1 |
AdamsPDet al. (2002) PHENIX: building new software for automated crystallographic structure determination.Acta Crystallogr Sect D-Biol Crystallogr58:1948–1954
https://doi.org/10.1107/S0907444902016657
|
2 |
AzamL, McIntoshJM (2009) Alpha-conotoxins as pharmacological probes of nicotinic acetylcholine receptors.Acta Pharmacol Sin30(6):771–783
https://doi.org/10.1038/aps.2009.47
|
3 |
BeroukhimR, UnwinN (1995) Three-dimensional location of the main immunogenic region of the acetylcholine receptor.Neuron15(2):323–331
https://doi.org/10.1016/0896-6273(95)90037-3
|
4 |
BourneYet al. (2005) Crystal structure of a Cbtx nd antagonistbound s essential interactions between snake α-neurotoxins and nicotinic receptors.The EMBO Journal24(8):1512–1522
https://doi.org/10.1038/sj.emboj.7600620
|
5 |
BrejcKet al. (2001) Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors.Nature411(6835):269–276
https://doi.org/10.1038/35077011
|
6 |
CecchiniM, ChangeuxJ-P (2015) The nicotinic acetylcholine receptor and its prokaryotic homologues: Structure, conformational transitions & allosteric modulation.Neuropharmacology96 (Part B):137–149
https://doi.org/10.1016/j.neuropharm.2014.12.006
|
7 |
CeliePHNet al. (2004) Nicotine and carbamylcholine binding to nicotinic acetylcholine receptors as studied in AChBP crystal structures.Neuron41(6):907–914
https://doi.org/10.1016/S0896-6273(04)00115-1
|
8 |
CeliePHNet al. (2005) Crystal structure of nicotinic acetylcholine receptor homolog AChBP in complex with an [alpha]-conotoxin PnIA variant.Nat Struct Mol Biol12(7):582–588
https://doi.org/10.1038/nsmb951
|
9 |
DavisIWet al. (2004) MOLPROBITY: structure validation and allatom contact analysis for nucleic acids and their complexes.Nucleic Acids Res32(Web Server issue):W615–W619
https://doi.org/10.1093/nar/gkh398
|
10 |
DavisIWet al. (2007) MolProbity: all-atom contacts and structure validation for proteins and nucleic acids.Nucleic Acids Res35 (Web Server issue):W375–W383
https://doi.org/10.1093/nar/gkm216
|
11 |
DellisantiCDet al. (2007) Crystal structure of the extracellular domain of nAChR alpha1 bound to alpha-bungarotoxin at 1.94 A resolution.Nat Neurosci10(8):953–962
https://doi.org/10.1038/nn1942
|
12 |
DineleyKT, PandyaAA, YakelJL (2015) Nicotinic ACh receptors as therapeutic targets in CNS disorders.Trends Pharmacol Sci36 (2):96–108
https://doi.org/10.1016/j.tips.2014.12.002
|
13 |
DutertreSet al. (2007) AChBP-targeted alpha-conotoxin correlates distinct binding orientations with nAChR subtype selectivity.EMBO J26(16):3858–3867
https://doi.org/10.1038/sj.emboj.7601785
|
14 |
EmsleyP, CowtanK (2004) Coot: model-building tools for molecular graphics.Acta Crystallogr Sect D-Biol Crystallogr60:2126–2132
https://doi.org/10.1107/S0907444904019158
|
15 |
HansenSBet al.(2005) Structures of Aplysia AChBP complexes with nicotinic agonists and antagonists reveal distinctive binding interfaces and conformations.EMBO J24(20):3635–3646
https://doi.org/10.1038/sj.emboj.7600828
|
16 |
HendricksonL, GuildfordM, TapperA (2013) Neuronal nicotinic acetylcholine receptors: common molecular substrates of nicotine and alcohol dependence.Front Psychiatry. doi:10.3389/fpsyt.2013.00029
https://doi.org/10.3389/fpsyt.2013.00029
|
17 |
HoneAJet al. (2013) Positional scanning mutagenesis of alphaconotoxin PeIA identifies critical residues that confer potency and selectivity for alpha6/alpha3beta2beta3 and alpha3beta2 nicotinic acetylcholine receptors.J Biol Chem288(35):25428–25439
https://doi.org/10.1074/jbc.M113.482059
|
18 |
HurstR, RollemaH, BertrandD (2013) Nicotinic acetylcholine receptors: from basic science to therapeutics.Pharmacol Ther137(1):22–54
https://doi.org/10.1016/j.pharmthera.2012.08.012
|
19 |
KarlinA (2002) Emerging structure of the nicotinic acetylcholine receptors.Nat Rev Neurosci3(2):102–114
https://doi.org/10.1038/nrn731
|
20 |
KouvatsosNet al. (2016) Crystal structure of a human neuronal nAChR extracellular domain in pentameric assembly: Ligandbound alpha2 homopentamer.Proc Natl Acad Sci USA113 (34):9635–9640
https://doi.org/10.1073/pnas.1602619113
|
21 |
LaskowskiRAet al. (1993) PROCHECK—a program to check the stereochemical quality of protein structures.J Appl Crystallogr26:283–291
https://doi.org/10.1107/S0021889892009944
|
22 |
LavioletteSR, van der KooyD (2004) The neurobiology of nicotine addiction: bridging the gap from molecules to behaviour.Nat Rev Neurosci5(1):55–65
https://doi.org/10.1038/nrn1298
|
23 |
Le NovereN, CorringerPJ, ChangeuxJP (2002) The diversity of subunit composition in nAChRs: evolutionary origins, physiologic and pharmacologic consequences.J Neurobiol53(4):447–456
https://doi.org/10.1002/neu.10153
|
24 |
LebbeEKet al. (2014) Conotoxins targeting nicotinic acetylcholine receptors: an overview.Mar Drugs12(5):2970–3004
https://doi.org/10.3390/md12052970
|
25 |
LiS-Xet al. (2011) Ligand-binding domain of an [alpha]7-nicotinic receptor chimera and its complex with agonist.Nat Neurosci14 (10):1253–1259
https://doi.org/10.1038/nn.2908
|
26 |
LinBet al. (2016) From crystal structure of α-conotoxin GIC in complex with Ac-AChBP to molecular determinants of its high selectivity for α3β2 nAChR.Scientific Reports6:22349
https://doi.org/10.1038/srep22349
|
27 |
LuoSet al. (2010) Atypical alpha-conotoxin LtIA from Conus litteratus targets a novel microsite of the alpha3beta2 nicotinic receptor.J Biol Chem285(16):12355–12366
https://doi.org/10.1074/jbc.M109.079012
|
28 |
LuoSet al.(2014) A novel alpha4/7-conotoxin LvIA from Conus lividus that selectively blocks alpha3beta2 vs. alpha6/alpha3beta2beta3 nicotinic acetylcholine receptors.FASEB J28(4):1842–1853
https://doi.org/10.1096/fj.13-244103
|
29 |
McCoyAJet al. (2007) Phaser crystallographic software.J Appl Crystallogr40(Pt 4):658–674
https://doi.org/10.1107/S0021889807021206
|
30 |
McDougalOMet al. (2013) pKa determination of histidine residues in alpha-conotoxin MII peptides by 1H NMR and constant pH molecular dynamics simulation.JPhysChemB117(9):2653–2661
https://doi.org/10.1021/jp3117227
|
31 |
MirRet al. (2016) Conotoxins: structure, therapeutic potential and pharmacological applications.Curr Pharm Des22(5):582–589
https://doi.org/10.2174/1381612822666151124234715
|
32 |
MiyazawaAet al. (1999) Nicotinic acetylcholine receptor at 4.6 Å resolution: transverse tunnels in the channel1.J Mol Biol288 (4):765–786
https://doi.org/10.1006/jmbi.1999.2721
|
33 |
Morales-PerezCL, NovielloCM, HibbsRE (2016) X-ray structure of the human alpha4beta2 nicotinic receptor.Nature538 (7625):411–415
https://doi.org/10.1038/nature19785
|
34 |
NemeczA, TaylorP (2011) Creating an alpha7 nicotinic acetylcholine recognition domain from the acetylcholine-binding protein: crystallographic and ligand selectivity analyses.J Biol Chem286(49):42555–42565
https://doi.org/10.1074/jbc.M111.286583
|
35 |
OrtellsMO, LuntGG (1995) Evolutionary history of the ligand-gated ion-channel superfamily of receptors.Trends Neurosci18 (3):121–127
https://doi.org/10.1016/0166-2236(95)93887-4
|
36 |
OtwinowskiZ, MinorW (1997) Processing of X-ray diffraction data collected in oscillation mode.Macromol Crystallogr Pt A276:307–326
https://doi.org/10.1016/S0076-6879(97)76066-X
|
37 |
PaoliniM, De BiasiM (2011) Mechanistic insights into nicotine withdrawal.Biochem Pharmacol82(8):996–1007
https://doi.org/10.1016/j.bcp.2011.07.075
|
38 |
RucktooaP, SmitAB, SixmaTK (2009) Insight in nAChR subtype selectivity from AChBP crystal structures.Biochem Pharmacol78 (7):777–787
https://doi.org/10.1016/j.bcp.2009.06.098
|
39 |
SalasRet al. (2009) Nicotinic receptors in the habenulo-interpeduncular system are necessary for nicotine withdrawal in mice.J Neurosci29(10):3014–3018
https://doi.org/10.1523/JNEUROSCI.4934-08.2009
|
40 |
SambasivaraoSVet al. (2014) Cover picture: acetylcholine promotes binding of α-conotoxin MII at α3β2 nicotinic acetylcholine receptors (ChemBioChem 3/2014).ChemBioChem15 (3):413–424
https://doi.org/10.1002/cbic.201300577
|
41 |
SmitABet al. (2001) A glia-derived acetylcholine-binding protein that modulates synaptic transmission.Nature411(6835):261–268
https://doi.org/10.1038/35077000
|
42 |
TsetlinV, UtkinY, KasheverovI (2009) Polypeptide and peptide toxins, magnifying lenses for binding sites in nicotinic acetylcholine receptors.Biochem Pharmacol78(7):720–731
https://doi.org/10.1016/j.bcp.2009.05.032
|
43 |
UlensCet al. (2006) Structural determinants of selective alphaconotoxin binding to a nicotinic acetylcholine receptor homolog AChBP.Proc Natl Acad Sci USA103(10):3615–3620
https://doi.org/10.1073/pnas.0507889103
|
44 |
UnwinN (1993) Nicotinic acetylcholine receptor an 9 Å resolution.J Mol Biol229(4):1101–1124
https://doi.org/10.1006/jmbi.1993.1107
|
45 |
UnwinN (1995) Acetylcholine receptor channel imaged in the open state.Nature373(6509):37–43
https://doi.org/10.1038/373037a0
|
46 |
UnwinN (2005) Refined structure of the nicotinic acetylcholine receptor at 4A resolution.J Mol Biol346(4):967–989
https://doi.org/10.1016/j.jmb.2004.12.031
|
47 |
WebbB, SaliA (2014) Comparative protein structure modeling using MODELLER.Curr Protoc Bioinform47:5.6.1–5.6.32
https://doi.org/10.1002/0471250953.bi0506s47
|
48 |
ZhangsunDet al. (2015) Key residues in the nicotinic acetylcholine receptor beta2 subunit contribute to alpha-conotoxin LvIA binding.J Biol Chem290(15):9855–9862
https://doi.org/10.1074/jbc.M114.632646
|
49 |
ZoliM, PistilloF, GottiC (2015) Diversity of native nicotinic receptor subtypes in mammalian brain.Neuropharmacology96(Pt B):302–311
https://doi.org/10.1016/j.neuropharm.2014.11.003
|
50 |
ZouridakisMet al. (2014) Crystal structures of free and antagonistbound states of human alpha9 nicotinic receptor extracellular domain.Nat Struct Mol Biol21(11):976–980
https://doi.org/10.1038/nsmb.2900
|