Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Prot Cell    2013, Vol. 4 Issue (8) : 628-640    https://doi.org/10.1007/s13238-013-3033-x      PMID: 23828196
RESEARCH ARTICLE
Structure analysis of the extracellular domain reveals disulfide bond forming-protein properties of Mycobacterium tuberculosis Rv2969c
Lu Wang1,2, Jun Li1,2, Xiangxi Wang1,2, Wu Liu1, Xuejun C. Zhang1, Xuemei Li1, Zihe Rao1,3()
1. National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; 2. University of Chinese Academy of Sciences, Beijing, China; 3. Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China
 Download: PDF(1503 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Disulfide bond-forming (Dsb) protein is a bacterial periplasmic protein that is essential for the correct folding and disulfide bond formation of secreted or cell wallassociated proteins. DsbA introduces disulfide bonds into folding proteins, and is re-oxidized through interaction with its redox partner DsbB. Mycobacterium tuberculosis, a Gram-positive bacterium, expresses a DsbA-like protein ( Rv2969c), an extracellular protein that has its Nterminus anchored in the cell membrane. Since Rv2969c is an essential gene, crucial for disulfide bond formation, research of DsbA may provide a target of a new class of anti-bacterial drugs for treatment of M.tuberculosis infection. In the present work, the crystal structures of theextracellular region of Rv2969c (Mtb DsbA) were determined in both its reduced and oxidized states. The overall structure of Mtb DsbA can be divided into two domains: a classical thioredoxin-like domain with a typical CXXC active site, and an α-helical domain. It largely resembles its Escherichiacoli homologue EcDsbA, however, it possesses a truncated binding groove; in addition, its active site is surrounded by an acidic, rather than hydrophobic surface. In our oxidoreductase activity assay, Mtb DsbA exhibited a different substrate specificity when compared to EcDsbA. Moreover, structural analysis revealed a second disulfide bond in Mtb DsbA, which is rare in the previously reported DsbA structures, and is assumed to contribute to the overall stability of Mtb DsbA. To investigate the disulphide formation pathway in M.tuberculosis, we modeled Mtb Vitamin K epoxide reductase (Mtb VKOR), a binding partner of Mtb DsbA, to Mtb DsbA.

Keywords Mycobacterium tuberculosis      disulfide bond forming protein      X-ray crystallography     
Corresponding Author(s): Rao Zihe,Email:raozh@xtal.tsinghua.edu.cn   
Issue Date: 01 August 2013
 Cite this article:   
Lu Wang,Jun Li,Xiangxi Wang, et al. Structure analysis of the extracellular domain reveals disulfide bond forming-protein properties of Mycobacterium tuberculosis Rv2969c[J]. Prot Cell, 2013, 4(8): 628-640.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-013-3033-x
https://academic.hep.com.cn/pac/EN/Y2013/V4/I8/628
1 Alphey, M.S., Gabrielsen, M., Micossi, E., Leonard, G.A., McSweeney, S.M., Ravelli, R.B., Tetaud, E., Fairlamb, A.H., Bond, C.S., and Hunter, W.N. (2003). Tryparedoxins from Crithidia fasciculata and Trypanosoma brucei: photoreduction of the redox disulfide using synchrotron radiation and evidence for a conformational switch implicated in function. J Biol Chem 278, 25919-25925 .
doi: 10.1074/jbc.M301526200
2 Chim, N., Riley, R., The, J., Im, S., Segelke, B., Lekin, T., Yu, M., Hung, L.W., Terwilliger, T., Whitelegge, J.P., . (2010). An extracellular disulfide bond forming protein (DsbF) from Mycobacterium tuberculosis: structural, biochemical, and gene expression analysis. J Mol Biol 396, 1211-1226 .
doi: 10.1016/j.jmb.2009.12.060
3 Comas, I., and Gagneux, S. (2009). The past and future of tuberculosis research. PLoS Pathog 5, e1000600.
doi: 10.1371/journal.ppat.1000600
4 Crow, A., Lewin, A., Hecht, O., Carlsson Moller, M., Moore, G.R., Hederstedt, L., and Le Brun, N.E. (2009a). Crystal structure and biophysical properties of Bacillus subtilis BdbD. An oxidizing thiol:disulfide oxidoreductase containing a novel metal site. J Biol Chem 284, 23719-23733 .
doi: 10.1074/jbc.M109.005785
5 Crow, A., Liu, Y., Moller, M.C., Le Brun, N.E., and Hederstedt, L. (2009b). Structure and functional properties of Bacillus subtilis en- dospore biogenesis factor StoA. J Biol Chem 284, 10056-10066 .
doi: 10.1074/jbc.M809566200
6 Daniels, R., Mellroth, P., Bernsel, A., Neiers, F., Normark, S., von Heijne, G., and Henriques-Normark, B. (2010). Disulfide bond formation and cysteine exclusion in gram-positive bacteria. J Biol Chem 2 85, 3300-3309.
doi: 10.1074/jbc.M109.081398
7 DeLano, W.L. (2002). The PyMOL Molecular Graphics System. De-Lano Scientific, San Carlos, CA, USA .
8 Denoncin, K., and Collet, J.F. (2012). Disulfide bond formation in the bacterial periplasm: major achievements and challenges ahead. Antioxid Redox Signal 19, 63-71 .
doi: 10.1089/ars.2012.4864
9 Depuydt, M., Messens, J., and Collet, J.F. (2011). How proteins form disulfide bonds. Antioxid Redox Signal 15, 49-66 .
doi: 10.1089/ars.2010.3575
10 Dorenbos, R., Stein, T., Kabel, J., Bruand, C., Bolhuis, A., Bron, S., Quax, W.J., and Van Dijl, J.M. (2002). Thiol-disulfide oxidoreductases are essential for the production of the lantibiotic sublancin 168. J Biol Chem 277, 16682-16688 .
doi: 10.1074/jbc.M201158200
11 Dumoulin, A., Grauschopf, U., Bischoff, M., Thony-Meyer, L., and Berger- Bachi, B. (2005). Staphylococcus aureus DsbA is a membranebound lipoprotein with thiol-disulfide oxidoreductase activity. Arch Microbiol 184, 117-128 .
doi: 10.1007/s00203-005-0024-1
12 Dutton, R.J., Boyd, D., Berkmen, M., and Beckwith, J. (2008). Bacterial species exhibit diversity in their mechanisms and capacity for protein disulfide bond formation. Proc Natl Acad Sci U S A 105, 11933-11938 .
doi: 10.1073/pnas.0804621105
13 Dutton, R.J., Wayman, A., Wei, J.R., Rubin, E.J., Beckwith, J., and Boyd, D. (2010). Inhibition of bacterial disulfide bond formation by the anticoagulant warfarin. Proc Natl Acad Sci U S A 107, 297-301 .
doi: 10.1073/pnas.0912952107
14 Emsley, P., and Cowtan, K. (2004). Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60, 2126-2132 .
doi: 10.1107/S0907444904019158
15 Emsley, P., Lohkamp, B., Scott, W.G., and Cowtan, K. (2010). Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66, 486-501 .
doi: 10.1107/S0907444910007493
16 Ericsson, U.B., Hallberg, B.M., DeTitta, G.T., Dekker, N., and Nordlund, P. (2006). Thermofluor-based high-throughput stability optimization of proteins for structural studies. Anal Biochem 357, 289-298 .
doi: 10.1016/j.ab.2006.07.027
17 Erlendsson, L.S., Acheson, R.M., Hederstedt, L., and Le Brun, N.E. (2003). Bacillus subtilis ResA is a thiol-disulfide oxidoreductase involved in cytochrome csynthesis. J Biol Chem 278, 17852-17858 .
doi: 10.1074/jbc.M300103200
18 Erlendsson, L.S., and Hederstedt, L. (2002). Mutations in the thiol-disulfide oxidoreductases BdbC and BdbD can suppress cytochrome c deficiency of CcdA-defective Bacillus subtilis cells. J Bacteriol 184, 1423-1429 .
doi: 10.1128/JB.184.5.1423-1429.2002
19 Goldstone, D., Baker, E.N., and Metcalf, P. (2005). Crystallization and preliminary diffraction studies of the C-terminal domain of the DipZ homologue from Mycobacterium tuberculosis. Acta Crystallogr Sect F Struct Biol Cryst Commun 61, 243-245 .
doi: 10.1107/S1744309105001909
20 Goulding, C.W., Apostol, M., Anderson, D.H., Gill, H.S., Smith, C.V., Kuo, M.R., Yang, J.K., Waldo, G.S., Suh, S.W., Chauhan, R., . (2002). The TB structural genomics consortium: providing a structural foundation for drug discovery. Curr Drug Targets Infect Disord 2, 121-141 .
doi: 10.2174/1568005023342551
21 Goulding, C.W., Apostol, M.I., Gleiter, S., Parseghian, A., Bardwell, J., Gennaro, M., and Eisenberg, D. (2004). Gram-positive DsbE proteins function differently from Gram-negative DsbE homologs. A structure to function analysis of DsbE from Mycobacterium tuberculosis. J Biol Chem 279, 3516-3524 .
doi: 10.1074/jbc.M311833200
22 Goulding, C.W., Perry, L.J., Anderson, D., Sawaya, M.R., Cascio, D., Apostol, M.I., Chan, S., Parseghian, A., Wang, S.S., Wu, Y., . (2003). Structural genomics of Mycobacterium tuberculosis: a preliminary report of progress at UCLA. Biophys Chem 105, 361-370 .
doi: 10.1016/S0301-4622(03)00101-7
23 Hennecke, J., Sebbel, P., and Glockshuber, R. (1999). Random circular permutation of DsbA reveals segments that are essential for protein folding and stability. J Mol Biol 286, 1197-1215 .
doi: 10.1006/jmbi.1998.2531
24 Heras, B., Kurz, M., Jarrott, R., Shouldice, S.R., Frei, P., Robin, G., Cemazar, M., Thony-Meyer, L., Glockshuber, R., and Martin, J.L. (2008). Staphylococcus aureus DsbA does not have a destabilizing disulfide. A new paradigm for bacterial oxidative folding. J Biol Chem 283, 4261-4271 .
doi: 10.1074/jbc.M707838200
25 Hu, Y., Dong, X., Wu, A., Cao, Y., Tian, L., and Jiang, T. (2011). Incorporation of local structural preference potential improves fold recognition. PLoS One 6, e17215.
doi: 10.1371/journal.pone.0017215
26 Inaba, K., and Ito, K. (2008). Structure and mechanisms of the DsbBDsbA disulfide bond generation machine. Biochim Biophys Acta 1783, 520-529 .
doi: 10.1016/j.bbamcr.2007.11.006
27 Inaba, K., Murakami, S., Suzuki, M., Nakagawa, A., Yamashita, E., Okada, K., and Ito, K. (2006). Crystal structure of the DsbB-DsbA complex reveals a mechanism of disulfide bond generation. Cell 127, 789-801 .
doi: 10.1016/j.cell.2006.10.034
28 Kadokura, H., Tian, H., Zander, T., Bardwell, J.C., and Beckwith, J. (2004). Snapshots of DsbA in action: detection of proteins in the process of oxidative folding. Science 303, 534-537 .
doi: 10.1126/science.1091724
29 Krissinel, E., and Henrick, K. (2007). Inference of macromolecular assemblies from crystalline state. J Mol Biol 372, 774-797 .
doi: 10.1016/j.jmb.2007.05.022
30 Kurz, M., Iturbe-Ormaetxe, I., Jarrott, R., Shouldice, S.R., Wouters, M.A., Frei, P., Glockshuber, R., O’Neill, S.L., Heras, B., and Martin, J.L. (2009). Structural and functional characterization of the oxidoreductase alpha-DsbA1 from Wolbachia pipientis. Antioxid Redox Signal 11, 1485-1500 .
doi: 10.1089/ars.2008.2420
31 Li, W., Schulman, S., Dutton, R.J., Boyd, D., Beckwith, J., and Rapoport, T.A. (2010). Structure of a bacterial homologue of vitamin K epoxide reductase. Nature 463, 507-512 .
doi: 10.1038/nature08720
32 Martin, J.L., Bardwell, J.C., and Kuriyan, J. (1993). Crystal structure of the DsbA protein required for disulphide bond formation in vivo. Nature 365, 464-468 .
doi: 10.1038/365464a0
33 Matthews, B.W. (1968). Solvent content of protein crystals. J Mol Biol 33, 491-497 .
doi: 10.1016/0022-2836(68)90205-2
34 McCarthy, A.A., Haebel, P.W., Torronen, A., Rybin, V., Baker, E.N., and Metcalf, P. (2000). Crystal structure of the protein disulfide bond isomerase, DsbC, from Escherichia coli. Nat Struct Biol 7, 196-199 .
doi: 10.1038/73295
35 Meima, R., Eschevins, C., Fillinger, S., Bolhuis, A., Hamoen, L.W., Dorenbos, R., Quax, W.J., van Dijl, J.M., Provvedi, R., Chen, I., . (2002). The bdbDC operon of Bacillus subtilis encodes thioldisulfide oxidoreductases required for competence development. J Biol Chem 277, 6994-7001 .
doi: 10.1074/jbc.M111380200
36 Messens, J., and Collet, J.F. (2006). Pathways of disulfide bond formation in Escherichia coli. Int J Biochem Cell Biol 38, 1050-1062 .
doi: 10.1016/j.biocel.2005.12.011
37 Otwinowski, Z., and Minor, W. (1997). Processing of X-ray diffraction data collected in oscillation mode. Method Enzymol 276, 307-326 .
doi: 10.1016/S0076-6879(97)76066-X
38 Paxman, J.J., Borg, N.A., Horne, J., Thompson, P.E., Chin, Y., Sharma, P., Simpson, J.S., Wielens, J., Piek, S., Kahler, C.M., . (2009). The structure of the bacterial oxidoreductase enzyme DsbA in complex with a peptide reveals a basis for substrate specificity in the catalytic cycle of DsbA enzymes. J Biol Chem 284, 17835-17845 .
doi: 10.1074/jbc.M109.011502
39 Reid, E., Cole, J., and Eaves, D.J. (2001). The Escherichia coli CcmG protein fulfils a specific role in cytochrome c assembly. Biochem J 355, 51-58 .
doi: 10.1042/0264-6021:3550051
40 Shao, F., Bader, M.W., Jakob, U., and Bardwell, J.C. (2000). DsbG, a protein disulfide isomerase with chaperone activity. J Biol Chem 275, 13349-13352 .
doi: 10.1074/jbc.275.18.13349
41 Shouldice, S.R., Heras, B., Walden, P.M., Totsika, M., Schembri, M.A., and Martin, J.L. (2011). Structure and function of DsbA, a key bacterial oxidative folding catalyst. Antioxid Redox Signal 14, 1729-1760 .
doi: 10.1089/ars.2010.3344
42 Stewart, E.J., Katzen, F., and Beckwith, J. (1999). Six conserved cysteines of the membrane protein DsbD are required for the transfer of electrons from the cytoplasm to the periplasm of Escherichia coli. EMBO J 18, 5963-5971 .
doi: 10.1093/emboj/18.21.5963
43 Trott, O., and Olson, A.J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31, 455-461 .
44 Wang, C., Chen, S., Wang, X., Wang, L., Wallis, A.K., Freedman, R.B., and Wang, C.C. (2010). Plasticity of human protein disulfide isomerase: evidence for mobility around the X-linker region and its functional significance. J Biol Chem 285, 26788-26797 .
doi: 10.1074/jbc.M110.107839
45 Wang, X., Dutton, R.J., Beckwith, J., and Boyd, D. (2011). Membrane topology and mutational analysis of Mycobacterium tuberculosis VKOR, a protein involved in disulfide bond formation and a homologue of human vitamin K epoxide reductase. Antioxid Redox Signal 14, 1413-1420 .
doi: 10.1089/ars.2010.3558
46 Weik, M., Ravelli, R.B., Kryger, G., McSweeney, S., Raves, M.L., Harel, M., Gros, P., Silman, I., Kroon, J., and Sussman, J.L. (2000). Specific chemical and structural damage to proteins produced by synchrotron radiation. Proc Natl Acad Sci U S A 97, 623-628 .
doi: 10.1073/pnas.97.2.623
47 Yang, Q., Yu, K., Yan, L., Li, Y., Chen, C., and Li, X. (2011). Structural view of the regulatory subunit of aspartate kinase from Mycobacterium tuberculosis. Protein Cell 2, 745-754 .
doi: 10.1007/s13238-011-1094-2
[1] Lu Zhang, Yao Zhao, Ruogu Gao, Jun Li, Xiuna Yang, Yan Gao, Wei Zhao, Sudagar S. Gurcha, Natacha Veerapen, Sarah M. Batt, Kajelle Kaur Besra, Wenqing Xu, Lijun Bi, Xian’en Zhang, Luke W. Guddat8, Haitao Yang, Quan Wang, Gurdyal S. Besra, Zihe Rao. Cryo-EM snapshots of mycobacterial arabinosyltransferase complex EmbB2-AcpM2[J]. Protein Cell, 2020, 11(7): 505-517.
[2] Shuhui Wang, Kaixuan Zhou, Xiaolin Yang, Bing Zhang, Yao Zhao, Yu Xiao, Xiuna Yang, Haitao Yang, Luke W. Guddat, Jun Li, Zihe Rao. Structural insights into substrate recognition by the type VII secretion system[J]. Protein Cell, 2020, 11(2): 124-137.
[3] Yu Dong,Xiaodi Qiu,Neil Shaw,Yueyang Xu,Yuna Sun,Xuemei Li,Jun Li,Zihe Rao. Molecular basis for the inhibition of β-hydroxyacyl-ACP dehydratase HadAB complex from Mycobacterium tuberculosis by flavonoid inhibitors[J]. Protein Cell, 2015, 6(7): 504-517.
[4] Fuyun Wu,Xiaoyu Hu,Xin Bian,Xinqi Liu,Junjie Hu. Comparison of human and Drosophila atlastin GTPases[J]. Protein Cell, 2015, 6(2): 139-146.
[5] Guanghua Xu,Jing Wang,George Fu Gao,Cui Hua Liu. Insights into battles between Mycobacterium tuberculosis and macrophages[J]. Protein Cell, 2014, 5(10): 728-736.
[6] Ji She, Zhifu Han, Bin Zhou, Jijie Chai. Structural basis for differential recognition of brassinolide by its receptors[J]. Prot Cell, 2013, 4(6): 475-482.
[7] Qingzhu Yang, Kun Yu, Liming Yan, Yuanyuan Li, Cheng Chen, Xuemei Li. Structural view of the regulatory subunit of aspartate kinase from Mycobacterium tuberculosis[J]. Prot Cell, 2011, 2(9): 745-754.
[8] Zhiyong Lou, Xiaoxue Zhang. Protein targets for structure-based anti-Mycobacterium tuberculosis drug discovery[J]. Prot Cell, 2010, 1(5): 435-442.
[9] Areej M. Abuhammad, Edward D. Lowe, Elizabeth Fullam, Martin Noble, Elspeth F. Garman, Edith Sim. Probing the architecture of the Mycobacterium marinum arylamine N-acetyltransferase active site[J]. Prot Cell, 2010, 1(4): 384-392.
[10] Isaac M. Westwood, Sanjib Bhakta, Angela J. Russell, Elizabeth Fullam, Akane Kawamura, Matthew C. Anderton, Edith Sim, Andrew W. Mulvaney, Richard J. Vickers, Stephen G. Davies, Veemal Bhowruth, Gurdyal S. Besra, Ajit Lalvani, . Identification of arylamine N -acetyltransferase inhibitors as an approach towards novel anti-tuberculars[J]. Protein Cell, 2010, 1(1): 82-95.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed