Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2018, Vol. 9 Issue (12) : 1004-1012    https://doi.org/10.1007/s13238-018-0509-8
REVIEW
Transmembrane domain dependent inhibitory function of FcγRIIB
Junyi Wang1, Zongyu Li1, Liling Xu2(), Hengwen Yang3(), Wanli Liu1()
1. MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Tsinghua University, Beijing 100084, China
2. Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
3. The First Affiliate Hospital, Biomedical Translational Research Institute, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou 510632, China
 Download: PDF(1330 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

FcγRIIB, the only inhibitory IgG Fc receptor, functions to suppress the hyper-activation of immune cells. Numerous studies have illustrated its inhibitory function through the ITIM motif in the cytoplasmic tail of FcγRIIB. However, later studies revealed that in addition to the ITIM, the transmembrane (TM) domain of FcγRIIB is also indispensable for its inhibitory function. Indeed, recent epidemiological studies revealed that a non-synonymous single nucleotide polymorphism (rs1050501) within the TM domain of FcγRIIB, responsible for the I232T substitution, is associated with the susceptibility to systemic lupus erythematosus (SLE). In this review, we will summarize these epidemiological and functional studies of FcγRIIB-I232T in the past few years, and will further discuss the mechanisms accounting for the functional loss of FcγRIIB-I232T. Our review will help the reader gain a deeper understanding of the importance of the TM domain in mediating the inhibitory function of FcγRIIB and may provide insights to a new therapeutic target for the associated diseases.

Keywords B cell      FcγRIIB      transmembrane domain      systemic lupus erythematosus      autoimmune disease     
Corresponding Author(s): Liling Xu,Hengwen Yang,Wanli Liu   
Issue Date: 19 December 2018
 Cite this article:   
Junyi Wang,Zongyu Li,Liling Xu, et al. Transmembrane domain dependent inhibitory function of FcγRIIB[J]. Protein Cell, 2018, 9(12): 1004-1012.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-018-0509-8
https://academic.hep.com.cn/pac/EN/Y2018/V9/I12/1004
1 SAmigorena, CBonnerot, DChoquet, WHFridman, JLTeillaud (1989) Fc-Gamma-Rii expression in resting and activated lymphocytes-B. Eur J Immunol 19:1379–1385
https://doi.org/10.1002/eji.1830190805
2 JABallesteros, XDeupi, MOlivella, EEJHaaksma, LPardo (2000) Serine and threonine residues bend alpha-helices in the chi(1) = g(−) conformation. Biophys J 79:2754–2760
https://doi.org/10.1016/S0006-3495(00)76514-3
3 FDBatista, MSNeuberger (2000) B cells extract and present immobilized antigen: implications for affinity discrimination. EMBO J 19:513–520
https://doi.org/10.1093/emboj/19.4.513
4 UBlank, PLaunay, MBenhamou, RCMonteiro (2009) Inhibitory ITAMs as novel regulators of immunity. Immunol Rev 232:59–71
https://doi.org/10.1111/j.1600-065X.2009.00832.x
5 SBolland, JVRavetch (2000) Spontaneous autoimmune disease in Fc(gamma)RIIB-deficient mice results from strain-specific epistasis. Immunity 13:277–285
https://doi.org/10.1016/S1074-7613(00)00027-3
6 MBruin, MBierings, CUiterwaal, TRevesz, LBode, MEWiesman, TKuijpers, RTamminga, Mde Haas (2004) Platelet count, previous infection and FCGR2B genotype predict development of chronic disease in newly diagnosed idiopathic thrombocytopenia in childhood: results of a prospective study. Br J Haematol 127:561–567
https://doi.org/10.1111/j.1365-2141.2004.05235.x
7 JYChen, CMWang, JMWu, HHHo, SFLuo (2006) Association of rheumatoid factor production with FcgammaRIIIa polymorphism in Taiwanese rheumatoid arthritis. Clin Exp Immunol 144:10–16
https://doi.org/10.1111/j.1365-2249.2006.03021.x
8 JYChen, CMWang, CCMa, LAHsu, HHHo, YJJWu, SNKuo, JWu (2008) A transmembrane polymorphism in Fc gamma RIIb (FCGR2B) is associated with the production of anti-cyclic citrullinated peptide autoantibodies in Taiwanese RA. Genes Immun 9:680–688
https://doi.org/10.1038/gene.2008.56
9 ZTChu, NTsuchiya, CKyogoku, JOhashi, YPQian, SBXu, CZMao, JYChu, KTokunaga (2004) Association of Fcgamma receptor IIb polymorphism with susceptibility to systemic lupus erythematosus in Chinese: a common susceptibility gene in the Asian populations. Tissue Antigens 63:21–27
https://doi.org/10.1111/j.1399-0039.2004.00142.x
10 MRClatworthy, LWillcocks, BUrban, JLanghorne, TNWilliams, NPeshu, NAWatkins, RAFloto, KGSmith (2007) Systemic lupus erythematosus-associated defects in the inhibitory receptor FcgammaRIIb reduce susceptibility to malaria. Proc Natl Acad Sci USA 104:7169–7174
https://doi.org/10.1073/pnas.0608889104
11 MDaeron (1997) Fc receptor biology. Annu Rev Immunol 15:203–234
https://doi.org/10.1146/annurev.immunol.15.1.203
12 MDaeron, OMalbec, SLatour, CBonnerot, DMSegal, WHFridman (1993) Distinct intracytoplasmic sequences are required for endocytosis and phagocytosis via murine Fc gamma RII in mast cells. Int Immunol 5:1393–1401
https://doi.org/10.1093/intimm/5.11.1393
13 RAFloto, MRClatworthy, KRHeilbronn, DRRosner, PAMacAry, ARankin, PJLehner, WHOuwehand, JMAllen, NAWatkins, KGCSmith (2005) Loss of function of a lupus-associated Fc gamma RIIb polymorphism through exclusion from lipid rafts. Nat Med 11:1056–1058
https://doi.org/10.1038/nm1288
14 DCFong, ABrauweiler, SAMinskoff, PBruhns, ITamir, IMellman, MDaeron, JCCambier (2000) Mutational analysis reveals multiple distinct sites within Fc gamma receptor IIB that function in inhibitory signaling. J Immunol 165:4453–4462
https://doi.org/10.4049/jimmunol.165.8.4453
15 GGeorgiou, SSBahra, ARMackie, CAWolfe, PO’Shea, SLadha, NFernandez, RJCherry (2002) Measurement of the lateral diffusion of human MHC class I molecules on HeLa cells by fluorescence recovery after photobleaching using a phycoerythrin probe. Biophys J 82:1828–1834
https://doi.org/10.1016/S0006-3495(02)75533-1
16 THarder, PScheiffele, PVerkade, KSimons (1998) Lipid domain structure of the plasma membrane revealed by patching of membrane components. J Cell Biol 141:929–942
https://doi.org/10.1083/jcb.141.4.929
17 KLHippen, AMBuhl, DDambrosio, KNakamura, CPersin, JCCambier (1997) Fc gamma RIIB1 inhibition of BCR-mediated phosphoinositide hydrolysis and Ca2+ mobilization is integrated by CD19 dephosphorylation. Immunity 7:49–58
https://doi.org/10.1016/S1074-7613(00)80509-9
18 HKono, TSuzuki, KYamamoto, MOkada, TYamamoto, ZHonda (2002) Spatial raft coalescence represents an initial step in Fc gamma R signaling. J Immunol 169:193–203
https://doi.org/10.4049/jimmunol.169.1.193
19 HKono, CKyogoku, TSuzuki, NTsuchiya, HHonda, KYamamoto, KTokunaga, ZHonda (2005) FcgammaRIIB Ile232Thr transmembrane polymorphism associated with human systemic lupus erythematosus decreases affinity to lipid rafts and attenuates inhibitory effects on B cell receptor signaling. Hum Mol Genet 14:2881–2892
https://doi.org/10.1093/hmg/ddi320
20 CKyogoku, HMDijstelbloem, NTsuchiya, YHatta, HKato, AYamaguchi, TFukazawa, MDJansen, HHashimoto, JGvan de Winkelet al. (2002a) Fcgamma receptor gene polymorphisms in Japanese patients with systemic lupus erythematosus: contribution of FCGR2B to genetic susceptibility. Arthritis Rheum 46:1242–1254
https://doi.org/10.1002/art.10257
21 CKyogoku, HMDijstelbloem, NTsuchiya, YHatta, HKato, AYamaguchi, TFukazawa, MDJansen, HHashimoto, JGJvan de Winkelet al. (2002b) Fc gamma receptor gene polymorphisms in Japanese patients with systemic lupus erythematosus- Contribution of FCGR2B to genetic susceptibility. Arthritis Rheum 46:1242–1254
https://doi.org/10.1002/art.10257
22 CKyogoku, NTsuchiya, KMatsuta, KTokunaga (2002c) Studies on the association of Fc gamma receptor IIA, IIB, IIIA and IIIB polymorphisms with rheumatoid arthritis in the Japanese: evidence for a genetic interaction between HLA-DRB1 and FCGR3A. Genes Immun 3:488–493
https://doi.org/10.1038/sj.gene.6363921
23 CKyogoku, NTsuchiya, HWu, BPTsao, KTokunaga (2004) Association of Fcgamma receptor IIA, but not IIB and IIIA, polymorphisms with systemic lupus erythematosus: a familybased association study in Caucasians. Arthritis Rheum 50:671–673
https://doi.org/10.1002/art.20029
24 BLehmann, ISchwab, SBohm, ALux, MBiburger, FNimmerjahn (2012) FcgammaRIIB: a modulator of cell activation and humoral tolerance. Expert Rev Clin Immunol 8:243–254
https://doi.org/10.1586/eci.12.5
25 XRLi, JMWu, TPtacek, DTRedden, EEBrown, GSAlarcon, RRamsey-Goldman, MAPetri, JDReveille, RAKaslow, et al. (2013) Allelicdependent expression of an activating Fc receptor on B cells enhances humoral immune responses. Sci Transl Med 5
26 WLLiu, HWSohn, PTolar, TMeckel, SKPierce (2010) Antigeninduced oligomerization of the B cell receptor is an early target of Fc gamma RIIB inhibition. J Immunol 184:1977–1989
https://doi.org/10.4049/jimmunol.0902334
27 JLu, JChu, Z,Zou NBHamacher, MWRixon, PDSun (2015) Structure of FcgammaRI in complex with Fc reveals the importance of glycan recognition for high-affinity IgG binding. Proc Natl Acad Sci USA 112:833–838
https://doi.org/10.1073/pnas.1418812112
28 YMimura, PSondermann, RGhirlando, JLund, SPYoung, MGoodall, RJefferis (2001) Role of oligosaccharide residues of IgG1-Fc in Fc gamma RIIb binding. J Biol Chem 276:45539–45547
https://doi.org/10.1074/jbc.M107478200
29 HANiederer, MRClatworthy, LCWillcocks, KGSmith (2010a) FcgammaRIIB, FcgammaRIIIB, and systemic lupus erythematosus. Ann N Y Acad Sci 1183:69–88
https://doi.org/10.1111/j.1749-6632.2009.05132.x
30 HANiederer, LCWillcocks, TFRayner, WYang, YLLau, TNWilliams, JAScott, BCUrban, NPeshu, SJDunstanet al. (2010b) Copy number, linkage disequilibrium and disease association in the FCGR locus. Hum Mol Genet 19:3282–3294
https://doi.org/10.1093/hmg/ddq216
31 FNimmerjahn, JVRavetch (2008) Fc gamma receptors as regulators of immune responses. Nat Rev Immunol 8:34–47
https://doi.org/10.1038/nri2206
32 FNimmerjahn, JVRavetch (2011) FcγRs in health and disease. Curr Top Microbiol Immunol 350:105–125
https://doi.org/10.1007/82_2010_86
33 FPan, KZhang, XLi, JXu, JHao, DYe (2006) Association of Fcgamma receptor IIB gene polymorphism with genetic susceptibility to systemic lupus erythematosus in Chinese populations–a family-based association study. J Dermatol Sci 43:35–41
https://doi.org/10.1016/j.jdermsci.2006.02.005
34 NSPeress (1993) Identification of Fc gamma RI, II and III on normal human brain ramified microglia and on microglia in senile plaques in Alzheimer’s disease. J Neuroimmunol 48:71–79
https://doi.org/10.1016/0165-5728(93)90060-C
35 APincetic, SBournazos, DJDiLillo, JMaamary, TTWang, RDahan, BMFiebiger, JVRavetch (2014a) Type I and type II Fc receptors regulate innate and adaptive immunity. Nat Immunol 15:707–716
https://doi.org/10.1038/ni.2939
36 APincetic, SBournazos, DJDilillo, JMaamary, TTWang, RDahan, BMFiebiger, JVRavetch (2014b) Type I and type II Fc receptors regulate innate and adaptive immunity. Nat Immunol 15:707
https://doi.org/10.1038/ni.2939
37 TRDJRadstake, BFranke, MHWenink, KCAANabbe, MJHCoenen, PWelsing, EBonvini, SKoenig, WBvan den Berg, PBarrera, PLCMvan Riel (2006) The functional variant of the inhibitory Fc gamma receptor IIb (CD32B) is associated with the rate of radiologic joint damage and dendritic cell function in rheumatoid arthritis. Arthritis Rheum 54:3828–3837
https://doi.org/10.1002/art.22275
38 JVRavetch, JPKinet (1991) Fc receptors. Annu Rev Immunol 9:457–492
https://doi.org/10.1146/annurev.iy.09.040191.002325
39 USiriboonrit, NTsuchiya, MSirikong, CKyogoku, SBejrachandra, P,Suthipinittharm KLuangtrakool, DSrinak, RThongpradit, KFujiwaraet al. (2003) Association of Fcgamma receptor IIb and IIIb polymorphisms with susceptibility to systemic lupus erythematosus in Thais. Tissue Antigens 61:374–383
https://doi.org/10.1034/j.1399-0039.2003.00047.x
40 KGSmith, MRClatworthy (2010a) FcgammaRIIB in autoimmunity and infection: evolutionary and therapeutic implications. Nat Rev Immunol 10:328–343
https://doi.org/10.1038/nri2762
41 KGCSmith, MRClatworthy (2010b) Fc[gamma]RIIB in autoimmunity and infection: evolutionary and therapeutic implications. Nat Rev Immunol 10:328–343
https://doi.org/10.1038/nri2762
42 HWSohn, SKPierce, SJTzeng (2008a) Live cell imaging reveals that the inhibitory Fc gamma RIIB destabilizes B cell receptor membrane-lipid blocks immune synapse formation. J Immunol 180:793–799
https://doi.org/10.4049/jimmunol.180.2.793
43 HWSohn, PTolar, SKPierce (2008b) Membrane heterogeneities in the formation of B cell receptor-Lyn kinase microclusters and the immune synapse. J Cell Biol 182:367–379
https://doi.org/10.1083/jcb.200802007
44 GRStarbeck-Miller, VPBadovinac, DLBarber, JTHarty (2014) Cutting edge: expression of FcgammaRIIB tempers memory CD8 T cell function in vivo. J Immunol 192:35–39
https://doi.org/10.4049/jimmunol.1302232
45 BTackenberg, IJelcic, ABaerenwaldt, WHOertel, NSommer, FNimmerjahn, JDLunemann (2009) Impaired inhibitory Fc gamma receptor IIB expression on B cells in chronic inflammatory demyelinating polyneuropathy. Proc Natl Acad Sci USA 106:4788–4792
https://doi.org/10.1073/pnas.0807319106
46 NTanimura, MNagafuku, YMinaki, YUmeda, FHayashi, JSakakura, AKato, DRLiddicoat, MOgata, THamaoka, AKosugi (2003) Dynamic changes in the mobility of LAT in aggregated lipid rafts upon T cell activation. J Cell Biol 160:125–135
https://doi.org/10.1083/jcb.200207096
47 PTolar, HWSohn, SKPierce(2005) The initiation of antigen-inducedB cell antigen receptor signaling viewed in living cells by fluorescence resonance energy transfer. Nat Immunol 6:1168–1176
https://doi.org/10.1038/ni1262
48 PAMWarmerdam, NMJMNabben, SARVandegraaf, JGJVandewinkel, PJACapel (1993) The human low affinity immunoglobulin-G Fc receptor-Iic gene is a result of an unequal crossover event. J Biol Chem 268:7346–7349
49 LCWillcocks, EJCarr, HANiederer, TFRayner, TNWilliams, WLYang, JAGScott, BCUrban, NPeshu, TJVyseet al.(2010) A defunctioning polymorphism in FCGR2B is associated with protection against malaria but susceptibility to systemic lupus erythematosus. Proc Natl Acad Sci USA 107:7881–7885
https://doi.org/10.1073/pnas.0915133107
50 LXu, GLi, JWang, YFan, ZWan, SZhang, SShaheen, JLi, LWang, CYueet al. (2014) Through an ITIM-independent mechanism the FcgammaRIIB blocks B cell activation by disrupting the colocalized microclustering of the B cell receptor and CD19. J Immunol 192:5179–5191
https://doi.org/10.4049/jimmunol.1400101
51 LXu, MXia, JGuo, XSun, HLi, CXu, XGu, HZhang, JYi, YFanget al. (2016) Impairment on the lateral mobility induced by structural changes underlies the functional deficiency of the lupus-associated polymorphism FcgammaRIIB-T232. J Exp Med 213:2707–2727
https://doi.org/10.1084/jem.20160528
[1] Haibo Zhou, Li Wu. The development and function of dendritic cell populations and their regulation by miRNAs[J]. Protein Cell, 2017, 8(7): 501-513.
[2] Tengteng Zhang, Yun Xia, Lijuan Zhang, Wanrong Bao, Chao Hong, Xiao-Ming Gao. CD1dhiCD5+ B cells differentiate into antibody-secreting cells under the stimulation with calreticulin fragment[J]. Prot Cell, 2013, 4(11): 872-881.
[3] Xiaoran Wu, Yi Tan, Qiao Xing, Shengdian Wang. IL-21 accelerates xenogeneic graft-versus-host disease correlated with increased B-cell proliferation[J]. Prot Cell, 2013, 4(11): 863-871.
[4] Kelly Roney, Eda Holl, Jenny Ting. Immune plexins and semaphorins: old proteins, new immune functions[J]. Prot Cell, 2013, 4(1): 17-26.
[5] Hui Dai, Xiao-Ming Gao. Elevated levels of serum antibodies against alpha-1, 6-glucan in patients with systemic lupus erythematosus or rheumatoid arthritis[J]. Prot Cell, 2011, 2(9): 739-744.
[6] Weijuan Zhang, Yanxing Cai, Wei Xu, Sidong Xiong. C-reactive protein functions as a negative regulator of macrophage activation induced by apoptotic DNA[J]. Prot Cell, 2011, 2(8): 672-679.
[7] Adam S. Lazorchak, Bing Su. Perspectives on the role of mTORC2 in B lymphocyte development, immunity and tumorigenesis[J]. Prot Cell, 2011, 2(7): 523-530.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed