Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2018, Vol. 9 Issue (5) : 432-445    https://doi.org/10.1007/s13238-018-0547-2
REVIEW
Pharmacomicrobiomics: a novel route towards personalized medicine?
Marwah Doestzada1,2, Arnau Vich Vila1,3, Alexandra Zhernakova1, Debby P. Y. Koonen2, Rinse K. Weersma3, Daan J. Touw4, Folkert Kuipers2,5, Cisca Wijmenga1,6, Jingyuan Fu1,2()
1. Departments of Genetics, University Medical Center Groningen, PO Box 30001, 9700 RB Groningen, The Netherlands
2. Departments of Paediatrics, University Medical Center Groningen, PO Box 30001, 9700 RB Groningen, The Netherlands
3. Departments of Gastroenterology & Hepatology, University Medical Center Groningen, PO Box 30001, 9700 RB Groningen, The Netherlands
4. Departments of Clinical Pharmacy & Pharmacology, University Medical Center Groningen, PO Box 30001, 9700 RB Groningen, The Netherlands
5. Departments of Laboratory Medicine, University Medical Center Groningen, PO Box 30001, 9700 RB Groningen, The Netherlands
6. K.G. Jebsen Coeliac Disease Research Centre, Department of Immunology, University of Oslo, P.O. Box 1072, Blindern, 0316 Oslo, Norway
 Download: PDF(1269 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Inter-individual heterogeneity in drug response is a serious problem that affects the patient’s wellbeing and poses enormous clinical and financial burdens on a societal level. Pharmacogenomics has been at the forefront of research into the impact of individual genetic background on drug response variability or drug toxicity, and recently the gut microbiome, which has also been called the second genome, has been recognized as an important player in this respect. Moreover, the microbiome is a very attractive target for improving drug efficacy and safety due to the opportunities to manipulate its composition. Pharmacomicrobiomics is an emerging field that investigates the interplay of microbiome variation and drugs response and disposition (absorption, distribution, metabolism and excretion). In this review, we provide a historical overview and examine current state-of-the-art knowledge on the complex interactions between gut microbiome, host and drugs. We argue that combining pharmacogenomics and pharmacomicrobiomics will provide an important foundation for making major advances in personalized medicine.

Keywords gut microbiome      drug metabolism      personalized medicine     
Corresponding Author(s): Jingyuan Fu   
Issue Date: 08 June 2018
 Cite this article:   
Marwah Doestzada,Arnau Vich Vila,Alexandra Zhernakova, et al. Pharmacomicrobiomics: a novel route towards personalized medicine?[J]. Protein Cell, 2018, 9(5): 432-445.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-018-0547-2
https://academic.hep.com.cn/pac/EN/Y2018/V9/I5/432
1 Alexander JL, Wilson ID, Teare J, Marchesi JR, Nicholson JK, Kinross JM (2017) Gut microbiota modulation of chemotherapy efficacy and toxicity. Nat Rev Gastroenterol Hepatol 14:356–365
https://doi.org/10.1038/nrgastro.2017.20
2 Ananthakrishnan AN, Luo C, Yajnik V, Khalili H, Garber JJ, Stevens BW, Cleland T, Xavier RJ (2017) Gut microbiome function predicts response to anti-integrin biologic therapy in inflammatory bowel diseases. Cell Host Microbe 21:603.e3–610.e3
https://doi.org/10.1016/j.chom.2017.04.010
3 Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y, Nishikawa H, Fukuda S, Saito T, Narushima S, Hase Ket al. (2013) Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 500:232–236
https://doi.org/10.1038/nature12331
4 Basit AW, Lacey LF (2001) Colonic metabolism of ranitidine: implications for its delivery and absorption. Int J Pharm 227:157–165
https://doi.org/10.1016/S0378-5173(01)00794-3
5 Benson AK, Kelly SA, Legge R, Ma F, Low SJ, Kim J, Zhang M, Oh PL,Nehrenberg D , Hua Ket al. (2010) Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proc Natl Acad Sci USA 107:18933–18938
https://doi.org/10.1073/pnas.1007028107
6 Bhatia SN, Ingber DE (2014) Microfluidic organs-on-chips. Nat Biotechnol 32:760–772
https://doi.org/10.1038/nbt.2989
7 Boelsterli UA, Redinbo MR, Saitta KS (2013) Multiple NSAIDinduced hits injure the small intestine: underlying mechanisms and novel strategies. Toxicol Sci 131:654–667
https://doi.org/10.1093/toxsci/kfs310
8 Bonder MJ, Kurilshikov A, Tigchelaar EF, Mujagic Z, Imhann F, Vila AV, Deelen P, Vatanen T, Schirmer M, Smeekens SPet al. (2016) The effect of host genetics on the gut microbiome. Nat Genet 48:1407–1412
https://doi.org/10.1038/ng.3663
9 Bouvy JC, De Bruin ML, Koopmanschap MA (2015) Epidemiology of adverse drug reactions in Europe: a review of recent observational studies. Drug Saf 38:437–453
https://doi.org/10.1007/s40264-015-0281-0
10 Campbell TC, Hayes JR (1976) The effect of quantity and quality of dietary protein on drug metabolism. Fed Proc 35:2470–2474
11 Dabek M, McCrae SI, Stevens VJ, Duncan SH, Louis P (2008) Distribution of beta-glucosidase and beta-glucuronidase activity and of beta-glucuronidase gene gus in human colonic bacteria. FEMS Microbiol Ecol 66:487–495
https://doi.org/10.1111/j.1574-6941.2008.00520.x
12 Dao MC, Everard A, Aron-Wisnewsky J, Sokolovska N, Prifti E, Verger EO, Kayser BD, Levenez F, Chilloux J, Hoyles Let al. (2016) Akkermansia muciniphilaand improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut 65:426–436
https://doi.org/10.1136/gutjnl-2014-308778
13 David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MAet al. (2013) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:559–563
https://doi.org/10.1038/nature12820
14 Derrien M, Vaughan EE, Plugge CM, de Vos WM (2004) Akkermansia muciniphilagen. nov., sp. nov., a human intestinal mucindegrading bacterium. Int J Syst Evol Microbiol 54:1469–1476
https://doi.org/10.1099/ijs.0.02873-0
15 Dial S, Alrasadi K, Manoukian C, Huang A, Menzies D (2004) Risk of Clostridium difficilediarrhea among hospital inpatients prescribed proton pump inhibitors: cohort and case–control studies. CMAJ 171:33–38
https://doi.org/10.1503/cmaj.1040876
16 European surveillance of Clostridium difficile infections.Surveillance protocol version 2.2 (2015) European Centre for Disease Prevention and Control.
17 Everard A, Lazarevic V, Derrien M, Girard M, Muccioli GG, Muccioli GM, Neyrinck AM, Possemiers S, Van Holle A, François Pet al. (2011) Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes 60:2775–2786
https://doi.org/10.2337/db11-0227
18 Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, Guiot Y, Derrien M, Muccioli GG, Delzenne NMet al. (2013) Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci USA 110:9066–9071
https://doi.org/10.1073/pnas.1219451110
19 Falcony G, Joossens M, Vieira-Silva S, Wang J, Darzi Y, Faust K, Kurilshikov A, Bonder MJ, Valles-Colomer M, Vandeputte Det al. (2016) Population-level analysis of gut microbiome variation. Science 352:560–564
https://doi.org/10.1126/science.aad3503
20 Forslund K, Hildebrand F, Nielsen T, Falony G, Le Chatelier E, Sunagawa S, Prifti E, Vieira-Silva S, Gudmundsdottir V, Krogh Pedersen Het al. (2015) Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528:262–266
https://doi.org/10.1038/nature15766
21 Francino MP (2016) Antibiotics and the human gut microbiome: dysbioses and accumulation of resistances. Front Microbiol.
https://doi.org/10.3389/fmicb.2015.01543
22 Freedberg DE, Lebwohl B, Abrams JA (2014) The impact of proton pump inhibitors on the human gastrointestinal microbiome—clinical key. Clin Lab Med 34:771–785
https://doi.org/10.1016/j.cll.2014.08.008
23 Freedberg DE, Toussaint NC, Chen SP, Ratner AJ, Whittier S, Wang TC, Wang HH, Abrams JA (2015) Proton pump inhibitors alter specific taxa in the human gastrointestinal microbiome: a crossover trial. Gastroenterology 149:883–885
https://doi.org/10.1053/j.gastro.2015.06.043
24 Fu J, Bonder MJ, Cenit MC, Tigchelaar EF, Maatman A, Dekens JAM, Brandsma E, Marczynska J, Imhann F, Weersma RKet al. (2015) The gut microbiome contributes to a substantial proportion of the variation in blood lipids. Circ Res 117:817–824
https://doi.org/10.1161/CIRCRESAHA.115.306807
25 Fuller AT (1937) Is p-aminobenzenesulphonamide the active agent in protonsil therapy? Lancet (Lond) 229:194–198
https://doi.org/10.1016/S0140-6736(00)97447-6
26 Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, Blekhman R, Beaumont M, Van Treuren W, Knight R, Bell JTet al. (2014) Human genetics shape the gut microbiome. Cell 159:789–799
https://doi.org/10.1016/j.cell.2014.09.053
27 Goodrich JK, Davenport ER, Beaumont M, Jackson MA, Knight R, Ober C, Spector TD, Bell JT, Clark AG, Ley RE (2016) Genetic determinants of the gut microbiome in UK twins. Cell Host Microbe 19:731–743
https://doi.org/10.1016/j.chom.2016.04.017
28 Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets TV, Prieto PA, Vicente D, Hoffman K, Wei SCet al.(2017) Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 4236:1–15
29 Haiser HJ, Gootenberg DB, Chatman K, Sirasani G, Balskus EP, Turnbaugh PJ (2013) Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta. Science 341:295–298
https://doi.org/10.1126/science.1235872
30 Harris RZ, Jang GR, Tsunoda S (2003) Dietary effects on drug metabolism and transport. Clin Pharmacokinet 42:1071–1088
https://doi.org/10.2165/00003088-200342130-00001
31 Higuchi K, Umegaki E, Watanabe T, Yoda Y, Morita E, Murano M, Tokioka S, Arakawa T (2009) Present status and strategy of NSAIDs-induced small bowel injury. J Gastroenterol 44:879–888
https://doi.org/10.1007/s00535-009-0102-2
32 Huh D, Hamilton GA, Ingber DE (2011) From 3D cell culture to organs-on-chips. Trends Cell Biol 21:745–754
https://doi.org/10.1016/j.tcb.2011.09.005
33 Huttenhower C, Human Microbiome Project Consortium (2012) Structure, function and diversity of the healthy human microbiome. Nature 486:207–214
https://doi.org/10.1038/nature11234
34 Imhann F, Bonder MJ, Vila AV, Fu J, Mujagic Z, Vork L,Tigchelaar EF, Jankipersadsing SA, Cenit MC, Harmsen HJMet al. (2016) Proton pump inhibitors affect the gut microbiome. Gut 65:740–748
https://doi.org/10.1136/gutjnl-2015-310376
35 Innocenti F, Undevia SD, Iyer L, Chen PX, Das S, Kocherginsky M, Karrison T, Janisch L, Ramírez J, Rudin CMet al. (2004) Genetic variants in the UDP-glucuronosyltransferase 1A1 gene predict the risk of severe neutropenia of irinotecan. J Clin Oncol 22:1382–1388
https://doi.org/10.1200/JCO.2004.07.173
36 Jackson MA, Goodrich JK, Maxan M-E, Freedberg DE, Abrams JA, Poole AC, Sutter JL, Welter D, Ley RE, Bell JTet al. (2016) Proton pump inhibitors alter the composition of the gut microbiota. Gut 65:749–756
https://doi.org/10.1136/gutjnl-2015-310861
37 Jourova L, Anzenbacher P, Anzenbacherova E (2016) Human gut microbiota plays a role in the metabolism of drugs. Biomed Pap 160:317–326
https://doi.org/10.5507/bp.2016.039
38 Kaddurah-Daouk R, Baillie RA, Zhu H, Zeng ZB, Wiest MM, Nguyen UT, Wojnoonski K, Watkins SM, Trupp M, Krauss RM (2011) Enteric microbiome metabolites correlate with response to simvastatin treatment. PLoS ONE.
https://doi.org/10.1371/journal.pone.0025482
39 Kalow W, Tang B-K, Endrenyi L (1998) Hypothesis: comparisons of inter- and intra-individual variations can substitute for twin studies in drug research. Pharmacogenetics 8:283–289
https://doi.org/10.1097/00008571-199808000-00001
40 Kim HJ, Huh D, Hamilton G, Ingber DE (2012) Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsislike motions and flow. Lab Chip 12:2165
https://doi.org/10.1039/c2lc40074j
41 Koppel N, Rekdal VM, Balskus EP (2017) Chemical transformation of xenobiotics by the human gut microbiota. Science 356:1246–1257
https://doi.org/10.1126/science.aag2770
42 Kumar K, Jaiswal SK, Dhoke GV, Srivastava GN, Sharma AK, Sharma VK (2017) Mechanistic and structural insight into promiscuity based metabolism of cardiac drug digoxin by gut microbial enzyme. J Cell Biochem.
43 Kurilshikov A, Wijmenga C, Fu J, Zhernakova A(2017) Host genetics and gut microbiome: challenges and perspectives. Trends Immunol 38:633–647
https://doi.org/10.1016/j.it.2017.06.003
44 Lagier J-C, Khelaifia S, Alou MT, Ndongo S, Dione N, Hugon P, Caputo A, Cadoret F, Traore SI, Seck EHet al. (2016) Culture of previously uncultured members of the human gut microbiota by culturomics. Nat Microbiol 1:16203
https://doi.org/10.1038/nmicrobiol.2016.203
45 Lindenbaum J, Rund DG, Butler VPJ, Tse-Eng D, Saha JR (1981) Inactivation of digoxin by the gut flora: reversal by antibiotic therapy. N Engl J Med 305:789–794
https://doi.org/10.1056/NEJM198110013051403
46 Madian AG, Wheeler HE, Jones RB, Dolan ME (2012) Relating human genetic variation to variation in drug responses. Trends Genet 28:487–495
https://doi.org/10.1016/j.tig.2012.06.008
47 Markowitz JS, Donovan JL, DeVane CL, Taylor RM, Wort TJOHNS, Per HY, Ruan Y, Wang J-S, Chavin KD (2003) Effect of St John’s wort on drug metabolism by induction of cytochrome P450 3A4 enzyme. JAMA 290:1500–1504
https://doi.org/10.1001/jama.290.11.1500
48 Omenetti S, Pizarro TT (2015) The Treg/Th17 axis: a dynamic balance regulated by the gut microbiome. Front Immunol.
https://doi.org/10.3389/fimmu.2015.00639
49 Peppercorn MA, Goldman P (1972) The role of intestinal bacteria in the metabolism of salicylazosulfapyridine. J Pharmacol Exp Ther 181:555–562
50 Peters SA, Jones CR, Ungell AL, Hatley OJD (2016) Predicting drug extraction in the human gut wall: assessing contributions from drug metabolizing enzymes and transporter proteins using preclinical models. Clin Pharmacokinet 55:673–696
https://doi.org/10.1007/s40262-015-0351-6
51 Plovier H,Everard A , Druart C, Depommier C, Van Hul M, Geurts L, Chilloux J, Ottman N, Duparc T, Lichtenstein Let al. (2017) A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat Med 23:107–113
https://doi.org/10.1038/nm.4236
52 Raju TN (1999) The nobel chronicles. Lancet 353:681
https://doi.org/10.1016/S0140-6736(05)75485-4
53 Roopchand DE, Carmody RN, Kuhn P, Moskal K, Rojas-Silva P, Turnbaugh PJ, Raskin I (2015) Dietary polyphenols promote growth of the gut bacterium Akkermansia muciniphila and attenuate high-fat diet-induced metabolic syndrome. Diabetes 64:2847–2858
https://doi.org/10.2337/db14-1916
54 Rothschild D, Weissbrod O, Barkan E, Korem T, Zeevi D, Costea PI, Godneva A, Kalka IN, Bar N, Zmora Net al. (2017) Environmental factors dominate over host genetics in shaping human gut microbiota composition. bioRxiv.
https://doi.org/10.1101/150540
55 Routy B, Le Chatelier E, Derosa L,Duong CPM, Alou MT, Daillère R, Fluckiger A, Messaoudene M, Rauber C,Roberti MPet al. (2018) Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359:91–97
https://doi.org/10.1126/science.aan3706
56 Saad R, Rizkallah MR, Aziz RK (2012) Gut pharmacomicrobiomics: the tip of an iceberg of complex interactions between drugs and gut-associated microbes. Gut Pathog 4:16
https://doi.org/10.1186/1757-4749-4-16
57 Saha JR, Butler VP, Neu HC, Lindenbaum J (1983) Digoxininactivating bacteria: identification in human gut flora. Science 220:325–327
https://doi.org/10.1126/science.6836275
58 Schirmer M, Smeekens SP, Vlamakis H, Jaeger M, Oosting M, Franzosa EA, Jansen T, Jacobs L, Bonder MJ, Kurilshikov Aet al. (2016) Linking the human gut microbiome to inflammatory cytokine production capacity. Cell 167:1125.e8–1136.e8
https://doi.org/10.1016/j.cell.2016.11.046
59 Scholtens S, Smidt N, Swertz MA, Bakker SJL, Dotinga A, Vonk JM, Van Dijk F, Van Zon SKR, Wijmenga C, Wolffenbuttel BHRet al. (2015) Cohort profile: LifeLines, a three-generation cohort study and biobank. Int J Epidemiol 44:1172–1180
https://doi.org/10.1093/ije/dyu229
60 Sheehan NA, Didelez V, Burton PR, Tobin MD (2008) Mendelian randomisation and causal inference in observational epidemiology. PLoS Med 5:e177
https://doi.org/10.1371/journal.pmed.0050177
61 Shin NR, Lee JC, Lee HY, Kim MS, Whon TW, Lee MS, Bae JW (2014) An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in dietinduced obese mice. Gut 63:727–735
https://doi.org/10.1136/gutjnl-2012-303839
62 Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, Earley ZM, Benyamin FW, Man Lei Y, Jabri B, Alegre M-Let al. (2015) Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350:1084–1089
https://doi.org/10.1126/science.aac4255
63 Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly-Y M, Glickman JN, Garrett WS (2013) The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341:569–573
https://doi.org/10.1126/science.1241165
64 Spanogiannopoulos P, Bess EN, Carmody RN, Turnbaugh PJ (2016) The microbial pharmacists within us: a metagenomic view of xenobiotic metabolism. Nat Rev Microbiol 14:273–287
https://doi.org/10.1038/nrmicro.2016.17
65 Spear BB, Heath-Chiozzi M, Huff J (2001) Clinical application of pharmacogenetics. Trends Mol Med 7:201–204
https://doi.org/10.1016/S1471-4914(01)01986-4
66 Sperry J, Wilkins T (1976) Arginine, a growth-limiting factor for Eubacterium lentum. J Bacteriol 127:780–784
67 Stefka AT, Feehley T, Tripathi P,Qiu J, McCoy K, Mazmanian SK, Tjota MY, Seo G-Y, Cao S, Theriault BRet al. (2014) Commensal bacteria protect against food allergen sensitization. Proc Natl Acad Sci USA 111:13145–13150
https://doi.org/10.1073/pnas.1412008111
68 Stein A, Voigt W, Jordan K (2010) Chemotherapy-induced diarrhea: pathophysiology, frequency and guideline-based management. Ther Adv Med Oncol 2:51–63
https://doi.org/10.1177/1758834009355164
69 Sudlow C, Gallacher J, Allen N, Beral V, Burton P,Danesh J, Downey P, Elliott P, Green J, Landray Met al. (2015) UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med.
https://doi.org/10.1371/journal.pmed.1001779
70 Sultana J, Cutroneo P, Trifirò G (2013) Clinical and economic burden of adverse drug reactions. J Pharmacol Pharmacother 4:S73–S77
https://doi.org/10.4103/0976-500X.120957
71 Sylvetsky AC, Edelstein SL, Walford G, Boyko EJ, Horton ES, Ibebuogu UN, Knowler WC, Montez MG, Temprosa M, Hoskin Met al. (2017) A high-carbohydrate, high-fiber, low-fat diet results in weight loss among adults at high risk of type 2 diabetes. J Nutr.
https://doi.org/10.3945/jn.117.252395
72 Takayama K, Inamura M, Kawabata K, Katayama K, Higuchi M, Tashiro K, Nonaka A, Sakurai F, Hayakawa T, Furue MKet al. (2012) Efficient generation of functional hepatocytes from human embryonic stem cells and induced pluripotent stem cells by HNF4α transduction. Mol Ther 20:127–137
https://doi.org/10.1038/mt.2011.234
73 Takebe T, Zhang RR, Koike H,, Kimura M, Yoshizawa E, Enomura M, Koike N, Sekine K, Taniguchi H (2014) Generation of a vascularized and functional human liver from an iPSC-derived organ bud transplant. Nat Protoc 9:396–409
https://doi.org/10.1038/nprot.2014.020
74 Tigchelaar EF, Zhernakova A, Dekens JAM, Hermes G, Baranska A, Mujagic Z, Swertz MA, Muñoz AM, Deelen P,Cénit MCet al. (2015) Cohort profile: LifeLines DEEP, a prospective, general population cohort study in the northern Netherlands: study design and baseline characteristics. BMJ Open 5:e006772
https://doi.org/10.1136/bmjopen-2014-006772
75 Tigchelaar EF, Bonder MJ, Jankipersadsing SA, Fu J, Wijmenga C, Zhernakova A (2016) Gut microbiota composition associated with stool consistency. Gut 65:540–542
https://doi.org/10.1136/gutjnl-2015-310328
76 Touw DJ (1997) Clinical implications of genetic polymorphisms and drug interactions mediated by cytochrome P-450 enzymes. Drug Metab Drug Interact 14:55–82
77 Trietsch SJ, Naumovska E, Kurek D, Setyawati MC, Vormann MK, Wilschut KJ, Lanz HL, Nicolas A, Ng CP, Joore Jet al. (2017) Membrane-free culture and real-time barrier integrity assessment of perfused intestinal epithelium tubes. Nat Commun.
https://doi.org/10.1038/s41467-017-00259-3
78 Wallace BD, Hongwei W, Lane KT, Scott JE, Orans J, Koo JS, Venkatesh M, Jobin C, Yeh L-A, Mani Set al. (2010) Alleviating cancer drug toxicity by inhibiting a bacterial enzyme. Science 330:831–835
https://doi.org/10.1126/science.1191175
79 Wang J, Thingholm LB, Skiecevičienė J, Rausch P, Kummen M, Hov JR, Degenhardt F, Heinsen F-A, Rühlemann MC, Szymczak Set al. (2016) Genome-wide association analysis identifies variation in vitamin D receptor and other host factors influencing the gut microbiota. Nat Genet 48:1396–1406
https://doi.org/10.1038/ng.3695
80 Wu H, Esteve E, Tremaroli V, Khan MT, Caesar R, Mannerås-Holm L, Ståhlman M, Olsson LM, Serino M, Planas-Fèlix Met al. (2017) Metformin alters the gut microbiome of individuals with treatmentnaive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat Med 23:850–858
https://doi.org/10.1038/nm.4345
81 Yadav V,Gaisford S, Merchant HA, Basit AW (2013) Colonic bacterial metabolism of corticosteroids. Int J Pharm 457:268–274
https://doi.org/10.1016/j.ijpharm.2013.09.007
82 Yepuri G, Sukhovershin R, Nazari-Shafti TZ, Petrascheck M, Ghebre YT, Cooke JP (2016) Proton pump inhibitors accelerate endothelial senescence. Circ Res 118:e36–e42
https://doi.org/10.1161/CIRCRESAHA.116.308807
83 Zeevi D, Korem T, Zmora N, Israeli D, Rothschild D, Weinberger A, Ben-Yacov O, Lador D, Avnit-Sagi T, Lotan-Pompan Met al. (2015) Personalized nutrition by prediction of glycemic responses. Cell 163:1079–1095
https://doi.org/10.1016/j.cell.2015.11.001
84 Zhernakova A, Kurilshikov A, Bonder MJ, Tigchelaar EF, Schirmer M, Vatanen T, Mujagic Z,, Vila AV, Falony G, Vieira-Silva Set al. (2016) Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 352:565–569
https://doi.org/10.1126/science.aad3369
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed