Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2017, Vol. 8 Issue (9) : 675-685    https://doi.org/10.1007/s13238-017-0426-2
RESEARCH ARTICLE
The crystal structure of Ac-AChBP in complex with α-conotoxin LvIA reveals the mechanism of its selectivity towards different nAChR subtypes
Manyu Xu1, Xiaopeng Zhu2, Jinfang Yu1, Jinpeng Yu2, Sulan Luo2(), Xinquan Wang1()
1. The Ministry of Education Key Laboratory of Protein Science, School of Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Biotherapy, Tsinghua University, Beijing 100084, China
2. Key Laboratory of Tropical Biological Resources, Ministry of Education, Key Lab for Marine Drugs of Haikou, Hainan University, Haikou 570228, China
 Download: PDF(1687 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The α3* nAChRs, which are considered to be promising drug targets for problems such as pain, addiction, cardiovascular function, cognitive disorders etc., are found throughout the central and peripheral nervous system. The α-conotoxin (α-CTx) LvIA has been identified as the most selective inhibitor of α3β2 nAChRs known to date, and it can distinguish the α3β2 nAChR subtype from the α6/α3β2β3 and α3β4 nAChR subtypes. However, the mechanism of its selectivity towards α3β2, α6/α3β2β3, and α3β4 nAChRs remains elusive. Here we report the co-crystal structure of LvIA in complex with Aplysia californica acetylcholine binding protein (Ac-AChBP) at a resolution of 3.4 Å. Based on the structure of this complex, together with homology modeling based on other nAChR subtypes and binding affinity assays, we conclude that Asp-11 of LvIA plays an important role in the selectivity of LvIA towards α3β2 and α3/α6β2β3 nAChRs by making a salt bridge with Lys-155 of the rat α3 subunit. Asn-9 lies within a hydrophobic pocket that is formed by Met-36, Thr-59, and Phe-119 of the rat β2 subunit in the α3β2 nAChR model, revealing the reason for its more potent selectivity towards the α3β2 nAChR subtype. These results provide molecular insights that can be used to design ligands that selectively target α3β2 nAChRs, with significant implications for the design of new therapeutic α-CTxs.

Keywords base editor      high-fidelity      mouse embryos      proximal-site deamination      whole-genome sequencing     
Corresponding Author(s): Sulan Luo,Xinquan Wang   
Issue Date: 20 September 2017
 Cite this article:   
Manyu Xu,Xiaopeng Zhu,Jinfang Yu, et al. The crystal structure of Ac-AChBP in complex with α-conotoxin LvIA reveals the mechanism of its selectivity towards different nAChR subtypes[J]. Protein Cell, 2017, 8(9): 675-685.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-017-0426-2
https://academic.hep.com.cn/pac/EN/Y2017/V8/I9/675
1 AdamsPDet al. (2002) PHENIX: building new software for automated crystallographic structure determination.Acta Crystallogr Sect D-Biol Crystallogr58:1948–1954
https://doi.org/10.1107/S0907444902016657
2 AzamL, McIntoshJM (2009) Alpha-conotoxins as pharmacological probes of nicotinic acetylcholine receptors.Acta Pharmacol Sin30(6):771–783
https://doi.org/10.1038/aps.2009.47
3 BeroukhimR, UnwinN (1995) Three-dimensional location of the main immunogenic region of the acetylcholine receptor.Neuron15(2):323–331
https://doi.org/10.1016/0896-6273(95)90037-3
4 BourneYet al. (2005) Crystal structure of a Cbtx nd antagonistbound s essential interactions between snake α-neurotoxins and nicotinic receptors.The EMBO Journal24(8):1512–1522
https://doi.org/10.1038/sj.emboj.7600620
5 BrejcKet al. (2001) Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors.Nature411(6835):269–276
https://doi.org/10.1038/35077011
6 CecchiniM, ChangeuxJ-P (2015) The nicotinic acetylcholine receptor and its prokaryotic homologues: Structure, conformational transitions & allosteric modulation.Neuropharmacology96 (Part B):137–149
https://doi.org/10.1016/j.neuropharm.2014.12.006
7 CeliePHNet al. (2004) Nicotine and carbamylcholine binding to nicotinic acetylcholine receptors as studied in AChBP crystal structures.Neuron41(6):907–914
https://doi.org/10.1016/S0896-6273(04)00115-1
8 CeliePHNet al. (2005) Crystal structure of nicotinic acetylcholine receptor homolog AChBP in complex with an [alpha]-conotoxin PnIA variant.Nat Struct Mol Biol12(7):582–588
https://doi.org/10.1038/nsmb951
9 DavisIWet al. (2004) MOLPROBITY: structure validation and allatom contact analysis for nucleic acids and their complexes.Nucleic Acids Res32(Web Server issue):W615–W619
https://doi.org/10.1093/nar/gkh398
10 DavisIWet al. (2007) MolProbity: all-atom contacts and structure validation for proteins and nucleic acids.Nucleic Acids Res35 (Web Server issue):W375–W383
https://doi.org/10.1093/nar/gkm216
11 DellisantiCDet al. (2007) Crystal structure of the extracellular domain of nAChR alpha1 bound to alpha-bungarotoxin at 1.94 A resolution.Nat Neurosci10(8):953–962
https://doi.org/10.1038/nn1942
12 DineleyKT, PandyaAA, YakelJL (2015) Nicotinic ACh receptors as therapeutic targets in CNS disorders.Trends Pharmacol Sci36 (2):96–108
https://doi.org/10.1016/j.tips.2014.12.002
13 DutertreSet al. (2007) AChBP-targeted alpha-conotoxin correlates distinct binding orientations with nAChR subtype selectivity.EMBO J26(16):3858–3867
https://doi.org/10.1038/sj.emboj.7601785
14 EmsleyP, CowtanK (2004) Coot: model-building tools for molecular graphics.Acta Crystallogr Sect D-Biol Crystallogr60:2126–2132
https://doi.org/10.1107/S0907444904019158
15 HansenSBet al.(2005) Structures of Aplysia AChBP complexes with nicotinic agonists and antagonists reveal distinctive binding interfaces and conformations.EMBO J24(20):3635–3646
https://doi.org/10.1038/sj.emboj.7600828
16 HendricksonL, GuildfordM, TapperA (2013) Neuronal nicotinic acetylcholine receptors: common molecular substrates of nicotine and alcohol dependence.Front Psychiatry. doi:10.3389/fpsyt.2013.00029
https://doi.org/10.3389/fpsyt.2013.00029
17 HoneAJet al. (2013) Positional scanning mutagenesis of alphaconotoxin PeIA identifies critical residues that confer potency and selectivity for alpha6/alpha3beta2beta3 and alpha3beta2 nicotinic acetylcholine receptors.J Biol Chem288(35):25428–25439
https://doi.org/10.1074/jbc.M113.482059
18 HurstR, RollemaH, BertrandD (2013) Nicotinic acetylcholine receptors: from basic science to therapeutics.Pharmacol Ther137(1):22–54
https://doi.org/10.1016/j.pharmthera.2012.08.012
19 KarlinA (2002) Emerging structure of the nicotinic acetylcholine receptors.Nat Rev Neurosci3(2):102–114
https://doi.org/10.1038/nrn731
20 KouvatsosNet al. (2016) Crystal structure of a human neuronal nAChR extracellular domain in pentameric assembly: Ligandbound alpha2 homopentamer.Proc Natl Acad Sci USA113 (34):9635–9640
https://doi.org/10.1073/pnas.1602619113
21 LaskowskiRAet al. (1993) PROCHECK—a program to check the stereochemical quality of protein structures.J Appl Crystallogr26:283–291
https://doi.org/10.1107/S0021889892009944
22 LavioletteSR, van der KooyD (2004) The neurobiology of nicotine addiction: bridging the gap from molecules to behaviour.Nat Rev Neurosci5(1):55–65
https://doi.org/10.1038/nrn1298
23 Le NovereN, CorringerPJ, ChangeuxJP (2002) The diversity of subunit composition in nAChRs: evolutionary origins, physiologic and pharmacologic consequences.J Neurobiol53(4):447–456
https://doi.org/10.1002/neu.10153
24 LebbeEKet al. (2014) Conotoxins targeting nicotinic acetylcholine receptors: an overview.Mar Drugs12(5):2970–3004
https://doi.org/10.3390/md12052970
25 LiS-Xet al. (2011) Ligand-binding domain of an [alpha]7-nicotinic receptor chimera and its complex with agonist.Nat Neurosci14 (10):1253–1259
https://doi.org/10.1038/nn.2908
26 LinBet al. (2016) From crystal structure of α-conotoxin GIC in complex with Ac-AChBP to molecular determinants of its high selectivity for α3β2 nAChR.Scientific Reports6:22349
https://doi.org/10.1038/srep22349
27 LuoSet al. (2010) Atypical alpha-conotoxin LtIA from Conus litteratus targets a novel microsite of the alpha3beta2 nicotinic receptor.J Biol Chem285(16):12355–12366
https://doi.org/10.1074/jbc.M109.079012
28 LuoSet al.(2014) A novel alpha4/7-conotoxin LvIA from Conus lividus that selectively blocks alpha3beta2 vs. alpha6/alpha3beta2beta3 nicotinic acetylcholine receptors.FASEB J28(4):1842–1853
https://doi.org/10.1096/fj.13-244103
29 McCoyAJet al. (2007) Phaser crystallographic software.J Appl Crystallogr40(Pt 4):658–674
https://doi.org/10.1107/S0021889807021206
30 McDougalOMet al. (2013) pKa determination of histidine residues in alpha-conotoxin MII peptides by 1H NMR and constant pH molecular dynamics simulation.JPhysChemB117(9):2653–2661
https://doi.org/10.1021/jp3117227
31 MirRet al. (2016) Conotoxins: structure, therapeutic potential and pharmacological applications.Curr Pharm Des22(5):582–589
https://doi.org/10.2174/1381612822666151124234715
32 MiyazawaAet al. (1999) Nicotinic acetylcholine receptor at 4.6 Å resolution: transverse tunnels in the channel1.J Mol Biol288 (4):765–786
https://doi.org/10.1006/jmbi.1999.2721
33 Morales-PerezCL, NovielloCM, HibbsRE (2016) X-ray structure of the human alpha4beta2 nicotinic receptor.Nature538 (7625):411–415
https://doi.org/10.1038/nature19785
34 NemeczA, TaylorP (2011) Creating an alpha7 nicotinic acetylcholine recognition domain from the acetylcholine-binding protein: crystallographic and ligand selectivity analyses.J Biol Chem286(49):42555–42565
https://doi.org/10.1074/jbc.M111.286583
35 OrtellsMO, LuntGG (1995) Evolutionary history of the ligand-gated ion-channel superfamily of receptors.Trends Neurosci18 (3):121–127
https://doi.org/10.1016/0166-2236(95)93887-4
36 OtwinowskiZ, MinorW (1997) Processing of X-ray diffraction data collected in oscillation mode.Macromol Crystallogr Pt A276:307–326
https://doi.org/10.1016/S0076-6879(97)76066-X
37 PaoliniM, De BiasiM (2011) Mechanistic insights into nicotine withdrawal.Biochem Pharmacol82(8):996–1007
https://doi.org/10.1016/j.bcp.2011.07.075
38 RucktooaP, SmitAB, SixmaTK (2009) Insight in nAChR subtype selectivity from AChBP crystal structures.Biochem Pharmacol78 (7):777–787
https://doi.org/10.1016/j.bcp.2009.06.098
39 SalasRet al. (2009) Nicotinic receptors in the habenulo-interpeduncular system are necessary for nicotine withdrawal in mice.J Neurosci29(10):3014–3018
https://doi.org/10.1523/JNEUROSCI.4934-08.2009
40 SambasivaraoSVet al. (2014) Cover picture: acetylcholine promotes binding of α-conotoxin MII at α3β2 nicotinic acetylcholine receptors (ChemBioChem 3/2014).ChemBioChem15 (3):413–424
https://doi.org/10.1002/cbic.201300577
41 SmitABet al. (2001) A glia-derived acetylcholine-binding protein that modulates synaptic transmission.Nature411(6835):261–268
https://doi.org/10.1038/35077000
42 TsetlinV, UtkinY, KasheverovI (2009) Polypeptide and peptide toxins, magnifying lenses for binding sites in nicotinic acetylcholine receptors.Biochem Pharmacol78(7):720–731
https://doi.org/10.1016/j.bcp.2009.05.032
43 UlensCet al. (2006) Structural determinants of selective alphaconotoxin binding to a nicotinic acetylcholine receptor homolog AChBP.Proc Natl Acad Sci USA103(10):3615–3620
https://doi.org/10.1073/pnas.0507889103
44 UnwinN (1993) Nicotinic acetylcholine receptor an 9 Å resolution.J Mol Biol229(4):1101–1124
https://doi.org/10.1006/jmbi.1993.1107
45 UnwinN (1995) Acetylcholine receptor channel imaged in the open state.Nature373(6509):37–43
https://doi.org/10.1038/373037a0
46 UnwinN (2005) Refined structure of the nicotinic acetylcholine receptor at 4A resolution.J Mol Biol346(4):967–989
https://doi.org/10.1016/j.jmb.2004.12.031
47 WebbB, SaliA (2014) Comparative protein structure modeling using MODELLER.Curr Protoc Bioinform47:5.6.1–5.6.32
https://doi.org/10.1002/0471250953.bi0506s47
48 ZhangsunDet al. (2015) Key residues in the nicotinic acetylcholine receptor beta2 subunit contribute to alpha-conotoxin LvIA binding.J Biol Chem290(15):9855–9862
https://doi.org/10.1074/jbc.M114.632646
49 ZoliM, PistilloF, GottiC (2015) Diversity of native nicotinic receptor subtypes in mammalian brain.Neuropharmacology96(Pt B):302–311
https://doi.org/10.1016/j.neuropharm.2014.11.003
50 ZouridakisMet al. (2014) Crystal structures of free and antagonistbound states of human alpha9 nicotinic receptor extracellular domain.Nat Struct Mol Biol21(11):976–980
https://doi.org/10.1038/nsmb.2900
[1] PAC-0675-17086-WXQ_suppl_1 Download
[1] Puping Liang, Hongwei Sun, Ying Sun, Xiya Zhang, Xiaowei Xie, Jinran Zhang, Zhen Zhang, Yuxi Chen, Chenhui Ding, Yuanyan Xiong, Wenbin Ma, Dan Liu, Junjiu Huang, Zhou Songyang. Effective gene editing by high-fidelity base editor 2 in mouse zygotes[J]. Protein Cell, 2017, 8(8): 601-611.
[2] Puping Liang, Chenhui Ding, Hongwei Sun, Xiaowei Xie, Yanwen Xu, Xiya Zhang, Ying Sun, Yuanyan Xiong, Wenbin Ma, Yongxiang Liu, Yali Wang, Jianpei Fang, Dan Liu, Zhou Songyang, Canquan Zhou, Junjiu Huang. Correction of β-thalassemia mutant by base editor in human embryos[J]. Protein Cell, 2017, 8(11): 811-822.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed