Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2016, Vol. 7 Issue (5) : 373-382    https://doi.org/10.1007/s13238-016-0260-y
RESEARCH ARTICLE
Transcriptome analyses of insect cells to facilitate baculovirus-insect expression
Kai Yu1,2,Yang Yu1,2,Xiaoyan Tang1,2,Huimin Chen1,2,Junyu Xiao2,3,*(),Xiao-Dong Su1,2,*()
1. Biodynamic Optical Imaging Center, School of Life Science, Peking University, Beijing 100871, China
2. State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing 100871, China
3. Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
 Download: PDF(2083 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The High Five cell line (BTI-TN-5B1-4) isolated from the cabbage looper, Trichoplusia ni is an insect cell line widely used for baculovirus-mediated recombinant protein expression. Despite its widespread application in industry and academic laboratories, the genomic background of this cell line remains unclear. Here we sequenced the transcriptome of High Five cells and assembled 25,234 transcripts. Codon usage analysis showed that High Five cells have a robust codon usage capacity and therefore suit for expressing proteins of both eukaryotic- and prokaryotic-origin. Genes involved in glycosylation were profiled in our study, providing guidance for engineering glycosylated proteins in the insect cells. We also predicted signal peptides for transcripts with high expression abundance in both High Five and Sf21 cell lines, and these results have important implications for optimizing the expression level of some secretory and membrane proteins.

Keywords High Five cell line      baculovirus-insect cell system      codon usage      glycosylation      signal peptide     
Corresponding Author(s): Junyu Xiao,Xiao-Dong Su   
Issue Date: 27 May 2016
 Cite this article:   
Kai Yu,Yang Yu,Xiaoyan Tang, et al. Transcriptome analyses of insect cells to facilitate baculovirus-insect expression[J]. Protein Cell, 2016, 7(5): 373-382.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-016-0260-y
https://academic.hep.com.cn/pac/EN/Y2016/V7/I5/373
1 Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120.
https://doi.org/10.1093/bioinformatics/btu170
2 Breitbach K, Jarvis DL (2001) Improved glycosylation of a foreign protein by Tn-5B1-4 cells engineered to express mammalian glycosyltransferases. Biotechnol Bioeng 74:230–239.
https://doi.org/10.1002/bit.1112
3 Brondyk WH (2009) Selecting an appropriate method for expressing a recombinant protein. Methods Enzymol 463:131–147.
https://doi.org/10.1016/S0076-6879(09)63011-1
4 Camacho C, Coulouris G, Avagyan V (2009) BLAST+: architecture and applications. BMC Bioinformatics 10:421.doi:10.1186/1471-2105-10-421
https://doi.org/10.1186/1471-2105-10-421
5 Cannarozzi GM, Schneider A (eds) (2012) Codon Evolution. Oxford University Press
6 Castilho A (ed) (2015) Glyco-Engineering. Springer New York, New York, NY
7 Chaney JL, Clark PL (2015) Roles for Synonymous Codon Usage in Protein Biogenesis. Annu Rev Biophys 44:143–166.
https://doi.org/10.1146/annurev-biophys-060414-034333
8 Conesa A, Götz S (2008) Blast2GO: A comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics 2008:619832.
https://doi.org/10.1155/2008/619832
9 Davis TR, Trotter KM, Granados RR, Wood HA (1992) Baculovirus Expression of Alkaline Phosphatase as a Reporter Gene for Evaluation of Production, Glycosylation and Secretion. Bio/Technology 10:1148–1150. doi:10.1038/nbt1092-1148
https://doi.org/10.1038/nbt1092-1148
10 Finn RD, Bateman A, Clements J et al (2014) Pfam: the protein families database. Nucleic Acids Res 42:D222–D230. doi:10.1093/nar/gkt1223
11 Fu L, Niu B, Zhu Z (2012) CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28:3150–3152.
https://doi.org/10.1093/bioinformatics/bts565
12 Grabherr MG, Haas BJ, Yassour M (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652.
https://doi.org/10.1038/nbt.1883
13 Haas BJ, Papanicolaou A, Yassour M (2013) De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 8:1494–1512.
https://doi.org/10.1038/nprot.2013.084
14 Hollister JR, Jarvis DL (2001) Engineering lepidopteran insect cells for sialoglycoprotein production by genetic transformation with mammalian 1,4-galactosyltransferase and 2,6-sialyltransferase genes. Glycobiology 11:1–9.
https://doi.org/10.1093/glycob/11.1.1
15 Hollister J, Grabenhorst E, Nimtz M (2002) Engineering the Protein N-Glycosylation Pathway in Insect Cells for Production of Biantennary, Complex N-Glycans †. Biochemistry 41:15093–15104.
https://doi.org/10.1021/bi026455d
16 Hollister JR, Shaper JH, Jarvis DL (1998) Stable expression of mammalian beta 1,4-galactosyltransferase extends the N-glycosylation pathway in insect cells. Glycobiology 8:473–480
https://doi.org/10.1093/glycob/8.5.473
17 Holm L (1986) Codon usage and gene expression. Nucleic Acids Res 14:3075–3087
https://doi.org/10.1093/nar/14.7.3075
18 Jarvis DL (2003) Developing baculovirus-insect cell expression systems for humanized recombinant glycoprotein production. Virology 310:1–7.
https://doi.org/10.1016/S0042-6822(03)00120-X
19 Kakumani PK, Malhotra P, Mukherjee SK, Bhatnagar RK (2014) A draft genome assembly of the army worm, Spodoptera frugiperda. Genomics 104:134–143.
https://doi.org/10.1016/j.ygeno.2014.06.005
20 Kakumani PK, Shukla R, Todur VN (2015) De novo transcriptome assembly and analysis of Sf21 cells using illumina paired end sequencing. Biol Direct 10:44.
https://doi.org/10.1186/s13062-015-0072-7
21 Kost TA, Condreay JP, Jarvis DL (2005) Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nat Biotechnol 23:567–575.
https://doi.org/10.1038/nbt1095
22 Lairson LL, Henrissat B, Davies GJ, Withers SG (2008) Glycosyltransferases: structures, functions, and mechanisms. Annu Rev Biochem 77:521–555.
https://doi.org/10.1146/annurev.biochem.76.061005.092322
23 Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25.
https://doi.org/10.1186/gb-2009-10-3-r25
24 Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323.
https://doi.org/10.1186/1471-2105-12-323
25 Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26:589–595.
https://doi.org/10.1093/bioinformatics/btp698
26 Lombard V, Golaconda Ramulu H, Drula E (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:D490–D495.
https://doi.org/10.1093/nar/gkt1178
27 Narimatsu H (2004) Construction of a human glycogene library and comprehensive functional analysis. Glycoconj J 21:17–24.
https://doi.org/10.1023/B:GLYC.0000043742.99482.01
28 Olczak M, Olczak T (2006) Comparison of different signal peptides for protein secretion in nonlytic insect cell system. Anal Biochem 359:45–53.
https://doi.org/10.1016/j.ab.2006.09.003
29 Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786.
https://doi.org/10.1038/nmeth.1701
30 Powell S, Forslund K, Szklarczyk D (2014) eggNOG v4.0: nested orthology inference across 3686 organisms. Nucleic Acids Res 42:D231–D239.
https://doi.org/10.1093/nar/gkt1253
31 Soejima Y, Lee J, Nagata Y (2013) Comparison of signal peptides for efficient protein secretion in the baculovirus-silkworm system. Open Life Sci 8:1–7.
https://doi.org/10.2478/s11535-012-0112-6
32 UniProt Consortium (2015) UniProt: a hub for protein information. Nucleic Acids Res 43:D204–D212.
https://doi.org/10.1093/nar/gku989
33 Vandenborre G, Smagghe G, Ghesquière B (2011) Diversity in Protein Glycosylation among Insect Species. PLoS One 6: e16682.
https://doi.org/10.1371/journal.pone.0016682
34 Vaughn JL, Goodwin RH, Tompkins GJ, McCawley P (1977) The Establishment of Two Cell Lines from the Insect Spodoptera frugiperda (Lepidoptera; Noctuidae). In Vitro 13:213–217
https://doi.org/10.1007/BF02615077
35 von Heijne G, Abrahmsén L (1989) Species-specific variation in signal peptide design. Implications for protein secretion in foreign hosts. FEBS Lett 244:439–446
https://doi.org/10.1016/0014-5793(89)80579-4
36 Wickham TJ, Davis T, Granados RR, Screening of insect cell lines for the production of recombinant proteins and infectious virus in the baculovirus expression system. Biotechnol Prog 8:391–6.
https://doi.org/10.1021/bp00017a003
37 Xie C, Mao X, Huang J (2011) KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res 39:W316–W322.
https://doi.org/10.1093/nar/gkr483
38 Xu C, Ng DTW(2015) Glycosylation-directed quality control of protein folding. Nat Rev Mol Cell Biol 16:742–752.
https://doi.org/10.1038/nrm4073
39 Ye J, Fang L, Zheng H (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34:W293–W297.
https://doi.org/10.1093/nar/gkl031
[1] PAC-0373-16016-SXD_suppl_1 Download
[2] PAC-0373-16016-SXD_suppl_2 Download
[3] PAC-0373-16016-SXD_suppl_3 Download
[1] Bo Jing, Chunxue Zhang, Xianjun Liu, Liqiang Zhou, Jiping Liu, Yinan Yao, Juehua Yu, Yuteng Weng, Min Pan, Jie Liu, Zuolin Wang, Yao Sun, Yi Eve Sun. Glycosylation of dentin matrix protein 1 is a novel key element for astrocyte maturation and BBB integrity[J]. Protein Cell, 2018, 9(3): 298-309.
[2] Liming Liu. Pharmacokinetics of monoclonal antibodies and Fc-fusion proteins[J]. Protein Cell, 2018, 9(1): 15-32.
[3] Yusuke Mimura, Toshihiko Katoh, Radka Saldova, Roisin O’Flaherty, Tomonori Izumi, Yuka Mimura-Kimura, Toshiaki Utsunomiya, Yoichi Mizukami, Kenji Yamamoto, Tsuneo Matsumoto, Pauline M. Rudd. Glycosylation engineering of therapeutic IgG antibodies: challenges for the safety, functionality and efficacy[J]. Protein Cell, 2018, 9(1): 47-62.
[4] Bo-jiao Yin, Ting Gao, Nuo-yan Zheng, Yin Li, San-yuan Tang, Li-ming Liang, Qi XIE. Generation of glyco-engineered BY2 cell lines with decreased expression of plant-specific glycoepitopes[J]. Prot Cell, 2011, 2(1): 41-47.
[5] Girish J. Kotwal. Influence of glycosylation and oligomerization of vaccinia virus complement control protein on level and pattern of functional activity and immunogenicity[J]. Prot Cell, 2010, 1(12): 1084-1092.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed