Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2014, Vol. 5 Issue (7) : 552-562    https://doi.org/10.1007/s13238-014-0072-x
RESEARCH ARTICLE
Development of an activity-directed selection system enabled significant improvement of the carboxylation efficiency of Rubisco
Zhen Cai1,Guoxia Liu1,Junli Zhang2,Yin Li1,*()
1. CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
2. Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
 Download: PDF(2166 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Photosynthetic CO2 fixation is the ultimate source of organic carbon on earth and thus is essential for crop production and carbon sequestration. Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes the first step of photosynthetic CO2 fixation. However, the extreme low carboxylation efficiency of Rubisco makes it the most attractive target for improving photosynthetic efficiency. Extensive studies have focused on re-engineering a more efficient enzyme, but the effort has been impeded by the limited understanding of its structure-function relationships and the lack of an efficient selection system towards its activity. To address the unsuccessful molecular engineering of Rubisco, we developed an Escherichia coli-based activity-directed selection system which links the growth of host cell solely to the Rubisco activity therein. A Synechococcus sp. PCC7002 Rubisco mutant with E49V and D82G substitutions in the small subunit was selected from a total of 15,000 mutants by one round of evolution. This mutant showed an 85% increase in specific carboxylation activity and a 45% improvement in catalytic efficiency towards CO2. The small-subunit E49V mutation was speculated to influence holoenzyme catalysis through interaction with the large-subunit Q225. This interaction is conserved among various Rubisco from higher plants and Chlamydomonas reinhardtii. Knowledge of these might provide clues for engineering Rubisco from higher plants, with the potential of increasing the crop yield.

Keywords carboxylation efficiency      CO2 fixation      directed evolution      Rubisco      Synechococcus sp. PCC7002     
Corresponding Author(s): Yin Li   
Issue Date: 31 July 2014
 Cite this article:   
Zhen Cai,Guoxia Liu,Junli Zhang, et al. Development of an activity-directed selection system enabled significant improvement of the carboxylation efficiency of Rubisco[J]. Protein Cell, 2014, 5(7): 552-562.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-014-0072-x
https://academic.hep.com.cn/pac/EN/Y2014/V5/I7/552
1 Andrews TJ, Lorimer GH (1985) Catalytic properties of a hybrid between cyanobacterial large subunits and higher-plant small subunits of ribulose bisphosphate carboxylase-oxygenase. J Biol Chem260: 4632-4636
2 Bracher A, Starling-Windhof A, Hartl FU, Hayer-Hartl M (2011) Crystal structure of a chaperone-bound assembly intermediate of form I Rubisco. Nat Struct Mol Biol18: 875-880
doi: 10.1038/nsmb.2090
3 Cleland WW, Andrews TJ, Gutteridge S, Hartman FC, Lorimer GH (1998) Mechanism of Rubisco: the carbamate as general base. Chem Rev98: 549-562
doi: 10.1021/cr970010r
4 de la Pe?a TC, Sánchez-Moreiras AM, Costa XXS, Otero AM (2001) Assessment of D-ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) enzymatic activity. In: Roger MJR (ed) Handbook of plant ecophysiology techniques. Kluwer, Dordrecht
5 Du YC, Spreitzer RJ (2000) Suppressor mutations in the chloroplastencoded large subunit improve the thermal stability of wild-type ribulose-1,5-bisphosphate carboxylase/oxygenase. J Biol Chem275: 19844-19847
doi: 10.1074/jbc.M002321200
6 Du YC, Nose A, Kawamitsu Y, Murayama S, Wasano K, Uchida<?Pub Caret?> Y (1996) An improved spectrophotometric determination of the activity of ribulose 1,5-bisphosphate carboxylase. Jpn J Crop Sci65: 714-721
doi: 10.1626/jcs.65.714
7 Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science281: 237-240
doi: 10.1126/science.281.5374.237
8 Genkov T, Du YC, Spreitzer RJ (2006) Small-subunit cysteine-65 substitutions can suppress or induce alterations in the largesubunit catalytic efficiency and holoenzyme thermal stability of ribulose-1,5-bisphosphate carboxylase/oxygenase. Arch Biochem Biophys451: 167-174
doi: 10.1016/j.abb.2006.04.012
9 Genkov T, Meyer M, Griffiths H, Spreitzer RJ (2010) Functional hybrid rubisco enzymes with plant small subunits and algal large subunits: engineered rbcS cDNA for expression in chlamydomonas. J Biol Chem285: 19833-19841
doi: 10.1074/jbc.M110.124230
10 Getzoff TP, Zhu GH, Bohnert HJ, Jensen RG (1998) Chimeric Arabidopsis thaliana ribulose-1,5-bisphosphate carboxylase/oxygenase containing a pea small subunit protein is compromised in carbamylation. Plant Physiol116: 695-702
doi: 10.1104/pp.116.2.695
11 Gratz A, Jose J (2008) Protein domain library generation by overlap extension (PDLGO): a tool for enzyme engineering. Anal Biochem378: 171-176
doi: 10.1016/j.ab.2008.03.051
12 Greene DN, Whitney SM, Matsumura I (2007) Artificially evolved Synechococcus PCC6301 Rubisco variants exhibit improvements in folding and catalytic efficiency. Biochem J404: 517-524
doi: 10.1042/BJ20070071
13 Hartman FC, Harpel MR (1994) Structure, function, regulation, and assembly of D-ribulose-1,5-bisphosphate carboxylase oxygenase. Annu Rev Biochem63: 197-234
doi: 10.1146/annurev.bi.63.070194.001213
14 Higgins CF, Hiles ID, Salmond GP, Gill DR, Downie JA, Evans IJ, Holland IB, Gray L, Buckel SD, Bell AW (1986) A family of related ATP-binding subunits coupled to many distinct biological processes in bacteria. Nature323: 448-450
doi: 10.1038/323448a0
15 Hong S, Spreitzer RJ (1997) Complementing substitutions at the bottom of the barrel influence catalysis and stability of ribulosebisphosphate carboxylase/oxygenase. J Biol Chem272: 11114-11117
doi: 10.1074/jbc.272.17.11114
16 Ishikawa C, Hatanaka T, Misoo S, Miyake C, Fukayama H (2011) Functional incorporation of sorghum small subunit increases the catalytic turnover rate of Rubisco in transgenic rice. Plant Physiol156: 1603-1611
doi: 10.1104/pp.111.177030
17 Joo H, Lin Z, Arnold FH (1999) Laboratory evolution of peroxidemediated cytochrome P450 hydroxylation. Nature399: 670-673
doi: 10.1038/21395
18 Kane HJ, Wilkin JM, Portis AR, Andrews TJ (1998) Potent inhibition of ribulose-bisphosphate carboxylase by an oxidized impurity in ribulose-1,5-bisphosphate. Plant Physiol117: 1059-1069
doi: 10.1104/pp.117.3.1059
19 Karkehabadi S, Peddi SR, Anwaruzzaman M, Taylor TC, Cederlund A, Genkov T, Andersson I, Spreitzer RJ (2005) Chimeric small subunits influence catalysis without causing global conformational changes in the crystal structure of ribulose-1,5-bisphosphate carboxylase/oxygenase. Biochemistry44: 9851-9861
doi: 10.1021/bi050537v
20 Karkehabadi S, Satagopan S, Taylor TC, Spreitzer RJ, Andersson I (2007) Structural analysis of altered large-subunit loop-6/ carboxy-terminus interactions that influence catalytic efficiency and CO2/O2 specificity of ribulose-1,5-bisphosphate carboxylase/ oxygenase. Biochemistry46: 11080-11089
doi: 10.1021/bi701063f
21 Lan Y, Mott KA (1991) Determination of apparent Km values for ribulose 1,5-bisphosphate carboxylase oxygenase (Rubisco) activase using the spectrophotometric assay of Rubisco activity. Plant Physiol95: 604-609
doi: 10.1104/pp.95.2.604
22 Lilley RM, Walker DA (1974) An improved spectrophotometric assay for ribulose bisphosphate carboxylase. Biochim Biophys Acta358: 226-229
doi: 10.1016/0005-2744(74)90274-5
23 Liu C, Young AL, Starling-Windhof A, Bracher A, Saschenbrecker S, Rao BV, Rao KV, Berninghausen O, Mielke T, Hartl FU (2010) Coupled chaperone action in folding and assembly of hexadecameric Rubisco. Nature463: 197-202
doi: 10.1038/nature08651
24 Madgwick PJ, Parmar S, Parry MAJ (1998) Effect of mutations of residue 340 in the large subunit polypeptide of Rubisco from Anacystis nidulans. Eur J Biochem253: 476-479
doi: 10.1046/j.1432-1327.1998.2530476.x
25 Marcus Y, Altman-Gueta H, Finkler A, Gurevitz M (2003) Dual role of cysteine 172 in redox regulation of ribulose 1,5-bisphosphate carboxylase/oxygenase activity and degradation. J Bacteriol185: 1509-1517
doi: 10.1128/JB.185.5.1509-1517.2003
26 Marcus Y, Altman-Gueta H, Finkler A, Gurevitz M (2005) Mutagenesis at two distinct phosphate-binding sites unravels their differential roles in regulation of rubisco activation and catalysis. J Bacteriol187: 4222-4228
doi: 10.1128/JB.187.12.4222-4228.2005
27 Marcus Y, Altman-Gueta H, Wolff Y, Gurevitz M (2011) Rubisco mutagenesis provides new insight into limitations on photosynthesis and growth in Synechocystis PCC6803. J Exp Bot62: 4173-4182
doi: 10.1093/jxb/err116
28 Morell MK, Paul K, Oshea NJ, Kane HJ, Andrews TJ (1994) Mutations of an active-site threonyl residue promote betaelimination and other side reactions of the enediol intermediate of the ribulosebisphosphate carboxylase reaction. J Biol Chem269: 8091-8098
29 Moreno J, Spreitzer RJ (1999) C172S substitution in the chloroplastencoded large subunit affects stability and stress-induced turnover of ribulose-1,5-bisphosphate carboxylase/oxygenase. J Biol Chem274: 26789-26793
doi: 10.1074/jbc.274.38.26789
30 Mueller-Cajar O, Whitney SM (2008) Evolving improved Synechococcus Rubisco functional expression in Escherichia coli. Biochem J414: 205-214
doi: 10.1042/BJ20080668
31 Mueller-Cajar O, Morell M, Whitney SM (2007) Directed evolution of Rubisco in Escherichia coli reveals a specificity-determining hydrogen bond in the form II enzyme. Biochemistry46: 14067-14074
doi: 10.1021/bi700820a
32 Parikh MR, Greene DN, Woods KK, Matsumura I (2006) Directed evolution of RuBisCO hypermorphs through genetic selection in engineered E. coli. Protein Eng Des Sel19: 113-119
doi: 10.1093/protein/gzj010
33 Parry MA, Andralojc PJ, Scales JC, Salvucci ME, Carmo-Silva AE, Alonso H, Whitney SM (2013) Rubisco activity and regulation as targets for crop improvement. J Exp Bot64: 717-730
doi: 10.1093/jxb/ers336
34 Pearce FG, Andrews TJ (2003) The relationship between side reactions and slow inhibition of ribulose-bisphosphate carboxylase revealed by a loop 6 mutant of the tobacco enzyme. J Biol Chem278: 32526-32536
doi: 10.1074/jbc.M305493200
35 Satagopan S, Spreitzer RJ (2004) Substitutions at the Asp-473 latch residue of chlamydomonas ribulosebisphosphate carboxylase/oxygenase cause decreases in carboxylation efficiency and CO2/O2 specificity. J Biol Chem279: 14240-14244
doi: 10.1074/jbc.M313215200
36 Satagopan S, Scott SS, Smith TG, Tabita FR (2009) A rubisco mutant that confers growth under a normally “inhibitory” oxygen concentration. Biochemistry48: 9076-9083
doi: 10.1021/bi9006385
37 Shikanai T, Foyer CH, Dulieu H, Parry MA, Yokota A (1996) A point mutation in the gene encoding the Rubisco large subunit interferes with holoenzyme assembly. Plant Mol Biol31: 399-403
doi: 10.1007/BF00021801
38 Spreitzer RJ, Salvucci ME (2002) Rubisco: structure, regulatory interactions, and possibilities for a better enzyme. Annu Rev Plant Biol53: 449-475
doi: 10.1146/annurev.arplant.53.100301.135233
39 Spreitzer RJ, Esquivel MG, Du YC, McLaughlin PD (2001) Alaninescanning mutagenesis of the small-subunit beta A-beta B loop of chloroplast ribulose-1,5-bisphosphate carboxylase/oxygenase: substitution at Arg-71 affects thermal stability and CO2/O2 specificity. Biochemistry40: 5615-5621
doi: 10.1021/bi002943e
40 Spreitzer RJ, Peddi SR, Satagopan S (2005) Phylogenetic engineering at an interface between large and small subunits imparts land-plant kinetic properties to algal Rubisco. Proc Natl Acad Sci USA102: 17225-17230
doi: 10.1073/pnas.0508042102
41 Stec B (2012) Structural mechanism of RuBisCO activation by carbamylation of the active site lysine. Proc Natl Acad Sci USA109: 18785-18790
doi: 10.1073/pnas.1210754109
42 Tcherkez GG, Farquhar GD, Andrews TJ (2006) Despite slow catalysis and confused substrate specificity, all ribulose bisphosphate carboxylases may be nearly perfectly optimized. Proc Natl Acad Sci USA103: 7246-7251
doi: 10.1073/pnas.0600605103
43 van Lun M, van der Spoel D, Andersson I (2011) Subunit interface dynamics in hexadecameric rubisco. J Mol Biol411: 1083-1098
doi: 10.1016/j.jmb.2011.06.052
44 Ward DA, Keys AJ (1989) A comparison between the coupled spectrophotometric and uncoupled radiometric assays for RuBP carboxylase. Photosynth Res22: 167-171
doi: 10.1007/BF00035447
45 Whitney SM, Houtz RL, Alonso H (2011) Advancing our understanding and capacity to engineer nature’s CO2-sequestering enzyme, Rubisco. Plant Physiol155: 27-35
doi: 10.1104/pp.110.164814
46 Zhu XG, Long SP, Ort DR (2010) Improving photosynthetic efficiency for greater yield. Annu Rev Plant Biol61: 235-261
doi: 10.1146/annurev-arplant-042809-112206
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed