Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2017, Vol. 8 Issue (11) : 823-833    https://doi.org/10.1007/s13238-017-0479-2
RESEARCH ARTICLE
Recapitulating cortical development with organoid culture in vitro and modeling abnormal spindle-like (ASPM related primary) microcephaly disease
Rui Li1, Le Sun1, Ai Fang1,2, Peng Li1, Qian Wu1,2(), Xiaoqun Wang1,2,3()
1. State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. Beijing Institute for Brain Disorders, Beijing 100069, China
 Download: PDF(3238 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The development of a cerebral organoid culture in vitro offers an opportunity to generate human brain-like organs to investigate mechanisms of human disease that are specific to the neurogenesis of radial glial (RG) and outer radial glial (oRG) cells in the ventricular zone (VZ) and subventricular zone (SVZ) of the developing neocortex. Modeling neuronal progenitors and the organization that produces mature subcortical neuron subtypes during early stages of development is essential for studying human brain developmental diseases. Several previous efforts have shown to grow neural organoid in culture dishes successfully, however we demonstrate a new paradigm that recapitulates neocortical development process with VZ, OSVZ formation and the lamination organization of cortical layer structure. In addition, using patient-specific induced pluripotent stem cells (iPSCs) with dysfunction of theAspm gene from a primary microcephaly patient, we demonstrate neurogenesis defects result in defective neuronal activity in patient organoids, suggesting a new strategy to study human developmental diseases in central nerve system.

Keywords neocortical development      cerebral organoid      microcephaly      ASPM     
Corresponding Author(s): Qian Wu,Xiaoqun Wang   
Issue Date: 30 November 2017
 Cite this article:   
Rui Li,Le Sun,Ai Fang, et al. Recapitulating cortical development with organoid culture in vitro and modeling abnormal spindle-like (ASPM related primary) microcephaly disease[J]. Protein Cell, 2017, 8(11): 823-833.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-017-0479-2
https://academic.hep.com.cn/pac/EN/Y2017/V8/I11/823
1 AnthonyTE, KleinC, FishellG, Heintz N (2004) Radial glia serve as neuronal progenitors in all regions of the central nervous system.Neuron41(6):881–890
https://doi.org/10.1016/S0896-6273(04)00140-0
2 BershteynMet al. (2017) Human iPSC-derived cerebral organoids model cellular features of lissencephaly and reveal prolonged mitosis of outer radial glia.Cell Stem Cell20(4):435–449
https://doi.org/10.1016/j.stem.2016.12.007
3 BondJet al. (2002) ASPM is a major determinant of cerebral cortical size.Nat Genet32(2):316–320
https://doi.org/10.1038/ng995
4 BondJet al. (2003)Protein-truncating mutations in ASPM cause variable reduction in brain size.Am J Hum Genet73(5):1170–1177
https://doi.org/10.1086/379085
5 BorrellV, ReilloI (2012) Emerging roles of neural stem cells in cerebral cortex development and evolution.Dev Neurobiol72 (7):955–971
https://doi.org/10.1002/dneu.22013
6 CampJGet al. (2015) Human cerebral organoids recapitulate gene expression programs of fetal neocortex development.Proc Natl Acad Sci USA112(51):15672–15677
https://doi.org/10.1073/pnas.1520760112
7 CavinessVS Jr, RakicP (1978) Mechanisms of cortical development: a view from mutations in mice.Annu Rev Neurosci1:297–326
https://doi.org/10.1146/annurev.ne.01.030178.001501
8 CugolaFRet al. (2016) The Brazilian Zika virus strain causes birth defects in experimental models.Nature534(7606):267–271
https://doi.org/10.1038/nature18296
9 D’ArcangeloG (2006) Reelin mouse mutants as models of cortical development disorders.Epilepsy Behav8(1):81–90
https://doi.org/10.1016/j.yebeh.2005.09.005
10 de Graaf-PetersVB, Hadders-Algra M (2006) Ontogeny of the human central nervous system: what is happening when?Early Hum Dev82(4):257–266
https://doi.org/10.1016/j.earlhumdev.2005.10.013
11 DehayC, Kennedy H(2007) Cell-cycle control and cortical development.Nat Rev Neurosci8(6):438–450
https://doi.org/10.1038/nrn2097
12 DouglasRJ, MartinKA (2004) Neuronal circuits of the neocortex.Annu Rev Neurosci27:419–451
https://doi.org/10.1146/annurev.neuro.27.070203.144152
13 EirakuMet al. (2008) Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals.Cell Stem Cell3(5):519–532
https://doi.org/10.1016/j.stem.2008.09.002
14 EirakuMet al. (2011) Self-organizing optic-cup morphogenesis in three-dimensional culture.Nature472(7341):51–56
https://doi.org/10.1038/nature09941
15 FaheemMet al. (2015) Molecular genetics of human primary microcephaly: an overview.BMC Med Genom8(Suppl 1):S4
https://doi.org/10.1186/1755-8794-8-S1-S4
16 FietzSA, Huttner WB (2011) Cortical progenitor expansion, selfrenewal and neurogenesis-a polarized perspective.Curr Opin Neurobiol21(1):23–35
https://doi.org/10.1016/j.conb.2010.10.002
17 FishellG, Kriegstein AR (2003) Neurons from radial glia: the consequences of asymmetric inheritance.Curr Opin Neurobiol13 (1):34–41
https://doi.org/10.1016/S0959-4388(03)00013-8
18 GaoP, SultanKT, ZhangXJ, Shi SH (2013) Lineage-dependent circuit assembly in the neocortex.Development140(13):2645–2655
https://doi.org/10.1242/dev.087668
19 GarcezPPet al. (2016) Zika virus impairs growth in human neurospheres and brain organoids.Science352(6287):816–818
https://doi.org/10.1126/science.aaf6116
20 Garcia-MorenoF, Vasistha NA, TreviaN , BourneJA, MolnarZ (2012) Compartmentalization of cerebral cortical germinal zones in a lissencephalic primate and gyrencephalic rodent.Cereb Cortex22(2):482–492
https://doi.org/10.1093/cercor/bhr312
21 GertzCC, LuiJH, LaMonicaBE, WangX, Kriegstein AR (2014) Diverse behaviors of outer radial glia in developing ferret and human cortex.J Neurosci34(7):2559–2570
https://doi.org/10.1523/JNEUROSCI.2645-13.2014
22 GotzM, Huttner WB (2005) The cell biology of neurogenesis.Nat Rev6(10):777–788
https://doi.org/10.1038/nrm1739
23 HansenDV, LuiJH, ParkerPR, Kriegstein AR (2010) Neurogenic radial glia in the outer subventricular zone of human neocortex.Nature464(7288):554–561
https://doi.org/10.1038/nature08845
24 HartfussE, GalliR, HeinsN, Gotz M (2001) Characterization of CNS precursor subtypes and radial glia. Dev Biol229(1):15–30
https://doi.org/10.1006/dbio.2000.9962
25 HuttnerWB, KosodoY (2005) Symmetric versus asymmetric cell division during neurogenesis in the developing vertebrate central nervous system.Curr Opin Cell Biol17(6):648–657
https://doi.org/10.1016/j.ceb.2005.10.005
26 KadoshimaTet al. (2013) Self-organization of axial polarity, insideout layer pattern, and species-specific progenitor dynamics in human ES cell-derived neocortex.Proc Natl Acad Sci USA110 (50):20284–20289
https://doi.org/10.1073/pnas.1315710110
27 KriegsteinA, NoctorS, Martinez-CerdenoV (2006) Patterns of neural stem and progenitor cell division may underlie evolutionary cortical expansion.Nat Rev Neurosci7(11):883–890
https://doi.org/10.1038/nrn2008
28 LaMonicaBE, LuiJH, WangX, Kriegstein AR (2012) OSVZ progenitors in the human cortex: an updated perspective on neurodevelopmental disease.Curr Opin Neurobiol22(5):747–753
https://doi.org/10.1016/j.conb.2012.03.006
29 LancasterMAet al. (2013) Cerebral organoids model human brain development and microcephaly.Nature501(7467):373–379
https://doi.org/10.1038/nature12517
30 LiYet al.(2017) Induction of expansion and folding in human cerebral organoids.Cell stem cell20(3):385–396
https://doi.org/10.1016/j.stem.2016.11.017
31 LuiJH, HansenDV, KriegsteinAR (2011) Development and evolution of the human neocortex.Cell146(1):18–36
https://doi.org/10.1016/j.cell.2011.06.030
32 NasuMet al. (2012) Robust formation and maintenance of continuous stratified cortical neuroepithelium by laminin-containing matrix in mouse ES cell culture.PloS ONE7(12): e53024
https://doi.org/10.1371/journal.pone.0053024
33 NoctorSC, FlintAC, WeissmanTA, Dammerman RS, KriegsteinAR (2001) Neurons derived from radial glial cells establish radial units in neocortex.Nature409(6821):714–720
https://doi.org/10.1038/35055553
34 NoctorSCet al. (2002) Dividing precursor cells of the embryonic cortical ventricular zone have morphological and molecular characteristics of radial glia.J Neurosci22(8):3161–3173
35 Nonaka-KinoshitaMet al. (2013) Regulation of cerebral cortex size and folding by expansion of basal progenitors.EMBO J32 (13):1817–1828
https://doi.org/10.1038/emboj.2013.96
36 NowakowskiTJet al.(2016) Expression analysis highlights AXL as a candidate Zika virus entry receptor in neural stem cells.Cell Stem Cell18(5):591–596
https://doi.org/10.1016/j.stem.2016.03.012
37 OkitaK, Ichisaka T,YamanakaS (2007) Generation of germlinecompetent induced pluripotent stem cells.Nature448 (7151):313–317
https://doi.org/10.1038/nature05934
38 OstremBE, LuiJH, GertzCC, Kriegstein AR (2014) Control of outer radial glial stem cell mitosis in the human brain.Cell Rep8 (3):656–664
https://doi.org/10.1016/j.celrep.2014.06.058
39 PascaAMet al. (2015) Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture.Nat Methods12 (7):671–678
https://doi.org/10.1038/nmeth.3415
40 PilzGAet al. (2013) Amplification of progenitors in the mammalian telencephalon includes a new radial glial cell type.Nat Commun4:2125
https://doi.org/10.1038/ncomms3125
41 PontiousA, Kowalczyk T, EnglundC , HevnerRF (2008) Role of intermediate progenitor cells in cerebral cortex development.Dev Neurosci30(1–3):24–32
https://doi.org/10.1159/000109848
42 PulversJNet al. (2010) Mutations in mouse Aspm (abnormal spindle-like microcephaly associated) cause not only microcephaly but also major defects in the germline.Proc Natl Acad Sci USA107(38):16595–16600
https://doi.org/10.1073/pnas.1010494107
43 QianXet al. (2016) Brain-region-specific organoids using minibioreactors for modeling ZIKV exposure.Cell165(5):1238–1254
https://doi.org/10.1016/j.cell.2016.04.032
44 RakicP (2009) Evolution of the neocortex: a perspective from developmental biology.Nat Rev Neurosc10(10):724–735
https://doi.org/10.1038/nrn2719
45 ReilloI, de Juan Romero C, Garcia-CabezasMA , BorrellV (2011) A role for intermediate radial glia in the tangential expansion of the mammalian cerebral cortex.Cereb Cortex21(7):1674–1694
https://doi.org/10.1093/cercor/bhq238
46 RujanoMA, Sanchez-Pulido L, PennetierC , le DezG, BastoR (2013) The microcephaly protein Asp regulates neuroepithelium morphogenesis by controlling the spatial distribution of myosin II.Nat Cell Biol15(11):1294–1306
https://doi.org/10.1038/ncb2858
47 ShenJet al. (2005) ASPM mutations identified in patients with primary microcephaly and seizures.J Med Genet42(9):725–729
https://doi.org/10.1136/jmg.2004.027706
48 SugaHet al. (2011) Self-formation of functional adenohypophysis in three-dimensional culture.Nature480(7375):57–62
https://doi.org/10.1038/nature10637
49 TakahashiK, Yamanaka S (2006)Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors.Cell126(4):663–676
https://doi.org/10.1016/j.cell.2006.07.024
50 TangHet al. (2016) Zika virus infects human cortical neural progenitors and attenuates their growth.Cell Stem Cell18 (5):587–590
https://doi.org/10.1016/j.stem.2016.02.016
51 TavernaE, Huttner WB (2010) Neural progenitor nuclei in motion.Neuron67(6):906–914
https://doi.org/10.1016/j.neuron.2010.08.027
52 WangX, TsaiJW, LaMonicaB, Kriegstein AR (2011) A new subtype of progenitor cell in the mouse embryonic neocortex.Nat Neurosci14(5):555–561
https://doi.org/10.1038/nn.2807
53 WoodsCG, BondJ, EnardW (2005) Autosomal recessive primary microcephaly (MCPH): a review of clinical, molecular, and evolutionary findings.Am J Hum Genet76(5):717–728
https://doi.org/10.1086/429930
54 XuMet al. (2016) Identification of small-molecule inhibitors of Zika virus infection and induced neural cell death via a drug repurposing screen.Nat Med22(10):1101–1107
https://doi.org/10.1038/nm.4184
[1] PAC-0823-17212-WXQ_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed