Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2016, Vol. 7 Issue (6) : 403-416    https://doi.org/10.1007/s13238-016-0264-7
RESEARCH ARTICLE
Structural insights into the regulatory mechanism of the Pseudomonas aeruginosa YfiBNR system
Min Xu1,Xuan Yang2,Xiu-An Yang1,Lei Zhou1,3,Tie-Zheng Liu1,3,Zusen Fan2,*(),Tao Jiang1,*()
1. National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
2. Chinese Academy of Sciences Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
3. University of Chinese Academy of Sciences, Beijing 100049, China
 Download: PDF(4319 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

YfiBNR is a recently identified bis-(3’-5’)-cyclic dimeric GMP (c-di-GMP) signaling system in opportunistic pathogens. It is a key regulator of biofilm formation, which is correlated with prolonged persistence of infection and antibiotic drug resistance. In response to cell stress, YfiB in the outer membrane can sequester the periplasmic protein YfiR, releasing its inhibition of YfiN on the inner membrane and thus provoking the diguanylate cyclase activity of YfiN to induce c-di-GMP production. However, the detailed regulatory mechanism remains elusive. Here, we report the crystal structures of YfiB alone and of an active mutant YfiBL43P complexed with YfiR with 2:2 stoichiometry. Structural analyses revealed that in contrast to the compact conformation of the dimeric YfiB alone, YfiBL43P adopts a stretched conformation allowing activated YfiB to penetrate the peptidoglycan (PG) layer and access YfiR. YfiBL43P shows a more compact PG-binding pocket and much higher PG binding affinity than wild-type YfiB, suggesting a tight correlation between PG binding and YfiB activation. In addition, our crystallographic analyses revealed that YfiR binds Vitamin B6 (VB6) or L-Trp at a YfiB-binding site and that both VB6 and L-Trp are able to reduce YfiBL43P-induced biofilm formation. Based on the structural and biochemical data, we propose an updated regulatory model of the YfiBNR system.

Keywords the YfiBNR system      c-di-GMP      Vitamin B6      L-Trp      peptidoglycan layer      bioflim formation     
Corresponding Author(s): Zusen Fan,Tao Jiang   
Issue Date: 20 June 2016
 Cite this article:   
Min Xu,Xuan Yang,Xiu-An Yang, et al. Structural insights into the regulatory mechanism of the Pseudomonas aeruginosa YfiBNR system[J]. Protein Cell, 2016, 7(6): 403-416.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-016-0264-7
https://academic.hep.com.cn/pac/EN/Y2016/V7/I6/403
1 Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66:213–221
https://doi.org/10.1107/S0907444909052925
2 Afonine PV, Grosse-Kunstleve RW, Echols N, Headd JJ, Moriarty NW, Mustyakimov M, Terwilliger TC, Urzhumtsev A, Zwart PH, Adams PD (2012) Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr D Biol Crystallogr 68:352–367
https://doi.org/10.1107/S0907444912001308
3 Beaumont HJ, Gallie J, Kost C, Ferguson GC, Rainey PB (2009) Experimental evolution of bet hedging. Nature 462:90–93
https://doi.org/10.1038/nature08504
4 Boehm A, Kaiser M, Li H, Spangler C, Kasper CA, Ackermann M, Kaever V, Sourjik V, Roth V, Jenal U (2010) Second messengermediated adjustment of bacterial swimming velocity. Cell 141:107–116
https://doi.org/10.1016/j.cell.2010.01.018
5 Caly DL, Bellini D, Walsh MA, Dow JM, Ryan RP (2015) Targeting cyclic di-GMP signalling: a strategy to control biofilm formation ? Curr Pharm Des 21:12–24
6 Camilli A, Bassler BL (2006) Bacterial small-molecule signaling pathways. Science 311:1113–1116
https://doi.org/10.1126/science.1121357
7 Choi KH, Kumar A, Schweizer HP (2006) A 10-min method for preparation of highly electrocompetent Pseudomonas aeruginosa cells: application for DNA fragment transfer between chromosomes and plasmid transformation. J Microbiol Methods 64:391–397
https://doi.org/10.1016/j.mimet.2005.06.001
8 Desmarais SM, Cava F, de Pedro MA, Huang KC (2014) Isolation and preparation of bacterial cell walls for compositional analysis by ultra performance liquid chromatography. J Vis Exp 83:e51183
9 Duerig A, Abel S, Folcher M, Nicollier M, Schwede T, Amiot N, Giese B, Jenal U (2009) Second messenger-mediated spatiotemporal control of protein degradation regulates bacterial cell cycle progression. Genes Dev 23:93–104
https://doi.org/10.1101/gad.502409
10 Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66:486–501
https://doi.org/10.1107/S0907444910007493
11 Evans TJ (2015) Small colony variants of Pseudomonas aeruginosa in chronic bacterial infection of the lung in cystic fibrosis. Future Microbiol 10:231–239
https://doi.org/10.2217/fmb.14.107
12 Giardina G, Paiardini A, Fernicola S, Franceschini S, Rinaldo S, Stelitano V, Cutruzzola F (2013) Investigating the allosteric regulation of YfiN from Pseudomonas aeruginosa: clues from the structure of the catalytic domain. PLoS One 8:e81324
13 Giddens SR, Jackson RW, Moon CD, Jacobs MA, Zhang XX, Gehrig SM, Rainey PB (2007) Mutational activation of niche-specific genes provides insight into regulatory networks and bacterial function in a complex environment. Proc Natl Acad Sci USA 104:18247–18252
https://doi.org/10.1073/pnas.0706739104
14 Govan JR, Deretic V (1996) Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev 60:539–574
15 Grubman A, Phillips A, Thibonnier M, Kaparakis-Liaskos M, Johnson C, Thiberge JM, Radcliff FJ, Ecobichon C, Labigne A, de Reuse H. (2010) Vitamin B6 is required for full motility and virulence in Helicobacter pylori. MBio 1
16 Ha DG, O’Toole GA (2015) c-di-GMP and its effects on biofilm formation and dispersion: a Pseudomonas aeruginosa review. Microbiol Spectr 3, MB-0003-2014
17 Haussler S, Tummler B, Weissbrodt H, Rohde M, Steinmetz I (1999) Small-colony variants of Pseudomonas aeruginosa in cystic fibrosis. Clin Infect Dis 29:621–625
https://doi.org/10.1086/598644
18 Haussler S, Ziegler I, Lottel A, von Gotz F, Rohde M, Wehmhohner D, Saravanamuthu S, Tummler B, Steinmetz I (2003) Highly adherent small-colony variants of Pseudomonas aeruginosa in cystic fibrosis lung infection. J Med Microbiol 52:295–301
https://doi.org/10.1099/jmm.0.05069-0
19 Hengge R (2009) Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol 7:263–273
https://doi.org/10.1038/nrmicro2109
20 Hickman JW, Tifrea DF, Harwood CS (2005) A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. Proc Natl Acad Sci USA 102:14422–14427
https://doi.org/10.1073/pnas.0507170102
21 Hmelo LR, Borlee BR, Almblad H, Love ME, Randall TE, Tseng BS, Lin C, Irie Y, Storek KM, Yang JJ (2015) Precisionengineering the Pseudomonas aeruginosa genome with two-step allelic exchange. Nat Protoc 10:1820–1841
https://doi.org/10.1038/nprot.2015.115
22 Holm L, Rosenstrom P (2010) Dali server: conservation mapping in 3D. Nucleic Acids Res 38:W545–W549
23 Huertas MG, Zarate L, Acosta IC, Posada L, Cruz DP, Lozano M, Zambrano MM (2014) Klebsiella pneumoniae yfiRNB operon affects biofilm formation, polysaccharide production and drug susceptibility. Microbiology 160:2595–2606
https://doi.org/10.1099/mic.0.081992-0
24 Hufnagel DA, DePas WH, Chapman MR (2014) The disulfide bonding system suppresses CsgD-independent cellulose production in Escherichia coli. J Bacteriol 196:3690–3699
https://doi.org/10.1128/JB.02019-14
25 Jenal U (2004) Cyclic di-guanosine-monophosphate comes of age: a novel secondary messenger involved in modulating cell surface structures in bacteria ? Curr Opin Microbiol 7:185–191
26 Kirillina O, Fetherston JD, Bobrov AG, Abney J, Perry RD (2004) HmsP, a putative phosphodiesterase, and HmsT, a putative diguanylate cyclase, control Hms-dependent biofilm formation in Yersinia pestis. Mol Microbiol 54:75–88
https://doi.org/10.1111/j.1365-2958.2004.04253.x
27 Kirisits MJ, Prost L, Starkey M, Parsek MR (2005) Characterization of colony morphology variants isolated from Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 71:4809–4821
https://doi.org/10.1128/AEM.71.8.4809-4821.2005
28 Kulasakara H, Lee V, Brencic A, Liberati N, Urbach J, Miyata S, Lee DG, Neely AN, Hyodo M, Hayakawa Y (2006) Analysis of Pseudomonas aeruginosa diguanylate cyclases and phosphodiesterases reveals a role for bis-(3′-5′)-cyclic-GMP in virulence. Proc Natl Acad Sci USA 103:2839–2844
https://doi.org/10.1073/pnas.0511090103
29 Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291
https://doi.org/10.1107/S0021889892009944
30 Lebedev AA, Vagin AA, Murshudov GN (2008) Model preparation in MOLREP and examples of model improvement using X-ray data. Acta Crystallogr D Biol Crystallogr 64:33–39
https://doi.org/10.1107/S0907444907049839
31 Li S, Li T, Xu Y, Zhang Q, Zhang W, Che S, Liu R, Wang Y, Bartlam M (2015) Structural insights into YfiR sequestering by YfiB in Pseudomonas aeruginosa PAO1. Sci Rep 5:16915
https://doi.org/10.1038/srep16915
32 Malone JG (2015) Role of small colony variants in persistence of Pseudomonas aeruginosa infections in cystic fibrosis lungs. Infect Drug Resist 8:237–247
33 Malone JG, Jaeger T, Spangler C, Ritz D, Spang A, Arrieumerlou C, Kaever V, Landmann R, Jenal U (2010) YfiBNR mediates cyclic di-GMP dependent small colony variant formation and persistence in Pseudomonas aeruginosa. PLoS Pathog 6:e1000804
34 Malone JG, Jaeger T, Manfredi P, Dotsch A, Blanka A, Bos R, Cornelis GR, Haussler S, Jenal U (2012) The YfiBNR signal transduction mechanism reveals novel targets for the evolution of persistent Pseudomonas aeruginosa in cystic fibrosis airways. PLoS Pathog 8:e1002760
35 Matias VR, Al-Amoudi A, Dubochet J, Beveridge TJ (2003) Cryotransmission electron microscopy of frozen-hydrated sections of Escherichia coli and Pseudomonas aeruginosa. J Bacteriol 185:6112–6118
https://doi.org/10.1128/JB.185.20.6112-6118.2003
36 Meroueh SO, Bencze KZ, Hesek D, Lee M, Fisher JF, Stemmler TL, Mobashery S (2006) Three-dimensional structure of the bacterial cell wall peptidoglycan. Proc Natl Acad Sci USA 103:4404–4409
https://doi.org/10.1073/pnas.0510182103
37 Navarro MV, Newell PD, Krasteva PV, Chatterjee D, Madden DR, O’Toole GA, Sondermann H (2011) Structural basis for c-di-GMPmediated inside-out signaling controlling periplasmic proteolysis. PLoS Biol 9:e1000588
38 Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276:307–326
https://doi.org/10.1016/S0076-6879(97)76066-X
39 Parsek MR, Singh PK (2003) Bacterial biofilms: an emerging link to disease pathogenesis. Annu Rev Microbiol 57:677–701
https://doi.org/10.1146/annurev.micro.57.030502.090720
40 Parsons LM, Lin F, Orban J (2006) Peptidoglycan recognition by Pal, an outer membrane lipoprotein . Biochemistry 45:2122–2128
https://doi.org/10.1021/bi052227i
41 Pesavento C, Hengge R (2009) Bacterial nucleotide-based second messengers. Curr Opin Microbiol 12:170–176
https://doi.org/10.1016/j.mib.2009.01.007
42 Raterman EL, Shapiro DD, Stevens DJ, Schwartz KJ, Welch RA (2013) Genetic analysis of the role of yfiR in the ability of Escherichia coli CFT073 to control cellular cyclic dimeric GMP levels and to persist in the urinary tract. Infect Immun 81:3089–3098
https://doi.org/10.1128/IAI.01396-12
43 Reinhardt A, Kohler T, Wood P, Rohner P, Dumas JL, Ricou B, van Delden C (2007) Development and persistence of antimicrobial resistance in Pseudomonas aeruginosa: a longitudinal observation in mechanically ventilated patients. Antimicrob Agents Chemother 51:1341–1350
https://doi.org/10.1128/AAC.01278-06
44 Ren GX, Yan HQ, Zhu H, Guo XP, Sun YC (2014) HmsC, a periplasmic protein, controls biofilm formation via repression of HmsD, a diguanylate cyclase in Yersinia pestis. Environ Microbiol 16:1202–1216
https://doi.org/10.1111/1462-2920.12323
45 Romling U, Galperin MY, Gomelsky M (2013) Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 77:1–52
https://doi.org/10.1128/MMBR.00043-12
46 Ross P, Weinhouse H, Aloni Y, Michaeli D, Weinberger-Ohana P, Mayer R, Braun S, de Vroom E, van der Marel GA, van Boom JH (1987) Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature 325:279–281
https://doi.org/10.1038/325279a0
47 Ross P, Mayer R, Benziman M (1991) Cellulose biosynthesis and function in bacteria. Microbiol Rev 55:35–58
48 Sanchez-Torres V, Hu H, Wood TK (2011) GGDEF proteins YeaI, YedQ, and YfiN reduce early biofilm formation and swimming motility in Escherichia coli. Appl Microbiol Biotechnol 90:651–658
https://doi.org/10.1007/s00253-010-3074-5
49 Schirmer T, Jenal U (2009) Structural and mechanistic determinants of c-di-GMP signalling. Nat Rev Microbiol 7:724–735
https://doi.org/10.1038/nrmicro2203
50 Schuck P (2000) Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys J 78:1606–1619
https://doi.org/10.1016/S0006-3495(00)76713-0
51 Shimazaki J, Furukawa S, Ogihara H, Morinaga Y (2012) L-Tryptophan prevents Escherichia coli biofilm formation and triggers biofilm degradation. Biochem Biophys Res Commun 419:715–718
https://doi.org/10.1016/j.bbrc.2012.02.085
52 Smith EE, Buckley DG, Wu Z, Saenphimmachak C, Hoffman LR, D’Argenio DA, Miller SI, Ramsey BW, Speert DP, Moskowitz SM (2006) Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc Natl Acad Sci USA 103:8487–8492
https://doi.org/10.1073/pnas.0602138103
53 Tamayo R, Tischler AD, Camilli A (2005) The EAL domain protein V<?Pub Caret?>ieA is a cyclic diguanylate phosphodiesterase. J Biol Chem 280:33324–33330
https://doi.org/10.1074/jbc.M506500200
54 Ueda A, Wood TK (2009) Connecting quorum sensing, c-di-GMP, pel polysaccharide, and biofilm formation in Pseudomonas aeruginosa through tyrosine phosphatase TpbA (PA3885). PLoS Pathog 5:e1000483
55 Xu K, Li S, Yang W, Li K, Bai Y, Xu Y, Jin J, Wang Y, Bartlam M (2015) Structural and biochemical analysis of tyrosine phosphatase related to biofilm formation A (TpbA) from the opportunistic pathogen Pseudomonas aeruginosa PAO1. PLoS One 10:e0124330
56 Yang X, Yang XA, Xu M, Zhou L, Fan Z, Jiang T (2015) Crystal structures of YfiR from Pseudomonas aeruginosa in two redox states. Biochem Biophys Res Commun 461:14–20
https://doi.org/10.1016/j.bbrc.2015.03.160
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed