1471-2121-9-36
Friedland, J.C., Lee, M.H., and Boettiger, D. (2009). Mechanically activated integrin switch controls alpha5beta1 function. Science 323, 642–644.

doi: 10.1126/science.1168441
García-Alvarez, B., de Pereda, J.M., Calderwood, D.A., Ulmer, T.S., Critchley, D., Campbell, I.D., Ginsberg, M.H., and Liddington, R.C. (2003). Structural determinants of integrin recognition by talin. Mol Cell 11, 49–58.

doi: 10.1016/S1097-2765(02)00823-7
Geiger, B., Spatz, J.P., and Bershadsky, A.D. (2009). Environmental sensing through focal adhesions. Nat Rev Mol Cell Biol 10, 21–33.

doi: 10.1038/nrm2593
Gingras, A.R., Ziegler, W.H., Bobkov, A.A., Joyce, M.G., Fasci, D., Himmel, M., Rothemund, S., Ritter, A., Grossmann, J.G., Patel, B., et al. (2009). Structural determinants of integrin binding to the talin rod. J Biol Chem 284, 8866–8876.

doi: 10.1074/jbc.M805937200
Han, J., Lim, C.J., Watanabe, N., Soriani, A., Ratnikov, B., Calderwood, D.A., Puzon-McLaughlin, W., Lafuente, E.M., Boussiotis, V.A., Shattil, S.J., et al. (2006). Reconstructing and deconstructing agonist-induced activation of integrin alphaIIbbeta3. Curr Biol 16, 1796–1806.

doi: 10.1016/j.cub.2006.08.035
Harburger, D.S., and Calderwood, D.A. (2009). Integrin signalling at a glance. J Cell Sci 122, 159–163.

doi: 10.1242/jcs.018093
Harburger, D.S., Bouaouina, M., and Calderwood, D.A. (2009). Kindlin-1 and -2 directly bind the C-terminal region of beta integrin cytoplasmictails and exert integrin-specific activation effects. J Biol Chem 284, 11485–11497.

doi: 10.1074/jbc.M809233200
Horwitz, A., Duggan, K., Buck, C., Beckerle, M.C., and Burridge, K. (1986). Interaction of plasma membrane fibronectin receptorwith talin—a transmembrane linkage. Nature 320, 531–533.

doi: 10.1038/320531a0
Hughes, P.E., Diaz-Gonzalez, F., Leong, L., Wu, C., McDonald, J.A., Shattil, S.J., and Ginsberg, M.H. (1996). Breaking the integrin hinge. A defined structural constraint regulates integrinsignaling. J Biol Chem 271, 6571–6574.
Hynes, R.O. (2002). Integrins: bidirectional, allostericsignaling machines. Cell 110, 673–687.
Kim, C., Lau, T.L., Ulmer, T.S., and Ginsberg, M.H. (2009). Interactions of platelet integrin alphaIIb and beta3transmembrane domains in mammalian cell membranes and their role inintegrin activation. Blood 113, 4747–4753.

doi: 10.1182/blood-2008-10-186551
Kinashi, T., Aker, M., Sokolovsky-Eisenberg, M., Grabovsky, V., Tanaka, C., Shamri, R., Feigelson, S., Etzioni, A., and Alon, R. (2004). LAD-III, a leukocyte adhesion deficiency syndrome associated with defectiveRap1 activation and impaired stabilization of integrin bonds. Blood 103, 1033–1036.

doi: 10.1182/blood-2003-07-2499
Kindler, T. (1954). Congenital poikiloderma with traumaticbulla formation and progressive cutaneous atrophy. Br J Dermatol 66, 104–111.

doi: 10.1111/j.1365-2133.1954.tb12598.x
Kloeker, S., Major, M.B., Calderwood, D.A., Ginsberg, M.H., Jones, D.A., and Beckerle, M.C. (2004). The Kindler syndrome protein is regulated by transforming growth factor-betaand involved in integrin-mediated adhesion. J Biol Chem 279, 6824–6833.

doi: 10.1074/jbc.M307978200
Krüger, M., Moser, M., Ussar, S., Thievessen, I., Luber, C.A., Forner, F., Schmidt, S., Zanivan, S., F?ssler, R., and Mann, M. (2008). SILAC mouse for quantitative proteomics uncovers kindlin-3 as an essential factorfor red blood cell function. Cell 134, 353–364.
Kuijpers, T.W., van de Vijver, E., Weterman, M.A., de Boer, M., Tool, A.T., van den Berg, T.K., Moser, M., Jakobs, M.E., Seeger, K., Sanal, O., et al. (2009). LAD-1/variant syndrome is caused by mutations in FERMT3. Blood 113, 4740–4746.

doi: 10.1182/blood-2008-10-182154
Larjava, H., Plow, E.F., and Wu, C. (2008). Kindlins:essential regulators of integrin signalling and cell-matrix adhesion. EMBO Rep 9, 1203–1208.

doi: 10.1038/embor.2008.202
Lau, T.L., Kim, C., Ginsberg, M.H., and Ulmer, T.S. (2009). The structure of the integrin alphaIIbbeta3 transmembrane complex explains integrintransmembrane signalling. EMBO J 28, 1351–1361.

doi: 10.1038/emboj.2009.63
Lee, H.S., Lim, C.J., Puzon-McLaughlin, W., Shattil, S.J., and Ginsberg, M.H. (2009). RIAM activates integrins by linking talin to ras GTPasemembrane-targeting sequences. J Biol Chem 284, 5119–5127.

doi: 10.1074/jbc.M807117200
Legate, K.R., Monta?ez, E., Kudlacek, O., and F?ssler, R. (2006). ILK, PINCH and parvin: the tIPP of integrin signalling. Nat Rev Mol Cell Biol 7, 20–31.

doi: 10.1038/nrm1789
Luo, B.H., Carman, C.V., and Springer, T.A. (2007). Structural basis of integrin regulation and signaling. Annu Rev Immunol 25, 619–647.

doi: 10.1146/annurev.immunol.25.022106.141618
Ma, Y.Q., Qin, J., and Plow, E.F. (2007). Platelet integrin alpha(IIb)beta(3): activation mechanisms. J Thromb Haemost 5, 1345–1352.

doi: 10.1111/j.1538-7836.2007.02537.x
Ma, Y.Q., Qin, J., Wu, C., and Plow, E.F. (2008). Kindlin-2 (Mig-2): a co-activator of beta3 integrins. J Cell Biol 181, 439–446.

doi: 10.1083/jcb.200710196
Mackinnon, A.C., Qadota, H., Norman, K.R., Moerman, D.G., and Williams, B.D. (2002). C. elegans PAT-4/ILK functions as an adaptor proteinwithin integrin adhesion complexes. Curr Biol 12, 787–797.

doi: 10.1016/S0960-9822(02)00810-2
Moes, M., Rodius, S., Coleman, S.J., Monkley, S.J., Goormaghtigh, E., Tremuth, L., Kox, C., van der Holst, P.P., Critchley, D.R., and Kieffer, N. (2007). The integrin binding site 2 (IBS2) in the talin rod domain is essential for linking integrinbeta subunits to the cytoskeleton. J Biol Chem 282, 17280–17288.

doi: 10.1074/jbc.M611846200
Montanez, E., Ussar, S., Schifferer, M., B?sl, M., Zent, R., Moser, M., and F?ssler, R. (2008). Kindlin-2 controls bidirectional signaling of integrins. Genes Dev 22, 1325–1330.

doi: 10.1101/gad.469408
Mory, A., Feigelson, S.W., Yarali, N., Kilic, S.S., Bayhan, G.I., Gershoni-Baruch, R., Etzioni, A., and Alon, R. (2008). Kindlin-3: a new gene involved in the pathogenesis ofLAD-III. Blood 112, 2591.

doi: 10.1182/blood-2008-06-163162
Moser, M., Nieswandt, B., Ussar, S., Pozgajova, M., and F?ssler, R. (2008). Kindlin-3 is essential for integrin activation and plateletaggregation. Nat Med 14, 325–330.

doi: 10.1038/nm1722
Moser, M., Bauer, M., Schmid, S., Ruppert, R., Schmidt, S., Sixt, M., Wang, H.V., Sperandio, M., and F?ssler, R. (2009). Kindlin-3 is required for beta2 integrin-mediated leukocyte adhesion to endothelialcells. Nat Med 15, 300–305.

doi: 10.1038/nm.1921
Nurden, A.T. (2006). Glanzmann thrombasthenia. Orphanet J Rare Dis 1, 10–20.

doi: 10.1186/1750-1172-1-10
Pasvolsky, R., Feigelson, S.W., Kilic, S.S., Simon, A.J., Tal-Lapidot, G., Grabovsky, V., Crittenden, J.R., Amariglio, N., Safran, M., Graybiel, A.M., et al. (2007). A LAD-III syndrome is associatedwith defective expression of the Rap-1 activator CalDAG-GEFI in lymphocytes,neutrophils, and platelets. J Exp Med 204, 1571–1582.
Rivera, J., Lozano, M.L., Navarro-Nú?ez, L., and Vicente, V. (2009). Platelet receptors and signaling in the dynamics of thrombus formation. Haematologica 94, 700–711.

doi: 10.3324/haematol.2008.003178
Rodius, S., Chaloin, O., Moes, M., Schaffner-Reckinger, E., Landrieu, I., Lippens, G., Lin, M., Zhang, J., and Kieffer, N. (2008). The talin rod IBS2 alpha-helix interacts with the beta3integrin cytoplasmic tail membrane-proximal helix by establishingcharge complementary salt bridges. J Biol Chem 283, 24212–24223.

doi: 10.1074/jbc.M709704200
Rogalski, T.M., Mullen, G.P., Gilbert, M.M., Williams, B.D., and Moerman, D.G. (2000). The UNC-112 gene in Caenorhabditis elegans encodes anovel component of cell-matrix adhesion structures required for integrinlocalization in the muscle cell membrane. J Cell Biol 150, 253–264.

doi: 10.1083/jcb.150.1.253
Saltel, F., Mortier, E., Hyt?nen, V.P., Jacquier, M.C., Zimmermann, P., Vogel, V., Liu, W., and Wehrle-Haller, B. (2009). New PI(4,5)P2- and membrane proximal integrin-bindingmotifs in the talin head control beta3-integrin clustering. J Cell Biol 187, 715–731.

doi: 10.1083/jcb.200908134
Savage, B., Almus-Jacobs, F., and Ruggeri, Z.M. (1998). Specific synergy of multiple substrate-receptor interactions in platelet thrombusformation under flow. Cell 94, 657–666.
Shattil, S.J., Cunningham, M., and Hoxie, J.A. (1987). Detection of activated platelets in whole blood using activation-dependent monoclonalantibodies and flow cytometry. Blood 70, 307–315.
Shi, X., Ma, Y.Q., Tu, Y., Chen, K., Wu, S., Fukuda, K., Qin, J., Plow, E.F., and Wu, C. (2007). The MIG-2/integrin interaction strengthens cell-matrixadhesion and modulates cell motility. J Biol Chem 282, 20455–20466.

doi: 10.1074/jbc.M611680200
Shimaoka, M., Takagi, J., and Springer, T.A. (2002). Conformational regulation of integrin structure and function. Annu Rev Biophys Biomol Struct 31, 485–516.

doi: 10.1146/annurev.biophys.31.101101.140922
Siegel, D.H., Ashton, G.H., Penagos, H.G., Lee, J.V., Feiler, H.S., Wilhelmsen, K.C., South, A.P., Smith, F.J., Prescott, A.R., Wessagowit, V., et al. (2003). Loss of kindlin-1, a humanhomolog of the Caenorhabditis elegans actin-extracellular-matrix linkerprotein UNC-112, causes Kindler syndrome. Am J Hum Genet 73, 174–187.

doi: 10.1086/376609
Su, X., Mi, J., Yan, J., Flevaris, P., Lu, Y., Liu, H., Ruan, Z., Wang, X., Kieffer, N., Chen, S., et al. (2008). RGT, a synthetic peptide corresponding to the integrin beta 3 cytoplasmicC-terminal sequence, selectively inhibits outside-in signaling inhuman platelets by disrupting the interaction of integrin alpha IIbbeta 3 with Src kinase. Blood 112, 592–602.

doi: 10.1182/blood-2007-09-110437
Svensson, L., Howarth, K., McDowall, A., Patzak, I., Evans, R., Ussar, S., Moser, M., Metin, A., Fried, M., Tomlinson, I., et al. (2009). Leukocyte adhesion deficiency-III is caused by mutations in KINDLIN3 affecting integrin activation. Nat Med 15, 306–312.

doi: 10.1038/nm.1931
Tadokoro, S., Shattil, S.J., Eto, K., Tai, V., Liddington, R.C., de Pereda, J.M., Ginsberg, M.H., and Calderwood, D.A. (2003). Talin binding to integrin beta tails: a final commonstep in integrin activation. Science 302, 103–106.

doi: 10.1126/science.1086652
Tanentzapf, G., and Brown, N.H. (2006). An interaction between integrin and the talin FERM domainmediates integrin activation but not linkage to the cytoskeleton. Nat Cell Biol 8, 601–606.

doi: 10.1038/ncb1411
Tremuth, L., Kreis, S., Melchior, C., Hoebeke, J., Rondé, P., Plan?on, S., Takeda, K., and Kieffer, N. (2004). A fluorescence cell biology approach to map the secondintegrin-binding site of talin to a 130-amino acid sequence withinthe rod domain. J Biol Chem 279, 22258–22266.

doi: 10.1074/jbc.M400947200
Tu, Y., Wu, S., Shi, X., Chen, K., and Wu, C. (2003). Migfilinand Mig-2 link focal adhesions to filamin and the actin cytoskeletonand function in cell shape modulation. Cell 113, 37–47.
Ussar, S., Wang, H.V., Linder, S., F?ssler, R., and Moser, M. (2006). The Kindlins: subcellular localization and expression during murine development. Exp Cell Res 312, 3142–3151.

doi: 10.1016/j.yexcr.2006.06.030
Ussar, S., Moser, M., Widmaier, M., Rognoni, E., Harrer, C., Genzel-Boroviczeny, O., F?ssler, R., and van Heyningen, V. (2008). Loss of Kindlin-1 causes skin atrophy and lethal neonatal intestinal epithelialdysfunction. PLoS Genet 4, e1000289.

doi: 10.1371/journal.pgen.1000289
Vinogradova, O., Velyvis, A., Velyviene, A., Hu, B., Haas, T., Plow, E., and Qin, J. (2002). A structural mechanism of integrin alpha(IIb)beta(3) “inside-out” activation as regulated by its cytoplasmicface. Cell 110, 587–597.
Watanabe, N., Bodin, L., Pandey, M., Krause, M., Coughlin, S., Boussiotis, V.A., Ginsberg, M.H., and Shattil, S.J. (2008). Mechanisms and consequences of agonist-induced talinrecruitment to platelet integrin alphaIIbbeta3. J Cell Biol 181, 1211–1222.

doi: 10.1083/jcb.200803094
Wegener, K.L., Partridge, A.W., Han, J., Pickford, A.R., Liddington, R.C., Ginsberg, M.H., and Campbell, I.D. (2007). Structural basis of integrin activation by talin. Cell 128, 171–182.
Weinstein, E.J., Bourner, M., Head, R., Zakeri, H., Bauer, C., and Mazzarella, R. (2003). URP1: a member of a novel family of PH and FERM domain-containing membrane-associatedproteins is significantly over-expressed in lung and colon carcinomas. Biochim Biophys Acta 1637, 207–216.
Wu, C. (2005). Migfilin and its binding partners:from cell biology to human diseases. J Cell Sci 118, 659–664.

doi: 10.1242/jcs.01639
Xiong, J.P., Stehle, T., Diefenbach, B., Zhang, R., Dunker, R., Scott, D.L., Joachimiak, A., Goodman, S.L., and Arnaout, M.A. (2001). Crystal structure of the extracellular segment of integrin alpha Vbeta3. Science 294, 339–345.

doi: 10.1126/science.1064535
Xiong, J.P., Stehle, T., Goodman, S.L., and Arnaout, M.A. (2003). New insights into the structural basis of integrin activation. Blood 102, 1155–1159.

doi: 10.1182/blood-2003-01-0334
Ye, F., Hu, G., Taylor, D., Ratnikov, B., Bobkov, A.A., McLean, M.A., Sligar, S.G., Taylor, K.A., and Ginsberg, M.H. (2010). Recreation of the terminal events in physiological integrin activation. J Cell Biol 188, 157–173.

doi: 10.1083/jcb.200908045
Zhu, J., Luo, B.H., Barth, P., Schonbrun, J., Baker, D., and Springer, T.A. (2009). The structure of a receptor with two associating transmembrane domainson the cell surface: integrin alphaIIbbeta3. Mol Cell 34, 234–249.

doi: 10.1016/j.molcel.2009.02.022
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed