Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2017, Vol. 8 Issue (10) : 750-761    https://doi.org/10.1007/s13238-017-0444-0
RESEARCH ARTICLE
MicroRNAs recruit eIF4E2 to repress translation of target mRNAs
Shaohong Chen1,2, Guangxia Gao1,2()
1. CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
2. University of Chinese Academy of Sciences, Beijing 100101, China
 Download: PDF(1175 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

MicroRNAs (miRNAs) recruit the RNA-induced silencing complex (RISC) to repress the translation of target mRNAs. While the 5′ 7-methylguanosine cap of target mRNAs has been well known to be important for miRNA repression, the underlying mechanism is not clear. Here we show that TNRC6A interacts with eIF4E2, a homologue of eIF4E that can bind to the cap but cannot interact with eIF4G to initiate translation, to inhibit the translation of target mRNAs. Downregulation of eIF4E2 relieved miRNA repression of reporter expression. Moreover, eIF4E2 downregulation increased the protein levels of endogenous IMP1, PTEN and PDCD4, whose expression are repressed by endogenous miRNAs. We further provide evidence showing that miRNA enhances eIF4E2 association with the target mRNA. We propose that miRNAs recruit eIF4E2 to compete with eIF4E to repress mRNA translation.

Keywords microRNAs      translation repression      5′ cap      eIF4E2      TNRC6A     
Corresponding Author(s): Guangxia Gao   
Issue Date: 06 November 2017
 Cite this article:   
Shaohong Chen,Guangxia Gao. MicroRNAs recruit eIF4E2 to repress translation of target mRNAs[J]. Protein Cell, 2017, 8(10): 750-761.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-017-0444-0
https://academic.hep.com.cn/pac/EN/Y2017/V8/I10/750
1 AsanganiIA, RasheedSA, NikolovaDA, LeupoldJH, ColburnNH, PostS, AllgayerH (2008) MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer.Oncogene27(15):2128–2136
https://doi.org/10.1038/sj.onc.1210856
2 BolandA, TritschlerF, HeimstadtS, IzaurraldeE, WeichenriederO (2010) Crystal structure and ligand binding of the MID domain of a eukaryotic Argonaute protein.Embo Reports11(7):522–527
https://doi.org/10.1038/embor.2010.81
3 BoyerinasB, ParkSM, ShomronN, HedegaardMM, VintherJ, AndersenJS, FeigC, XuJ, BurgeCB, PeterME (2008) Identification of let-7-regulated oncofetal genes.Cancer Res68 (8):2587–2591
https://doi.org/10.1158/0008-5472.CAN-08-0264
4 ChapatC, JafarnejadSM, Matta-CamachoE, HeskethGG, GelbartIA, AttigJ, GkogkasCG, AlainT, Stern-GinossarN, FabianMRet al. (2017) Cap-binding protein 4EHP effects translation silencing by microRNAs.Proc Natl Acad Sci114:5425–5430
https://doi.org/10.1073/pnas.1701488114
5 ChoPF, PoulinF,Cho-ParkYA, Cho-ParkIB, ChicoineJD, LaskoP, SonenbergN (2005) A new paradigm for translational control: inhibition via 5 ‘-3 ‘ mRNA tethering by Bicoid and the eIF4E cognate 4EHP.Cell121(3):411–423
https://doi.org/10.1016/j.cell.2005.02.024
6 DjuranovicS, ZinchenkoMK, HurJK, NahviA, BrunelleJL, RogersEJ, GreenR (2010) Allosteric regulation of Argonaute proteins by miRNAs.Nat Struct Mol Biol17(2):144–150
https://doi.org/10.1038/nsmb.1736
7 EulalioA, HuntzingerE, IzaurraldeE (2008) GW182 interaction with Argonaute is essential for miRNA-mediated translational repression and mRNA decay.Nat Struct Mol Biol15(4):346–353
https://doi.org/10.1038/nsmb.1405
8 FabianMR, SonenbergN, FilipowiczW (2010) Regulation of mRNA translation and stability by microRNAs.Annu Rev Biochem79:351–379
https://doi.org/10.1146/annurev-biochem-060308-103103
9 FlyntAS, LaiEC (2008) Biological principles of microRNA-mediated regulation: shared themes amid diversity.Nat Rev Genet9 (11):831–842
https://doi.org/10.1038/nrg2455
10 FrankF, FabianMR, StepinskiJ, JemielityJ, DarzynkiewiczE, SonenbergN, NagarB (2011) Structural analysis of 5 ‘-mRNAcap interactions with the human AGO2 MID domain.Embo Reports12(5):415–420
https://doi.org/10.1038/embor.2011.48
11 FuR, OlsenMT, WebbK, BennettEJ, Lykke-AndersenJ (2016) Recruitment of the 4EHP-GYF2 cap-binding complex to tetraproline motifs of tristetraprolin promotes repression and degradation of mRNAs with AU-rich elements.RNA22(3):373–382
https://doi.org/10.1261/rna.054833.115
12 FukaoA, MishimaY,TakizawaN, OkaS, ImatakaH, PelletierJ, SonenbergN, ThomaC, FujiwaraT (2014) MicroRNAs trigger dissociation of eIF4AI and eIF4AII from target mRNAs in humans.Mol Cell56(1):79–89
https://doi.org/10.1016/j.molcel.2014.09.005
13 FukayaT,TomariY (2012) MicroRNAs mediate gene silencing via multiple different pathways in drosophila.Mol Cell48(6):825–836
https://doi.org/10.1016/j.molcel.2012.09.024
14 FukayaT, IwakawaHO, TomariY (2014) MicroRNAs block assembly of eIF4F translation initiation complex in Drosophila.Mol Cell56(1):67–78
https://doi.org/10.1016/j.molcel.2014.09.004
15 GingrasAC, RaughtB, SonenbergN (1999) eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation.Annu Rev Biochem68:913–963
https://doi.org/10.1146/annurev.biochem.68.1.913
16 GuW, XuY, XieX, WangT, KoJH, ZhouT (2014) The role of RNA structure at 5’ untranslated region in microRNA-mediated gene regulation.RNA20(9):1369–1375
https://doi.org/10.1261/rna.044792.114
17 HeimanM, KulickeR, FensterRJ, GreengardP, HeintzN (2014) Cell type-specific mRNA purification by translating ribosome affinity purification (TRAP).Nat Protoc9(6):1282–1291
https://doi.org/10.1038/nprot.2014.085
18 HumphreysDT, WestmanBJ, MartinDI,PreissT (2005) MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function.Proc Natl Acad Sci U S A102 (47):16961–16966
https://doi.org/10.1073/pnas.0506482102
19 JacksonRJ, HellenCU, PestovaTV (2010) The mechanism of eukaryotic translation initiation and principles of its regulation.Nat Rev Mol Cell Biol11(2):113–127
https://doi.org/10.1038/nrm2838
20 JonasS, IzaurraldeE (2015) NON-CODING RNA Towards a molecular understanding of microRNA-mediated gene silencing.Nat Rev Genet16(7):421–433
https://doi.org/10.1038/nrg3965
21 KamenskaA, LuWT, KubackaD, BroomheadH, MinshallN, BushellM, StandartN (2014) Human 4E-T represses translation of bound mRNAs and enhances microRNA-mediated silencing.Nucleic Acids Res42(5):3298–3313
https://doi.org/10.1093/nar/gkt1265
22 KamenskaA, SimpsonC, VindryC, BroomheadH, BenardM, Ernoult-LangeM, LeeBP,HarriesLW, WeilD, StandartN (2016) The DDX6-4E-T interaction mediates translational repression and P-body assembly.Nucleic Acids Res44(13):6318–6334
https://doi.org/10.1093/nar/gkw565
23 KinchLN, GrishinNV (2009) The human Ago2 MC region does not contain an eIF4E-like mRNA cap binding motif.Biol Direct4:2
https://doi.org/10.1186/1745-6150-4-2
24 KiriakidouM, TanGS, LamprinakiS, De Planell-SaguerM, NelsonPT, MourelatosZ (2007) An mRNA m(7)G cap binding-like motif within human Ago2 represses translation.Cell129 (6):1141–1151
https://doi.org/10.1016/j.cell.2007.05.016
25 KubackaD, KamenskaA, BroomheadH, MinshallN, DarzynkiewiczE, StandartN (2013) Investigating the consequences of eIF4E2 (4EHP) interaction with 4E-transporter on its cellular distribution in HeLa cells.PLoS ONE8(8):e72761
https://doi.org/10.1371/journal.pone.0072761
26 LuWT, WilczynskaA, SmithE, BushellM (2014) The diverse roles of the eIF4A family: you are the company you keep.Biochem Soc Trans42:166–172
https://doi.org/10.1042/BST20130161
27 MathonnetG, FabianMR, SvitkinYV, ParsyanA, HuckL, MurataT, BiffoS, MerrickWC, DarzynkiewiczE, PillaiRSet al. (2007) MicroRNA inhibition of translation initiation in vitro by targeting the cap-binding complex eIF4F.Science317(5845):1764–1767
https://doi.org/10.1126/science.1146067
28 MeijerHA, KongYW, LuWT, WilczynskaA, SpriggsRV, RobinsonSW, GodfreyJD, WillisAE, BushellM (2013) Translational repression and eIF4A2 activity are critical for microRNA-mediated gene regulation.Science340(6128):82–85
https://doi.org/10.1126/science.1231197
29 MeisterG (2007) miRNAs get an early start on translational silencing.Cell131(1):25–28
https://doi.org/10.1016/j.cell.2007.09.021
30 MengFY, HensonR, Wehbe-JanekH, GhoshalK, JacobST, PatelT (2007) MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer.Gastroenterology133(2):647–658
https://doi.org/10.1053/j.gastro.2007.05.022
31 NishimuraT, PadamsiZ, FakimH, MiletteS, DunhamWH, GingrasAC, FabianMR (2015) The eIF4E-Binding Protein 4ET Is a Component of the mRNA Decay Machinery that Bridges the 5 ‘ and 3 ‘ Termini of Target mRNAs.Cell Rep11(9):1425–1436
https://doi.org/10.1016/j.celrep.2015.04.065
32 PetersenCP, BordeleauME, PelletierJ, SharpPA (2006) Short RNAs repress translation after initiation in mammalian cells.Mol Cell21(4):533–542
https://doi.org/10.1016/j.molcel.2006.01.031
33 PfaffJ, MeisterG (2013) Argonaute and GW182 proteins: an effective alliance in gene silencing.Biochem Soc Trans41 (4):855–860
https://doi.org/10.1042/BST20130047
34 PillaiRS, BhattacharyyaSN, ArtusCG, ZollerT, CougotN, BasyukE, BertrandE, FilipowiczW (2005) Inhibition of translational initiation by Let-7 microRNA in human cells.Science309 (5740):1573–1576
https://doi.org/10.1126/science.1115079
35 QiL, BartJ, TanLP, PlatteelI,SluisT, HuitemaS, HarmsG, FuL, HollemaH, BergA (2009) Expression of miR-21 and its targets (PTEN, PDCD4, TM1) in flat epithelial atypia of the breast in relation to ductal carcinoma in situ and invasive carcinoma.BMC Cancer9:163
https://doi.org/10.1186/1471-2407-9-163
36 RicciEP, LimousinT, Soto-RifoR, RubilarPS, DecimoD, OhlmannT (2013) miRNA repression of translation in vitro takes place during 43S ribosomal scanning.Nucleic Acids Res41(1):586–598
https://doi.org/10.1093/nar/gks1076
37 RomE, KimHC, GingrasAC, MarcotrigianoJ, FavreD, OlsenH, BurleySK, SonenbergN (1998) Cloning and characterization of 4EHP, a novel mammalian eIF4E-related cap-binding protein.J Biol Chem273(21):13104–13109
https://doi.org/10.1074/jbc.273.21.13104
38 SonenbergN, ShatkinAJ (1977) Reovirus messenger-Rna can be covalently crosslinked via 5’ cap to proteins in initiation-complexes.Proc Natl Acad Sci USA74(10):4288–4292
https://doi.org/10.1073/pnas.74.10.4288
39 TaoX, GaoG (2015) Tristetraprolin Recruits Eukaryotic Initiation Factor 4E2 To Repress Translation of AU-Rich Element-Containing mRNAs.Mol Cell Biol35(22):3921–3932
https://doi.org/10.1128/MCB.00845-15
40 ThermannR, HentzeMW (2007) Drosophila miR2 induces pseudopolysomes and inhibits translation initiation.Nature447 (7146):875–878
https://doi.org/10.1038/nature05878
41 Valencia-SanchezMA, LiuJ, HannonGJ, ParkerR (2006) Control of translation and mRNA degradation by miRNAs and siRNAs.Genes Dev20(5):515–524
https://doi.org/10.1101/gad.1399806
42 VaraniG (1997) A cap for all occasions.Structure5(7):855–858
https://doi.org/10.1016/S0969-2126(97)00239-6
43 WaltersRW, BradrickSS, GromeierM (2010) Poly(A)-binding protein modulates mRNA susceptibility to cap-dependent miRNA-mediated repression.Rna16(1):239–250
https://doi.org/10.1261/rna.1795410
44 WangBB, YanazA, NovinaCD (2008) MicroRNA-repressed mRNAs contain 40S but not 60S components.Proc NatL Acad Sci USA105(14):5343–5348
https://doi.org/10.1073/pnas.0801102105
45 YaoB, LiSQ, JungHM, LianSL,AbadalGX, HanF, FritzlerMJ, ChanEKL (2011) Divergent GW182 functional domains in the regulation of translational silencing.Nucleic Acids Res39(7):2534–2547
https://doi.org/10.1093/nar/gkq1099
46 ZuberekJ, KubackaD, JablonowskaA, JemielityJ, StepinskiJ, SonenbergN, DarzynkiewiczE (2007) Weak binding affinity of human 4EHP for mRNA cap analogs.RNA13(5):691–697
https://doi.org/10.1261/rna.453107
[1] PAC-0750-17925-GGX_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed