Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2017, Vol. 8 Issue (8) : 618-622    https://doi.org/10.1007/s13238-017-0430-6
LETTER
Screening novel stress granule regulators from a natural compound library
Li-Dan Hu, Xiang-Jun Chen, Xiao-Yan Liao, Yong-Bin Yan()
State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
 Download: PDF(750 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Corresponding Author(s): Yong-Bin Yan   
Issue Date: 23 August 2017
 Cite this article:   
Li-Dan Hu,Xiang-Jun Chen,Xiao-Yan Liao, et al. Screening novel stress granule regulators from a natural compound library[J]. Protein Cell, 2017, 8(8): 618-622.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-017-0430-6
https://academic.hep.com.cn/pac/EN/Y2017/V8/I8/618
1 AndersonP, KedershaN (2006) RNA granules. J Cell Biol172:803–808
https://doi.org/10.1083/jcb.200512082
2 AndersonP, KedershaN (2009) RNA granules: post-transcriptional and epigenetic modulators of gene expression. Nat Rev Mol Cell Biol10:430–436
https://doi.org/10.1038/nrm2694
3 AndersonP, KedershaN, IvanovP (2015) Stress granules, P-bodies and cancer. Biochim Biophys Acta1849:861–870
https://doi.org/10.1016/j.bbagrm.2014.11.009
4 JainS, WheelerJR, WaltersRW, AgrawalA, BarsicA, ParkerR (2016) ATPase-modulated stress granules contain a diverse proteome and substructure. Cell164:487–498
https://doi.org/10.1016/j.cell.2015.12.038
5 KatoM, HanTW, XieS, ShiK, DuX, WuLC, MirzaeiH, GoldsmithEJ, LonggoodJ, PeiJet al. (2012) Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell149:753–767
https://doi.org/10.1016/j.cell.2012.04.017
6 KedershaNL, GuptaM, LiW, MillerI, AndersonP (1999) RNAbinding proteins TIA-1 and TIAR link the phosphorylation of eIF-2 alpha to the assembly of mammalian stress granules. J Cell Biol147:1431–1442
https://doi.org/10.1083/jcb.147.7.1431
7 LiYR, KingOD, ShorterJ, GitlerAD (2013) Stress granules as crucibles of ALS pathogenesis. J Cell Biol201:361–372
https://doi.org/10.1083/jcb.201302044
8 MahboubiH, StochajU (2017) Cytoplasmic stress granules: dynamic modulators of cell signaling and disease. Biochim Biophys Acta1863:884–895
https://doi.org/10.1016/j.bbadis.2016.12.022
9 PanasMD, IvanovP, AndersonP (2016) Mechanistic insights into mammalian stress granule dynamics. J Cell Biol215:313–323
https://doi.org/10.1083/jcb.201609081
10 PatelA, LeeHO, JawerthL, MaharanaS, JahnelM, HeinMY, StoynovS, MahamidJ, SahaS, FranzmannTMet al. (2015) A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell162:1066–1077
https://doi.org/10.1016/j.cell.2015.07.047
11 ProtterDS, ParkerR (2016) Principles and properties of stress granules. Trends Cell Biol26:668–679
https://doi.org/10.1016/j.tcb.2016.05.004
12 ReijnsMA, AlexanderRD, SpillerMP, BeggsJD (2008) A role for Q/N-rich aggregation-prone regions in P-body localization. J Cell Sci121:2463–2472
https://doi.org/10.1242/jcs.024976
13 StoecklinG, StubbsT, KedershaN, WaxS, RigbyWF, BlackwellTK, AndersonP (2004) MK2-induced tristetraprolin:14-3-3 complexes prevent stress granule association and ARE-mRNA decay. EMBO J23:1313–1324
https://doi.org/10.1038/sj.emboj.7600163
14 TourriereH, ChebliK, ZekriL, CourselaudB, BlanchardJM, BertrandE, TaziJ (2003) The RasGAP-associated endoribonuclease G3BP assembles stress granules. J Cell Biol160:823–831
https://doi.org/10.1083/jcb.200212128
15 WilczynskaA, AigueperseC, KressM, DautryF, WeilD (2005) The translational regulator CPEB1 provides a link between dcp1 bodies and stress granules. J Cell Sci118:981–992
https://doi.org/10.1242/jcs.01692
[1] PAC-0618-17114-YYB_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed