Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2019, Vol. 10 Issue (11) : 787-807    https://doi.org/10.1007/s13238-019-0639-7
REVIEW
Phage display screening of therapeutic peptide for cancer targeting and therapy
Phei Er Saw1, Er-Wei Song1,2()
1. Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
2. Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
 Download: PDF(1388 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Recently, phage display technology has been announced as the recipient of Nobel Prize in Chemistry 2018. Phage display technique allows high affinity target-binding peptides to be selected from a complex mixture pool of billions of displayed peptides on phage in a combinatorial library and could be further enriched through the biopanning process; proving to be a powerful technique in the screening of peptide with high affinity and selectivity. In this review, we will first discuss the modifications in phage display techniques used to isolate various cancer-specific ligands by in situ, in vitro, in vivo, and ex vivo screening methods. We will then discuss prominent examples of solid tumor targeting-peptides; namely peptide targeting tumor vasculature, tumor microenvironment (TME) and overexpressed receptors on cancer cells identified through phage display screening. We will also discuss the current challenges and future outlook for targeting peptidebased therapeutics in the clinics.

Keywords phage display      tumor targeting peptide      tumor vasculature      tumor microenvironment      tumor stromal cells      over-expressed receptor     
Corresponding Author(s): Er-Wei Song   
Issue Date: 05 December 2019
 Cite this article:   
Phei Er Saw,Er-Wei Song. Phage display screening of therapeutic peptide for cancer targeting and therapy[J]. Protein Cell, 2019, 10(11): 787-807.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-019-0639-7
https://academic.hep.com.cn/pac/EN/Y2019/V10/I11/787
1 LF Abrahao-Machado, C Scapulatempo-Neto (2016) HER2 testing in gastric cancer: an update. World J Gastroenterol 22:4619–4625
https://doi.org/10.3748/wjg.v22.i19.4619
2 S Ai, J Duan, X Liu, S Bock, Y Tian, Z Huang (2011) Biological evaluation of a novel doxorubicin-peptide conjugate for targeted delivery to EGF receptor-overexpressing tumor cells. Mol Pharm 8:375–386
https://doi.org/10.1021/mp100243j
3 M Albrecht, H Renneberg, G Wennemuth, O Moschler, M Janssen, G Aumuller, L Konrad (1999) Fibronectin in human prostatic cells in vivo and in vitro: expression, distribution, and pathological significance. Histochem Cell Biol 112:51–61
https://doi.org/10.1007/s004180050391
4 D AlDeghaither, BG Smaglo, LM Weiner (2015) Beyond peptides and mAbs—current status and future perspectives for biotherapeutics with novel constructs. J Clin Pharmacol 55(Suppl 3):S4–20
https://doi.org/10.1002/jcph.407
5 RT Altstock, GY Stein, JH Resau, I Tsarfaty (2000) Algorithms for quantitation of protein expression variation in normal versus tumor tissue as a prognostic factor in cancer: Met oncogene expression, and breast cancer as a model. Cytometry 41:155–165
https://doi.org/10.1002/1097-0320(20001101)41:3<155::AID-CYTO1>3.0.CO;2-4
6 H Amaya, N Tanigawa, C Lu, M Matsumura, T Shimomatsuya, T Horiuchi, R Muraoka (1997) Association of vascular endothelial growth factor expression with tumor angiogenesis, survival and thymidine phosphorylase/platelet-derived endothelial cell growth factor expression in human colorectal cancer. Cancer Lett 119:227–235
https://doi.org/10.1016/S0304-3835(97)00280-2
7 W Arap, R Pasqualini, E Ruoslahti (1998) Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 279:377–380
https://doi.org/10.1126/science.279.5349.377
8 W Arap, W Haedicke, M Bernasconi, R Kain, D Rajotte, S Krajewski, HM Ellerby, DE Bredesen, R Pasqualini, E Ruoslahti (2002a) Targeting the prostate for destruction through a vascular address. Proc Natl Acad Sci U S A 99:1527–1531
https://doi.org/10.1073/pnas.241655998
9 W Arap, MG Kolonin, M Trepel, J Lahdenranta, M Cardo-Vila, RJ Giordano, PJ Mintz, PU Ardelt, VJ Yao, CI Vidalet al. (2002b) Steps toward mapping the human vasculature by phage display. Nat Med 8:121–127
https://doi.org/10.1038/nm0202-121
10 A Argiris, CX Wang, SG Whalen, MP DiGiovanna (2004) Synergistic interactions between tamoxifen and trastuzumab (Herceptin). Clin Cancer Res 10:1409–1420
https://doi.org/10.1158/1078-0432.CCR-1060-02
11 A Armulik, A Abramsson, C Betsholtz (2005) Endothelial/pericyte interactions. Circ Res 97:512–523
https://doi.org/10.1161/01.RES.0000182903.16652.d7
12 SA Arnold, HA Loomans, T Ketova, CD Andl, PE Clark, A Zijlstra (2016) Urinary oncofetal ED-A fibronectin correlates with poor prognosis in patients with bladder cancer. Clin Exp Metastasis 33:29–44
https://doi.org/10.1007/s10585-015-9754-x
13 M Augsten (2014) Cancer-associated fibroblasts as another polarized cell type of the tumor microenvironment. Front Oncol 4:62
https://doi.org/10.3389/fonc.2014.00062
14 YK Bae, A Kim, MK Kim, JE Choi, SH Kang, SJ Lee (2013) Fibronectin expression in carcinoma cells correlates with tumor aggressiveness and poor clinical outcome in patients with invasive breast cancer. Hum Pathol 44:2028–2037
https://doi.org/10.1016/j.humpath.2013.03.006
15 S Bao, Q Wu, RE McLendon, Y Hao, Q Shi, AB Hjelmeland, MW Dewhirst, DD Bigner, JN Rich (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760
https://doi.org/10.1038/nature05236
16 A Barve, W Jin, K Cheng (2014) Prostate cancer relevant antigens and enzymes for targeted drug delivery. J Control Release 187:118–132
https://doi.org/10.1016/j.jconrel.2014.05.035
17 J Baselga, SM Swain (2009) Novel anticancer targets: revisiting ERBB2 and discovering ERBB3. Nat Rev Cancer 9:463–475
https://doi.org/10.1038/nrc2656
18 M Benekli, H Baumann, M Wetzler (2009) Targeting signal transducer and activator of transcription signaling pathway in leukemias. J Clin Oncol 27:4422–4432
https://doi.org/10.1200/JCO.2008.21.3264
19 G Bergers, K Javaherian, KM Lo, J Folkman, D Hanahan (1999) Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science 284:808–812
https://doi.org/10.1126/science.284.5415.808
20 NA Bhowmick, EG Neilson, HL Moses (2004) Stromal fibroblasts in cancer initiation and progression. Nature 432:332–337
https://doi.org/10.1038/nature03096
21 M Binnewies, EW Roberts, K Kersten, V Chan, DF Fearon, M Merad, LM Coussens, DI Gabrilovich, S Ostrand-Rosenberg, CC Hedricket al. (2018) Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med 24:541–550
https://doi.org/10.1038/s41591-018-0014-x
22 H Birkedal-Hansen (1995) Proteolytic remodeling of extracellular matrix. Curr Opin Cell Biol 7:728–735
https://doi.org/10.1016/0955-0674(95)80116-2
23 T Boehm, J Folkman, T Browder, MS O’Reilly (1997) Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature 390:404–407
https://doi.org/10.1038/37126
24 RJ Boohaker, MW Lee, P Vishnubhotla, JM Perez, AR Khaled (2012) The use of therapeutic peptides to target and to kill cancer cells. Curr Med Chem 19:3794–3804
https://doi.org/10.2174/092986712801661004
25 DG Bostwick, A Pacelli, M Blute, P Roche, GP Murphy (1998) Prostate specific membrane antigen expression in prostatic intraepithelial neoplasia and adenocarcinoma: a study of 184 cases. Cancer 82:2256–2261
https://doi.org/10.1002/(SICI)1097-0142(19980601)82:11<2256::AID-CNCR22>3.0.CO;2-S
26 DP Bottaro, JS Rubin, DL Faletto, AM Chan, TE Kmiecik, GF Vande Woude, SA Aaronson (1991) Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. Science 251:802–804
https://doi.org/10.1126/science.1846706
27 LT Brinton, DK Bauknight, SS Dasa, KA Kelly (2016) PHASTpep: analysis software for discovery of cell-selective peptides via phage display and next-generation sequencing. PLoS ONE 11: e0155244
https://doi.org/10.1371/journal.pone.0155244
28 PC Brooks, S Stromblad, LC Sanders, TL von Schalscha, RT Aimes, WG Stetler-Stevenson, JP Quigley, DA Cheresh (1996) Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin alpha v beta 3. Cell 85:683–693
https://doi.org/10.1016/S0092-8674(00)81235-0
29 R Bueno, K Appasani, H Mercer, S Lester, D Sugarbaker (2001) The alpha folate receptor is highly activated in malignant pleural mesothelioma. J Thorac Cardiovasc Surg 121:225–233
https://doi.org/10.1067/mtc.2001.111176
30 MA Burg, R Pasqualini, W Arap, E Ruoslahti, WB Stallcup (1999) NG2 proteoglycan-binding peptides target tumor neovasculature. Cancer Res 59:2869–2874
31 HJ Burstein (2005) The distinctive nature of HER2-positive breast cancers. N Engl J Med 353:1652–1654
https://doi.org/10.1056/NEJMp058197
32 B Chan, S Sinha, D Cho, R Ramchandran, VP Sukhatme (2005) Critical roles of CD146 in zebrafish vascular development. Dev Dyn 232:232–244
https://doi.org/10.1002/dvdy.20220
33 SS Chang, VE Reuter, WD Heston, PB Gaudin (2001) Comparison of anti-prostate-specific membrane antigen antibodies and other immunomarkers in metastatic prostate carcinoma. Urology 57:1179–1183
https://doi.org/10.1016/S0090-4295(01)00983-9
34 DK Chang, CT Lin, CH Wu, HC Wu (2009) A novel peptide enhances therapeutic efficacy of liposomal anti-cancer drugs in mice models of human lung cancer. PLoS ONE 4:e4171
https://doi.org/10.1371/journal.pone.0004171
35 J Chen, Y Yao, C Gong, F Yu, S Su, J Chen, B Liu, H Deng, F Wang, L Linet al. (2011) CCL18 from tumor-associated macrophages promotes breast cancer metastasis via PITPNM3. Cancer Cell 19:541–555
https://doi.org/10.1016/j.ccr.2011.02.006
36 DS Chen, BA Irving, FS Hodi (2012) Molecular pathways: nextgeneration immunotherapy-inhibiting programmed death-ligand 1 and programmed death-1. Clin Cancer Res 18:6580–6587
https://doi.org/10.1158/1078-0432.CCR-12-1362
37 R Chiquet-Ehrismann (1990) What distinguishes tenascin from fibronectin? FASEB J 4:2598–2604
https://doi.org/10.1096/fasebj.4.9.1693347
38 HS Cho, K Mason, KX Ramyar, AM Stanley, SB Gabelli, DW Jr Denney, DJ Leahy (2003) Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab. Nature 421:756–760
https://doi.org/10.1038/nature01392
39 M Cieslewicz, J Tang, JL Yu, H Cao, M Zavaljevski, K Motoyama, A Lieber, EW Raines, SH Pun (2013) Targeted delivery of proapoptotic peptides to tumor-associated macrophages improves survival. Proc Natl Acad Sci U S A 110:15919–15924
https://doi.org/10.1073/pnas.1312197110
40 AT Collins, PA Berry, C Hyde, MJ Stower, NJ Maitland (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65:10946–10951
https://doi.org/10.1158/0008-5472.CAN-05-2018
41 EK Colvin (2014) Tumor-associated macrophages contribute to tumor progression in ovarian cancer. Front Oncol 4:137
https://doi.org/10.3389/fonc.2014.00137
42 CS Cooper, M Park, DG Blair, MA Tainsky, K Huebner, CM Croce, GF Vande Woude (1984) Molecular cloning of a new transforming gene from a chemically transformed human cell line. Nature 311:29–33
https://doi.org/10.1038/311029a0
43 J Denekamp (1993) Review article: angiogenesis, neovascular proliferation and vascular pathophysiology as targets for cancer therapy. Br J Radiol 66:181–196
https://doi.org/10.1259/0007-1285-66-783-181
44 MF Di Renzo, RP Narsimhan, M Olivero, S Bretti, S Giordano, E Medico, P Gaglia, P Zara, PM Comoglio (1991) Expression of the Met/HGF receptor in normal and neoplastic human tissues. Oncogene 6:1997–2003
45 MF Di Renzo, M Olivero, S Ferro, M Prat, I Bongarzone, S Pilotti, A Belfiore, A Costantino, R Vigneri, MA Pierottiet al. (1992) Overexpression of the c-MET/HGF receptor gene in human thyroid carcinomas. Oncogene 7:2549–2553
46 SE Duff, M Jeziorska, DD Rosa, S Kumar, N Haboubi, D Sherlock, ST O’Dwyer, GC Jayson (2006) Vascular endothelial growth factors and receptors in colorectal cancer: implications for antiangiogenic therapy. Eur J Cancer 42:112–117
https://doi.org/10.1016/j.ejca.2005.09.018
47 M Ebert, M Yokoyama, H Friess, MW Buchler, M Korc (1994) Coexpression of the c-met proto-oncogene and hepatocyte growth factor in human pancreatic cancer. Cancer Res 54:5775–5778
48 M Essler, E Ruoslahti (2002) Molecular specialization of breast vasculature: a breast-homing phage-displayed peptide binds to aminopeptidase P in breast vasculature. Proc Natl Acad Sci U S A 99:2252–2257
https://doi.org/10.1073/pnas.251687998
49 M Fan, X Liang, D Yang, X Pan, Z Li, H Wang, B Shi (2016) Epidermal growth factor receptor-targeted peptide conjugated phospholipid micelles for doxorubicin delivery. J Drug Target 24:111–119
https://doi.org/10.3109/1061186X.2015.1058800
50 N Ferrara, K Alitalo (1999) Clinical applications of angiogenic growth factors and their inhibitors. Nat Med 5:1359–1364
https://doi.org/10.1038/70928
51 N Ferrara, HP Gerber, J LeCouter (2003) The biology of VEGF and its receptors. Nat Med 9:669–676
https://doi.org/10.1038/nm0603-669
52 M Florek, M Haase, AM Marzesco, D Freund, G Ehninger, WB Huttner, D Corbeil (2005) Prominin-1/CD133, a neural and hematopoietic stem cell marker, is expressed in adult human differentiated cells and certain types of kidney cancer. Cell Tissue Res 319:15–26
https://doi.org/10.1007/s00441-004-1018-z
53 J Folkman (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186
https://doi.org/10.1056/NEJM197111182852108
54 KR Fontenot, BG Ongarora, LE LeBlanc, Z Zhou, SD Jois, MG Vicente (2016) Targeting of the epidermal growth factor receptor with mesoporphyrin IX–peptide conjugates. J Porphyr Phthalocyanines 20:352–366
https://doi.org/10.1142/S1088424616500115
55 OE Franco, AK Shaw, DW Strand, SW Hayward (2010) Cancer associated fibroblasts in cancer pathogenesis. Semin Cell Dev Biol 21:33–39
https://doi.org/10.1016/j.semcdb.2009.10.010
56 AM Georgoudaki, KE Prokopec, VF Boura, E Hellqvist, S Sohn, J Ostling, R Dahan, RA Harris, M Rantalainen, D Klevebringet al. (2016) Reprogramming tumor-associated macrophages by antibody targeting inhibits cancer progression and metastasis. Cell Rep 15:2000–2011
https://doi.org/10.1016/j.celrep.2016.04.084
57 H Gerhardt, C Betsholtz (2003) Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res 314:15–23
https://doi.org/10.1007/s00441-003-0745-x
58 MA Ghert, ST Jung, W Qi, JM Harrelson, HP Erickson, JA Block, SP Scully (2001) The clinical significance of tenascin-C splice variant expression in chondrosarcoma. Oncology 61:306–314
https://doi.org/10.1159/000055338
59 S Ghosh, CA Sullivan, MP Zerkowski, AM Molinaro, DL Rimm, RL Camp, GG Chung (2008) High levels of vascular endothelial growth factor and its receptors (VEGFR-1, VEGFR-2, neuropilin-1) are associated with worse outcome in breast cancer. Hum Pathol 39:1835–1843
https://doi.org/10.1016/j.humpath.2008.06.004
60 RJ Giordano, M Cardo-Vila, J Lahdenranta, R Pasqualini, W Arap (2001) Biopanning and rapid analysis of selective interactive ligands. Nat Med 7:1249–1253
https://doi.org/10.1038/nm1101-1249
61 RJ Goodson, MV Doyle, SE Kaufman, S Rosenberg (1994) Highaffinity urokinase receptor antagonists identified with bacteriophage peptide display. Proc Natl Acad Sci U S A 91:7129–7133
https://doi.org/10.1073/pnas.91.15.7129
62 JR Grandis, JC Sok (2004) Signaling through the epidermal growth factor receptor during the development of malignancy. Pharmacol Ther 102:37–46
https://doi.org/10.1016/j.pharmthera.2004.01.002
63 CL Green, M Loken, D Buck, HJ Deeg (2000) Discordant expression of AC133 and AC141 in patients with myelodysplastic syndrome (MDS) and acute myelogeneous leukemia (AML). Leukemia 14:770–772
https://doi.org/10.1038/sj.leu.2401736
64 C Gutierrez, R Schiff (2011) HER2: biology, detection, and clinical implications. Arch Pathol Lab Med 135:55–62
65 Z Han, Z Zhou, X Shi, J Wang, X Wu, D Sun, Y Chen, H Zhu, C Magi-Galluzzi, ZR Lu (2015) EDB fibronectin specific peptide for prostate cancer targeting. Bioconjug Chem 26:830–838
https://doi.org/10.1021/acs.bioconjchem.5b00178
66 D Hanahan, J Folkman (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86:353–364
https://doi.org/10.1016/S0092-8674(00)80108-7
67 N Hanamura, T Yoshida, E Matsumoto, Y Kawarada, T Sakakura (1997) Expression of fibronectin and tenascin-C mRNA by myofibroblasts, vascular cells and epithelial cells in human colon adenomas and carcinomas. Int J Cancer 73:10–15
https://doi.org/10.1002/(SICI)1097-0215(19970926)73:1<10::AID-IJC2>3.0.CO;2-4
68 K Harhouri, A Kebir, B Guillet, A Foucault-Bertaud, S Voytenko, MD Piercecchi-Marti, C Berenguer, E Lamy, F Vely, P Pisanoet al. (2010) Soluble CD146 displays angiogenic properties and promotes neovascularization in experimental hind-limb ischemia. Blood 115:3843–3851
https://doi.org/10.1182/blood-2009-06-229591
69 LC Hartmann, GL Keeney, WL Lingle, TJ Christianson, B Varghese, D Hillman, AL Oberg, PS Low (2007) Folate receptor overexpression is associated with poor outcome in breast cancer. Int J Cancer 121:938–942
https://doi.org/10.1002/ijc.22811
70 M Hashida, M Nishikawa, F Yamashita, Y Takakura (2001) Cellspecific delivery of genes with glycosylated carriers. Adv Drug Deliv Rev 52:187–196
https://doi.org/10.1016/S0169-409X(01)00209-5
71 MA Hayashi, F Ducancel, K Konno (2012) Natural peptides with potential applications in drug development, diagnosis, and/or biotechnology. Int J Pept 2012:757838
https://doi.org/10.1155/2012/757838
72 C He, S Su, F Chen, D Huang, F Zheng, W Huang, J Chen, X Cui, Q Liu, E Songet al. (2014) Overexpression of PITPNM3 promotes hepatocellular carcinoma cell metastasis. Chin Sci Bull 59:1326–1333
https://doi.org/10.1007/s11434-014-0183-z
73 I Hellstrom, PL Beaumier, KE Hellstrom (1986a) Antitumor effects of L6, an IgG2a antibody that reacts with most human carcinomas. Proc Natl Acad Sci U S A 83:7059–7063
https://doi.org/10.1073/pnas.83.18.7059
74 I Hellstrom, D Horn, P Linsley, JP Brown, V Brankovan, KE Hellstrom (1986b) Monoclonal mouse antibodies raised against human lung carcinoma. Cancer Res 46:3917–3923
75 TJ Hemesath, K Stefansson (1994) Expression of tenascin in thymus and thymic nonlymphoid cells. J Immunol 152:422–428
76 HD Hemmati, I Nakano, JA Lazareff, M Masterman-Smith, DH Geschwind, M Bronner-Fraser, HI Kornblum (2003) Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci U S A 100:15178–15183
https://doi.org/10.1073/pnas.2036535100
77 GB Henderson (1990) Folate-binding proteins. Annu Rev Nutr 10:319–335
https://doi.org/10.1146/annurev.nu.10.070190.001535
78 A Heppeler, S Froidevaux, AN Eberle, HR Maecke (2000) Receptor targeting for tumor localisation and therapy with radiopeptides. Curr Med Chem 7:971–994
https://doi.org/10.2174/0929867003374516
79 PC Hermann, SL Huber, T Herrler, A Aicher, JW Ellwart, M Guba, CJ Bruns, C Heeschen (2007) Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1:313–323
https://doi.org/10.1016/j.stem.2007.06.002
80 W Hindermann, A Berndt, L Borsi, X Luo, P Hyckel, D Katenkamp, H Kosmehl (1999) Synthesis and protein distribution of the unspliced large tenascin-C isoform in oral squamous cell carcinoma. J Pathol 189:475–480
https://doi.org/10.1002/(SICI)1096-9896(199912)189:4<475::AID-PATH462>3.0.CO;2-V
81 A Hoeben, B Landuyt, MS Highley, H Wildiers, AT Van Oosterom, EA De Bruijn (2004) Vascular endothelial growth factor and angiogenesis. Pharmacol Rev 56:549–580
https://doi.org/10.1124/pr.56.4.3
82 PA Horn, H Tesch, P Staib, D Kube, V Diehl, D Voliotis (1999) Expression of AC133, a novel hematopoietic precursor antigen, on acute myeloid leukemia cells. Blood 93:1435–1437
https://doi.org/10.1182/blood.V93.4.1435
83 M Houimel, P Schneider, A Terskikh, JP Mach (2001) Selection of peptides and synthesis of pentameric peptabody molecules reacting specifically with ErbB-2 receptor. Int J Cancer 92:748–755
https://doi.org/10.1002/1097-0215(20010601)92:5<748::AID-IJC1258>3.0.CO;2-1
84 PA Humphrey, X Zhu, R Zarnegar, PE Swanson, TL Ratliff, RT Vollmer, ML Day (1995) Hepatocyte growth factor and its receptor (c-MET) in prostatic carcinoma. Am J Pathol 147:386–396
85 D Huntsman, JH Resau, E Klineberg, N Auersperg (1999) Comparison of c-met expression in ovarian epithelial tumors and normal epithelia of the female reproductive tract by quantitative laser scan microscopy. Am J Pathol 155:343–348
https://doi.org/10.1016/S0002-9440(10)65130-9
86 H Inufusa, M Nakamura, T Adachi, Y Nakatani, K Shindo, M Yasutomi, H Matsuura (1995) Localization of oncofetal and normal fibronectin in colorectal cancer. Correlation with histologic grade, liver metastasis, and prognosis. Cancer 75:2802–2808
https://doi.org/10.1002/1097-0142(19950615)75:12<2802::AID-CNCR2820751204>3.0.CO;2-O
87 E Ioachim, A Charchanti, E Briasoulis, V Karavasilis, H Tsanou, DL Arvanitis, NJ Agnantis, N Pavlidis (2002) Immunohistochemical expression of extracellular matrix components tenascin, fibronectin, collagen type IV and laminin in breast cancer: their prognostic value and role in tumour invasion and progression. Eur J Cancer 38:2362–2370
https://doi.org/10.1016/S0959-8049(02)00210-1
88 RK Jain (2001) Delivery of molecular and cellular medicine to solid tumors. Adv Drug Deliv Rev 46:149–168
https://doi.org/10.1016/S0169-409X(00)00131-9
89 H Jeon, D Kim, M Choi, S Kang, JY Kim, S Kim, S Jon (2017) Targeted Cancer Therapy Using Fusion Protein of TNFalpha and Tumor-Associated Fibronectin-Specific Aptide. Mol Pharm 14:3772–3779
https://doi.org/10.1021/acs.molpharmaceut.7b00520
90 W Jin, B Qin, Z Chen, H Liu, A Barve, K Cheng (2016) Discovery of PSMA-specific peptide ligands for targeted drug delivery. Int J Pharm 513:138–147
https://doi.org/10.1016/j.ijpharm.2016.08.048
91 W Jung, E Castren, M Odenthal, GF Vande Woude, T Ishii, HP Dienes, D Lindholm, P Schirmacher (1994) Expression and functional interaction of hepatocyte growth factor-scatter factor and its receptor c-met in mammalian brain. J Cell Biol 126:485–494
https://doi.org/10.1083/jcb.126.2.485
92 T Jyothi (2012) Cancer treatment using peptides: current therapies and future prospects. J Amino Acids 2012:13
https://doi.org/10.1155/2012/967347
93 T Kajita, Y Ohta, K Kimura, M Tamura, Y Tanaka, Y Tsunezuka, M Oda, T Sasaki, G Watanabe (2001) The expression of vascular endothelial growth factor C and its receptors in non-small cell lung cancer. Br J Cancer 85:255–260
https://doi.org/10.1054/bjoc.2001.1882
94 OP Kallioniemi, A Kallioniemi, W Kurisu, A Thor, LC Chen, HS Smith, FM Waldman, D Pinkel, JW Gray (1992) ERBB2 amplification in breast cancer analyzed by fluorescence in situ hybridization. Proc Natl Acad Sci U S A 89:5321–5325
https://doi.org/10.1073/pnas.89.12.5321
95 R Kalluri, RA Weinberg (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119:1420–1428
https://doi.org/10.1172/JCI39104
96 R Kalluri, M Zeisberg (2006) Fibroblasts in cancer. Nat Rev Cancer 6:392–401
https://doi.org/10.1038/nrc1877
97 MA Kane, PC Elwood, RM Portillo, AC Antony, V Najfeld, A Finley, S Waxman, JF Kolhouse (1988) Influence on immunoreactive folate-binding proteins of extracellular folate concentration in cultured human cells. J Clin Invest 81:1398–1406
https://doi.org/10.1172/JCI113469
98 Y Kang, F Wang, J Feng, D Yang, X Yang, X Yan (2006) Knockdown of CD146 reduces the migration and proliferation of human endothelial cells. Cell Res 16:313–318
https://doi.org/10.1038/sj.cr.7310039
99 NG Karasseva, VV Glinsky, NX Chen, R Komatireddy, TP Quinn (2002) Identification and characterization of peptides that bind human ErbB-2 selected from a bacteriophage display library. J Protein Chem 21:287–296
https://doi.org/10.1023/A:1019749504418
100 M Kaspar, L Zardi, D Neri (2006) Fibronectin as target for tumor therapy. Int J Cancer 118:1331–1339
https://doi.org/10.1002/ijc.21677
101 A Kebir, K Harhouri, B Guillet, JW Liu, A Foucault-Bertaud, E Lamy, E Kaspi, N Elganfoud, F Vely, F Sabatieret al. (2010) CD146 short isoform increases the proangiogenic potential of endothelial progenitor cells in vitro and in vivo. Circ Res 107:66–75
https://doi.org/10.1161/CIRCRESAHA.109.213827
102 LE Kelemen (2006) The role of folate receptor alpha in cancer development, progression and treatment: cause, consequence or innocent bystander? Int J Cancer 119:243–250
https://doi.org/10.1002/ijc.21712
103 KA Kelly, JR Allport, A Tsourkas, VR Shinde-Patil, L Josephson, R Weissleder (2005) Detection of vascular adhesion molecule-1 expression using a novel multimodal nanoparticle. Circ Res 96:327–336
https://doi.org/10.1161/01.RES.0000155722.17881.dd
104 RS Kerbel (1991) Inhibition of tumor angiogenesis as a strategy to circumvent acquired resistance to anti-cancer therapeutic agents. BioEssays 13:31–36
https://doi.org/10.1002/bies.950130106
105 ZA Khan, J Caurtero, YP Barbin, BM Chan, S Uniyal, S Chakrabarti (2005) ED-B fibronectin in non-small cell lung carcinoma. Exp Lung Res 31:701–711
https://doi.org/10.1080/01902140591007236
106 MY Kim, OR Kim, YS Choi, H Lee, K Park, CT Lee, KW Kang, S Jeong (2012a) Selection and characterization of tenascin C targeting peptide. Mol Cells 33:71–77
https://doi.org/10.1007/s10059-012-2214-4
107 S Kim, D Kim, HH Jung, IH Lee, JI Kim, JY Suh, S Jon (2012b) Bioinspired design and potential biomedical applications of a novel class of high-affinity peptides. Angew Chem Int Ed Engl 51:1890–1894
https://doi.org/10.1002/anie.201107894
108 H Kim, Y Lee, IH Lee, S Kim, D Kim, PE Saw, J Lee, M Choi, YC Kim, S Jon (2014) Synthesis and therapeutic evaluation of an aptide-docetaxel conjugate targeting tumor-associated fibronectin. J Control Release 178:118–124
https://doi.org/10.1016/j.jconrel.2014.01.015
109 H Kim, Y Lee, S Kang, M Choi, S Lee, S Kim, V Gujrati, J Kim, S Jon (2016) Self-assembled nanoparticles comprising aptide-SN38 conjugates for use in targeted cancer therapy. Nanotechnology 27:48LT01
https://doi.org/10.1088/0957-4484/27/48/48LT01
110 G Klein, S Beck, CA Muller (1993) Tenascin is a cytoadhesive extracellular matrix component of the human hematopoietic microenvironment. J Cell Biol 123:1027–1035
https://doi.org/10.1083/jcb.123.4.1027
111 E Koivunen, B Wang, E Ruoslahti (1995) Phage libraries displaying cyclic peptides with different ring sizes: ligand specificities of the RGD-directed integrins. Biotechnology (N Y) 13:265–270
https://doi.org/10.1038/nbt0395-265
112 E Koivunen, W Arap, H Valtanen, A Rainisalo, OP Medina, P Heikkila, C Kantor, CG Gahmberg, T Salo, YT Konttinenet al. (1999) Tumor targeting with a selective gelatinase inhibitor. Nat Biotechnol 17:768–774
https://doi.org/10.1038/11703
113 MI Koukourakis, A Giatromanolaki, PE Thorpe, RA Brekken, E Sivridis, S Kakolyris, V Georgoulias, KC Gatter, AL Harris (2000) Vascular endothelial growth factor/KDR activated microvessel density versus CD31 standard microvessel density in non-small cell lung cancer. Cancer Res 60:3088–3095
114 DN Krag, GS Shukla, GP Shen, S Pero, T Ashikaga, S Fuller, DL Weaver, S Burdette-Radoux, C Thomas (2006) Selection of tumor-binding ligands in cancer patients with phage display libraries. Cancer Res 66:7724–7733
https://doi.org/10.1158/0008-5472.CAN-05-4441
115 R Kumar, M Mandal, A Lipton, H Harvey, CB Thompson (1996) Overexpression of HER2 modulates bcl-2, bcl-XL, and tamoxifeninduced apoptosis in human MCF-7 breast cancer cells. Clin Cancer Res 2:1215–1219
116 H Kurahara, H Shinchi, Y Mataki, K Maemura, H Noma, F Kubo, M Sakoda, S Ueno, S Natsugoe, S Takao (2011) Significance of M2-polarized tumor-associated macrophage in pancreatic cancer. J Surg Res 167:e211–e219
https://doi.org/10.1016/j.jss.2009.05.026
117 MK Kwon, JO Nam, RW Park, BH Lee, JY Park, YR Byun, SY Kim, IC Kwon, IS Kim (2008) Antitumor effect of a transducible fusogenic peptide releasing multiple proapoptotic peptides by caspase-3. Mol Cancer Ther 7:1514–1522
https://doi.org/10.1158/1535-7163.MCT-07-2009
118 P Laakkonen, K Porkka, JA Hoffman, E Ruoslahti (2002) A tumorhoming peptide with a targeting specificity related to lymphatic vessels. Nat Med 8:751–755
https://doi.org/10.1038/nm720
119 LA Landon, SL Deutscher (2003) Combinatorial discovery of tumor targeting peptides using phage display. J Cell Biochem 90:509–517
https://doi.org/10.1002/jcb.10634
120 TY Lee, CT Lin, SY Kuo, DK Chang, HC Wu (2007) Peptidemediated targeting to tumor blood vessels of lung cancer for drug delivery. Cancer Res 67:10958–10965
https://doi.org/10.1158/0008-5472.CAN-07-2233
121 ST Lee-Hoeflich, L Crocker, E Yao, T Pham, X Munroe, KP Hoeflich, MX Sliwkowski, HM Stern (2008) A central role for HER3 in HER2-amplified breast cancer: implications for targeted therapy. Cancer Res 68:5878–5887
https://doi.org/10.1158/0008-5472.CAN-08-0380
122 JM Lehmann, G Riethmuller, JP Johnson (1989) MUC18, a marker of tumor progression in human melanoma, shows sequence similarity to the neural cell adhesion molecules of the immunoglobulin superfamily. Proc Natl Acad Sci U S A 86:9891–9895
https://doi.org/10.1073/pnas.86.24.9891
123 Z Li, R Zhao, X Wu, Y Sun, M Yao, J Li, Y Xu, J Gu (2005) Identification and characterization of a novel peptide ligand of epidermal growth factor receptor for targeted delivery of therapeutics. FASEB J 19:1978–1985
https://doi.org/10.1096/fj.05-4058com
124 J Li, H Wang, J Li, J Bao, C Wu (2016) Discovery of a potential HER2 inhibitor from natural products for the treatment of HER2-Positive Breast cancer. Int J Mol Sci 17:E1055
https://doi.org/10.3390/ijms17071055
125 C Li, N Zhang, J Zhou, C Ding, Y Jin, X Cui, K Pu, Y Zhu (2018) Peptide Blocking of PD-1/PD-L1 Interaction for Cancer Immunotherapy. Cancer Immunol Res 6:178–188
https://doi.org/10.1158/2326-6066.CIR-17-0035
126 WJ Lin, LT Kao (2014) Cytotoxic enhancement of hexapeptideconjugated micelles in EGFR high-expressed cancer cells. Expert Opin Drug Deliv 11:1537–1550
https://doi.org/10.1517/17425247.2014.930433
127 M Lindgren, K Rosenthal-Aizman, K Saar, E Eiriksdottir, Y Jiang, M Sassian, P Ostlund, M Hallbrink, U Langel (2006) Overcoming methotrexate resistance in breast cancer tumour cells by the use of a new cell-penetrating peptide. Biochem Pharmacol 71:416–425
https://doi.org/10.1016/j.bcp.2005.10.048
128 X Liu, J Peng, J He, Q Li, J Zhou, X Liang, S Tang (2018) Selection and identification of novel peptides specifically targeting human cervical cancer. Amino Acids 50:577–592
https://doi.org/10.1007/s00726-018-2539-1
129 A Lo, CT Lin, HC Wu (2008) Hepatocellular carcinoma cell-specific peptide ligand for targeted drug delivery. Mol Cancer Ther 7:579–589
https://doi.org/10.1158/1535-7163.MCT-07-2359
130 PS Low, WA Henne, DD Doorneweerd (2008) Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases. Acc Chem Res 41:120–129
https://doi.org/10.1021/ar7000815
131 AJ Lyons, AC Bateman, A Spedding, JN Primrose, U Mandel (2001) Oncofetal fibronectin and oral squamous cell carcinoma. Br J Oral Maxillofac Surg 39:471–477
https://doi.org/10.1054/bjom.2001.0702
132 A Mantovani, F Marchesi, A Malesci, L Laghi, P Allavena (2017) Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol 14:399–416
https://doi.org/10.1038/nrclinonc.2016.217
133 H Margus, K Padari, M Pooga (2012) Cell-penetrating peptides as versatile vehicles for oligonucleotide delivery. Mol Ther 20:525–533
https://doi.org/10.1038/mt.2011.284
134 JS Marken, GL Schieven, I Hellstrom, KE Hellstrom, A Aruffo (1992) Cloning and expression of the tumor-associated antigen L6. Proc Natl Acad Sci U S A 89:3503–3507
https://doi.org/10.1073/pnas.89.8.3503
135 S Marqus, E Pirogova, TJ Piva (2017) Evaluation of the use of therapeutic peptides for cancer treatment. J Biomed Sci 24:21
https://doi.org/10.1186/s12929-017-0328-x
136 H Matsue, KG Rothberg, A Takashima, BA Kamen, RG Anderson, SW Lacey (1992) Folate receptor allows cells to grow in low concentrations of 5-methyltetrahydrofolate. Proc Natl Acad Sci U S A 89:6006–6009
https://doi.org/10.1073/pnas.89.13.6006
137 C Medrek, F Ponten, K Jirstrom, K Leandersson (2012) The presence of tumor associated macrophages in tumor stroma as a prognostic marker for breast cancer patients. BMC Cancer 12:306
https://doi.org/10.1186/1471-2407-12-306
138 J Mendelsohn, J Baselga (2003) Status of epidermal growth factor receptor antagonists in the biology and treatment of cancer. J Clin Oncol 21:2787–2799
https://doi.org/10.1200/JCO.2003.01.504
139 G Menderes, E Bonazzoli, S Bellone, JD Black, S Lopez, F Pettinella, A Masserdotti, L Zammataro, B Litkouhi, E Ratneret al. (2017) Efficacy of neratinib in the treatment of HER2/neu-amplified epithelial ovarian carcinoma in vitro and in vivo. Med Oncol 34:91
https://doi.org/10.1007/s12032-017-0956-8
140 P Mhawech, P Dulguerov, M Assaly, C Ares, AS Allal (2005) EB-D fibronectin expression in squamous cell carcinoma of the head and neck. Oral Oncol 41:82–88
https://doi.org/10.1016/j.oraloncology.2004.07.003
141 L Milas, K Mason, N Hunter, S Petersen, M Yamakawa, K Ang, J Mendelsohn, Z Fan (2000) In vivo enhancement of tumor radioresponse by C225 antiepidermal growth factor receptor antibody. Clin Cancer Res 6:701–708
142 S Miraglia, W Godfrey, AH Yin, K Atkins, R Warnke, JT Holden, RA Bray, EK Waller, DW Buck (1997) A novel five-transmembrane hematopoietic stem cell antigen: isolation, characterization, and molecular cloning. Blood 90:5013–5021
https://doi.org/10.1182/blood.V90.12.5013
143 MC Morris, J Depollier, J Mery, F Heitz, G Divita (2001) A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nat Biotechnol 19:1173–1176
https://doi.org/10.1038/nbt1201-1173
144 J Naidoo, DB Page, JD Wolchok (2014) Immune Checkpoint Blockade. Hematol Oncol Clin North Am 28:585–600
https://doi.org/10.1016/j.hoc.2014.02.002
145 MW Ndinguri, M Bhowmick, D Tokmina-Roszyk, TK Robichaud, GB Fields (2012) Peptide-based selective inhibitors of matrix metalloproteinase-mediated activities. Molecules 17:14230–14248
https://doi.org/10.3390/molecules171214230
146 J Neuzil, M Stantic, R Zobalova, J Chladova, X Wang, L Prochazka, L Dong, L Andera, SJ Ralph (2007) Tumour-initiating cells vs. cancer ‘stem’ cells and CD133: what’s in the name? Biochem Biophys Res Commun 355:855–859
https://doi.org/10.1016/j.bbrc.2007.01.159
147 A Nishiyama, XH Lin, N Giese, CH Heldin, WB Stallcup (1996) Interaction between NG2 proteoglycan and PDGF alpha-receptor on O2A progenitor cells is required for optimal response to PDGF. J Neurosci Res 43:315–330
https://doi.org/10.1002/(SICI)1097-4547(19960201)43:3<315::AID-JNR6>3.0.CO;2-M
148 CA O’Brien, A Pollett, S Gallinger, JE Dick (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445:106–110
https://doi.org/10.1038/nature05372
149 MA Olayioye, RM Neve, HA Lane, NE Hynes (2000) The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO J 19:3159–3167
https://doi.org/10.1093/emboj/19.13.3159
150 BG Ongarora, KR Fontenot, X Hu, I Sehgal, SD Satyanarayana-Jois, MG Vicente (2012) Phthalocyanine-peptide conjugates for epidermal growth factor receptor targeting. J Med Chem 55:3725–3738
https://doi.org/10.1021/jm201544y
151 MS O’Reilly, S Pirie-Shepherd, WS Lane, J Folkman (1999) Antiangiogenic activity of the cleaved conformation of the serpin antithrombin. Science 285:1926–1928
https://doi.org/10.1126/science.285.5435.1926
152 A Ouhtit, RL Gaur, ZY Abd Elmageed, A Fernando, R Thouta, AK Trappey, ME Abdraboh, HI El-Sayyad, P Rao, MG Raj (2009) Towards understanding the mode of action of the multifaceted cell adhesion receptor CD146. Biochim Biophys Acta 1795:130–136
https://doi.org/10.1016/j.bbcan.2009.01.002
153 DM Pardoll (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12:252–264
https://doi.org/10.1038/nrc3239
154 J Park, S Kim, PE Saw, IH Lee, MK Yu, M Kim, K Lee, YC Kim, YY Jeong, S Jon (2012) Fibronectin extra domain B-specific aptide conjugated nanoparticles for targeted cancer imaging. J Control Release 163:111–118
https://doi.org/10.1016/j.jconrel.2012.08.029
155 J Park, S Park, S Kim, I-H Lee, PE Saw, K Lee, Y-C Kim, Y-J Kim, OC Farokhzad, YY Jeonget al. (2013) HER2-specific aptide conjugated magneto-nanoclusters for potential breast cancer imaging and therapy. J Mater Chem B 1:4576–4583
https://doi.org/10.1039/c3tb20613k
156 R Pasqualini, E Ruoslahti (1996) Organ targeting in vivo using phage display peptide libraries. Nature 380:364–366
https://doi.org/10.1038/380364a0
157 R Pasqualini, E Koivunen, E Ruoslahti (1997) Alpha v integrins as receptors for tumor targeting by circulating ligands. Nat Biotechnol 15:542–546
https://doi.org/10.1038/nbt0697-542
158 R Pasqualini, E Koivunen, R Kain, J Lahdenranta, M Sakamoto, A Stryhn, RA Ashmun, LH Shapiro, W Arap, E Ruoslahti (2000) Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res 60:722–727
159 M Prewett, J Huber, Y Li, A Santiago, W O’Connor, K King, J Overholser, A Hooper, B Pytowski, L Witteet al. (1999) Antivascular endothelial growth factor receptor (fetal liver kinase 1) monoclonal antibody inhibits tumor angiogenesis and growth of several mouse and human tumors. Cancer Res 59:5209–5218
160 DJ Price, T Miralem, S Jiang, R Steinberg, H Avraham (2001) Role of vascular endothelial growth factor in the stimulation of cellular invasion and signaling of breast cancer cells. Cell Growth Differ 12:129–135
161 SM Pupa, S Menard, S Forti, E Tagliabue (2002) New insights into the role of extracellular matrix during tumor onset and progression. J Cell Physiol 192:259–267
https://doi.org/10.1002/jcp.10142
162 CN Qian, X Guo, B Cao, EJ Kort, CC Lee, J Chen, LM Wang, WY Mai, HQ Min, MH Honget al. (2002) Met protein expression level correlates with survival in patients with late-stage nasopharyngeal carcinoma. Cancer Res 62:589–596
163 D Rajotte, W Arap, M Hagedorn, E Koivunen, R Pasqualini, E Ruoslahti (1998) Molecular heterogeneity of the vascular endothelium revealed by in vivo phage display. J Clin Invest 102:430–437
https://doi.org/10.1172/JCI3008
164 K Rasanen, A Vaheri (2010) Activation of fibroblasts in cancer stroma. Exp Cell Res 316:2713–2722
https://doi.org/10.1016/j.yexcr.2010.04.032
165 H Ren, C Gao, L Zhou, M Liu, C Xie, W Lu (2015) EGFR-targeted poly(ethylene glycol)-distearoylphosphatidylethanolamine micelle loaded with paclitaxel for laryngeal cancer: preparation, characterization and in vitro evaluation. Drug Deliv 22:785–794
https://doi.org/10.3109/10717544.2014.896057
166 AL Ribeiro, OK Okamoto (2015) Combined effects of pericytes in the tumor microenvironment. Stem Cells Int 2015:868475
https://doi.org/10.1155/2015/868475
167 L Ricci-Vitiani, DG Lombardi, E Pilozzi, M Biffoni, M Todaro, C Peschle, R De Maria (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445:111–115
https://doi.org/10.1038/nature05384
168 MF Rimawi, R Schiff, CK Osborne (2015) Targeting HER2 for the treatment of breast cancer. Annu Rev Med 66:111–128
https://doi.org/10.1146/annurev-med-042513-015127
169 S Rizzo, G Attard, DL Hudson (2005) Prostate epithelial stem cells. Cell Prolif 38:363–374
https://doi.org/10.1111/j.1365-2184.2005.00356.x
170 S Rong, M Jeffers, JH Resau, I Tsarfaty, M Oskarsson, GF Vande Woude (1993) Met expression and sarcoma tumorigenicity. Cancer Res 53:5355–5360
171 S Rong, S Segal, M Anver, JH Resau, GF Vande Woude (1994) Invasiveness and metastasis of NIH 3T3 cells induced by Methepatocyte growth factor/scatter factor autocrine stimulation. Proc Natl Acad Sci U S A 91:4731–4735
https://doi.org/10.1073/pnas.91.11.4731
172 S Ropero, JA Menendez, A Vazquez-Martin, S Montero, H Cortes-Funes, R Colomer (2004) Trastuzumab plus tamoxifen: antiproliferative and molecular interactions in breast carcinoma. Breast Cancer Res Treat 86:125–137
https://doi.org/10.1023/B:BREA.0000032981.20384.c6
173 JF Ross, PK Chaudhuri, M Ratnam (1994) Differential regulation of folate receptor isoforms in normal and malignant tissues in vivo and in established cell lines. Physiologic and clinical implications. Cancer 73:2432–2443
https://doi.org/10.1002/1097-0142(19940501)73:9<2432::AID-CNCR2820730929>3.0.CO;2-S
174 C Rouleau, DA Gianolio, R Smale, SD Roth, R Krumbholz, J Harper, KJ Munroe, TL Green, BC Horten, SM Schmidet al. (2015) Antiendosialin antibody–drug conjugate: potential in sarcoma and other malignancies. Mol Cancer Ther 14:2081–2089
https://doi.org/10.1158/1535-7163.MCT-15-0312
175 E Ruoslahti (2000) Targeting tumor vasculature with homing peptides from phage display. Semin Cancer Biol 10:435–442
https://doi.org/10.1006/scbi.2000.0334
176 E Ruoslahti (2003) The RGD story: a personal account. Matrix Biol 22:459–465
https://doi.org/10.1016/S0945-053X(03)00083-0
177 E Ruoslahti (2004) Vascular zip codes in angiogenesis and metastasis. Biochem Soc Trans 32:397–402
https://doi.org/10.1042/bst0320397
178 E Ruoslahti (2012) Peptides as targeting elements and tissue penetration devices for nanoparticles. Adv Mater 24:3747–3756
https://doi.org/10.1002/adma.201200454
179 J Ruschoff, W Hanna, M Bilous, M Hofmann, RY Osamura, F Penault-Llorca, M van de Vijver, G Viale (2012) HER2 testing in gastric cancer: a practical approach. Mod Pathol 25:637–650
https://doi.org/10.1038/modpathol.2011.198
180 L Ryden, B Linderholm, NH Nielsen, S Emdin, PE Jonsson, G Landberg (2003) Tumor specific VEGF-A and VEGFR2/KDR protein are co-expressed in breast cancer. Breast Cancer Res Treat 82:147–154
https://doi.org/10.1023/B:BREA.0000004357.92232.cb
181 F Sallusto, M Cella, C Danieli, A Lanzavecchia (1995) Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J Exp Med 182:389–400
https://doi.org/10.1084/jem.182.2.389
182 WB Saunders, BL Bohnsack, JB Faske, NJ Anthis, KJ Bayless, KK Hirschi, GE Davis (2006) Coregulation of vascular tube stabilization by endothelial cell TIMP-2 and pericyte TIMP-3. J Cell Biol 175:179–191
https://doi.org/10.1083/jcb.200603176
183 PE Saw, S Kim, I-H Lee, J Park, M Yu, J Lee, J-I Kim, S Jon (2013) Aptide-conjugated liposome targeting tumor-associated fibronectin for glioma therapy. J Mater Chem B 1:4723–4726
https://doi.org/10.1039/c3tb20815j
184 PE Saw, J Park, E Lee, S Ahn, J Lee, H Kim, J Kim, M Choi, OC Farokhzad, S Jon (2015) Effect of PEG pairing on the efficiency of cancer-targeting liposomes. Theranostics 5:746–754
https://doi.org/10.7150/thno.10732
185 PE Saw, J Park, S Jon, OC Farokhzad (2017) A drug-delivery strategy for overcoming drug resistance in breast cancer through targeting of oncofetal fibronectin. Nanomedicine 13:713–722
https://doi.org/10.1016/j.nano.2016.10.005
186 RO Schlingemann, FJ Rietveld, RM de Waal, S Ferrone, DJ Ruiter (1990) Expression of the high molecular weight melanomaassociated antigen by pericytes during angiogenesis in tumors and in healing wounds. Am J Pathol 136:1393–1405
187 FM Segers, H Yu, TJ Molenaar, P Prince, T Tanaka, TJ van Berkel, EA Biessen (2012) Design and validation of a specific scavenger receptor class AI binding peptide for targeting the inflammatory atherosclerotic plaque. Arterioscler Thromb Vasc Biol 32:971–978
https://doi.org/10.1161/ATVBAHA.111.235358
188 P Seshacharyulu, MP Ponnusamy, D Haridas, M Jain, AK Ganti, SK Batra (2012) Targeting the EGFR signaling pathway in cancer therapy. Expert Opin Ther Targets 16:15–31
https://doi.org/10.1517/14728222.2011.648617
189 K Shiga, M Hara, T Nagasaki, T Sato, H Takahashi, H Takeyama (2015) Cancer-associated fibroblasts: their characteristics and their roles in tumor growth. Cancers (Basel) 7:2443–2458
https://doi.org/10.3390/cancers7040902
190 SC Shih, A Zukauskas, D Li, G Liu, LH Ang, JA Nagy, LF Brown, HF Dvorak (2009) The L6 protein TM4SF1 is critical for endothelial cell function and tumor angiogenesis. Cancer Res 69:3272–3277
https://doi.org/10.1158/0008-5472.CAN-08-4886
191 SK Singh, ID Clarke, M Terasaki, VE Bonn, C Hawkins, J Squire, PB Dirks (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828
192 SK Singh, C Hawkins, ID Clarke, JA Squire, J Bayani, T Hide, RM Henkelman, MD Cusimano, PB Dirks (2004) Identification of human brain tumour initiating cells. Nature 432:396–401
https://doi.org/10.1038/nature03128
193 GP Smith (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228:1315–1317
https://doi.org/10.1126/science.4001944
194 LM Smith, A Nesterova, MC Ryan, S Duniho, M Jonas, M Anderson, RF Zabinski, MK Sutherland, HP Gerber, KL Van Ordenet al. (2008) CD133/prominin-1 is a potential therapeutic target for antibody-drug conjugates in hepatocellular and gastric cancers. Br J Cancer 99:100
https://doi.org/10.1038/sj.bjc.6604437
195 S Song, D Liu, J Peng, Y Sun, Z Li, JR Gu, Y Xu (2008) Peptide ligand-mediated liposome distribution and targeting to EGFR expressing tumor in vivo. Int J Pharm 363:155–161
https://doi.org/10.1016/j.ijpharm.2008.07.012
196 S Song, D Liu, J Peng, H Deng, Y Guo, LX Xu, AD Miller, Y Xu (2009) Novel peptide ligand directs liposomes toward EGF-R high-expressing cancer cells in vitro and in vivo. FASEB J 23:1396–1404
https://doi.org/10.1096/fj.08-117002
197 MD Sorensen, P Kristensen (2011) Selection of antibodies against a single rare cell present in a heterogeneous population using phage display. Nat Protoc 6:509–522
https://doi.org/10.1038/nprot.2011.311
198 PC Stapor, RS Sweat, DC Dashti, AM Betancourt, WL Murfee (2014) Pericyte dynamics during angiogenesis: new insights from new identities. J Vasc Res 51:163–174
https://doi.org/10.1159/000362276
199 JL Su, KP Lai, CA Chen, CY Yang, PS Chen, CC Chang, CH Chou, CL Hu, ML Kuo, CY Hsiehet al. (2005) A novel peptide specifically binding to interleukin-6 receptor (gp80) inhibits angiogenesis and tumor growth. Cancer Res 65:4827–4835
https://doi.org/10.1158/0008-5472.CAN-05-0188
200 S Su, J Chen, H Yao, J Liu, S Yu, L Lao, M Wang, M Luo, Y Xing, F Chenet al. (2018) CD10(+)GPR77(+) cancer-associated fibroblasts promote cancer formation and chemoresistance by sustaining cancer stemness. Cell 172:841–856.e816
https://doi.org/10.1016/j.cell.2018.01.009
201 S Suer, H Sonmez, I Karaaslan, H Baloglu, E Kokoglu (1996) Tissue sialic acid and fibronectin levels in human prostatic cancer. Cancer Lett 99:135–137
https://doi.org/10.1016/0304-3835(95)04084-6
202 J Sun, C Zhang, G Liu, H Liu, C Zhou, Y Lu, C Zhou, L Yuan, X Li (2012) A novel mouse CD133 binding-peptide screened by phage display inhibits cancer cell motility in vitro. Clin Exp Metastasis 29:185–196
https://doi.org/10.1007/s10585-011-9440-6
203 H Suzuki, M Sasada, S Kamiya, Y Ito, H Watanabe, Y Okada, K Ishibashi, T Iyoda, A Yanaka, F Fukai (2017) The promoting effect of the extracellular matrix peptide TNIIIA2 derived from tenascin-C in colon cancer cell infiltration. Int J Mol Sci 18:E181
https://doi.org/10.3390/ijms18010181
204 SD Sweat, A Pacelli, GP Murphy, DG Bostwick (1998) Prostatespecific membrane antigen expression is greatest in prostate adenocarcinoma and lymph node metastases. Urology 52:637–640
https://doi.org/10.1016/S0090-4295(98)00278-7
205 H Takayama, WJ LaRochelle, R Sharp, T Otsuka, P Kriebel, M Anver, SA Aaronson, G Merlino (1997) Diverse tumorigenesis associated with aberrant development in mice overexpressing hepatocyte growth factor/scatter factor. Proc Natl Acad Sci U S A 94:701–706
https://doi.org/10.1073/pnas.94.2.701
206 C Tang, BT Ang, S Pervaiz (2007) Cancer stem cell: target for anticancer therapy. FASEB J 21:3777–3785
https://doi.org/10.1096/fj.07-8560rev
207 T Tsunoda, H Inada, I Kalembeyi, K Imanaka-Yoshida, M Sakakibara, R Okada, K Katsuta, T Sakakura, Y Majima, T Yoshida (2003) Involvement of large tenascin-C splice variants in breast cancer progression. Am J Pathol 162:1857–1867
https://doi.org/10.1016/S0002-9440(10)64320-9
208 T Tu, C Zhang, H Yan, Y Luo, R Kong, P Wen, Z Ye, J Chen, J Feng, F Liuet al. (2015) CD146 acts as a novel receptor for netrin-1 in promoting angiogenesis and vascular development. Cell Res 25:275–287
https://doi.org/10.1038/cr.2015.15
209 PC Tumeh, CL Harview, JH Yearley, IP Shintaku, EJ Taylor, L Robert, B Chmielowski, M Spasic, G Henry, V Ciobanuet al. (2014) PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515:568–571
https://doi.org/10.1038/nature13954
210 T Ujula, M Huttunen, P Luoto, H Peräkylä, I Simpura, I Wilson, M Bergman, A Roivainen (2010) Matrix metalloproteinase 9 targeting peptides: syntheses, 68Ga-labeling, and preliminary evaluation in a rat melanoma xenograft model. Bioconjug Chem 21:1612–1621
https://doi.org/10.1021/bc1000643
211 G Vauquelin, SJ Charlton (2013) Exploring avidity: understanding the potential gains in functional affinity and target residence time of bivalent and heterobivalent ligands. Br J Pharmacol 168:1771–1785
https://doi.org/10.1111/bph.12106
212 A Visintin, K Knowlton, E Tyminski, CI Lin, X Zheng, K Marquette, S Jain, L Tchistiakova, D Li, CJ O’Donnellet al. (2015) Novel Anti-TM4SF1 Antibody-Drug Conjugates with Activity against Tumor Cells and Tumor Vasculature. Mol Cancer Ther 14:1868–1876
https://doi.org/10.1158/1535-7163.MCT-15-0188
213 CF Waller, UM Martens, W Lange (1999) Philadelphia chromosomepositive cells are equally distributed in AC133+ and AC133-fractions of CD34+ peripheral blood progenitor cells from patients with CML. Leukemia 13:1466–1467
https://doi.org/10.1038/sj.leu.2401516
214 Z Wang, X Yan (2013) CD146, a multi-functional molecule beyond adhesion. Cancer Lett 330:150–162
https://doi.org/10.1016/j.canlet.2012.11.049
215 J Wang, JJ Masehi-Lano, EJ Chung (2017) Peptide and antibody ligands for renal targeting: nanomedicine strategies for kidney disease. Biomater Sci 5:1450–1459
https://doi.org/10.1039/C7BM00271H
216 A Wells (1999) EGF receptor. Int J Biochem Cell Biol 31:637–643
https://doi.org/10.1016/S1357-2725(99)00015-1
217 N Wernert (1997) The multiple roles of tumour stroma. Virchows Arch 430:433–443
https://doi.org/10.1007/s004280050053
218 I Wierzbicka-Patynowski, JE Schwarzbauer (2003) The ins and outs of fibronectin matrix assembly. J Cell Sci 116:3269–3276
https://doi.org/10.1242/jcs.00670
219 GL Jr Wright, C Haley, ML Beckett, PF Schellhammer (1995) Expression of prostate-specific membrane antigen in normal, benign, and malignant prostate tissues. Urol Oncol 1:18–28
https://doi.org/10.1016/1078-1439(95)00002-Y
220 CH Wu, IJ Liu, RM Lu, HC Wu (2016) Advancement and applications of peptide phage display technology in biomedical science. J Biomed Sci 23:8
https://doi.org/10.1186/s12929-016-0223-x
221 P Wulfing, C Kersting, H Buerger, B Mattsson, R Mesters, C Gustmann, B Hinrichs, J Tio, W Bocker, L Kiesel (2005) Expression patterns of angiogenic and lymphangiogenic factors in ductal breast carcinoma in situ. Br J Cancer 92:1720–1728
https://doi.org/10.1038/sj.bjc.6602567
222 J Xiao, A Burn, TJ Tolbert (2008) Increasing solubility of proteins and peptides by site-specific modification with betaine. Bioconjug Chem 19:1113–1118
https://doi.org/10.1021/bc800063k
223 L Xing, Y Xu, K Sun, H Wang, F Zhang, Z Zhou, J Zhang, F Zhang, B Caliskan, Z Qiuet al. (2018) Identification of a peptide for folate receptor alpha by phage display and its tumor targeting activity in ovary cancer xenograft. Sci Rep 8:8426
https://doi.org/10.1038/s41598-018-26683-z
224 X Yan, Y Lin, D Yang, Y Shen, M Yuan, Z Zhang, P Li, H Xia, L Li, D Luoet al. (2003) A novel anti-CD146 monoclonal antibody, AA98, inhibits angiogenesis and tumor growth. Blood 102:184–191
https://doi.org/10.1182/blood-2002-04-1004
225 H Yang, S Liu, H Cai, L Wan, S Li, Y Li, J Cheng, X Lu (2010) Chondroitin sulfate as a molecular portal that preferentially mediates the apoptotic killing of tumor cells by penetratin-directed mitochondria-disrupting peptides. J Biol Chem 285:25666–25676
https://doi.org/10.1074/jbc.M109.089417
226 F Yang, W Ai, F Jiang, X Liu, Z Huang, S Ai (2016) Preclinical Evaluation of an Epidermal Growth Factor Receptor-Targeted Doxorubicin-Peptide Conjugate: toxicity, Biodistribution, and Efficacy in Mice. J Pharm Sci 105:639–649
https://doi.org/10.1016/j.xphs.2015.10.020
227 Y Yarden, MX Sliwkowski (2001) Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2:127–137
https://doi.org/10.1038/35052073
228 Z Ye, C Zhang, T Tu, M Sun, D Liu, D Lu, J Feng, D Yang, F Liu, X Yan (2013) Wnt5a uses CD146 as a receptor to regulate cell motility and convergent extension. Nat Commun 4:2803
https://doi.org/10.1038/ncomms3803
229 AH Yin, S Miraglia, ED Zanjani, G Almeida-Porada, M Ogawa, AG Leary, J Olweus, J Kearney, DW Buck (1997) AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood 90:5002–5012
https://doi.org/10.1182/blood.V90.12.5002
230 D Yu, MC Hung (2000) Role of erbB2 in breast cancer chemosensitivity. BioEssays 22:673–680
https://doi.org/10.1002/1521-1878(200007)22:7<673::AID-BIES10>3.0.CO;2-A
231 H Yu, M Kortylewski, D Pardoll (2007) Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat Rev Immunol 7:41–51
https://doi.org/10.1038/nri1995
232 H Yu, D Pardoll, R Jove (2009) STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 9:798–809
https://doi.org/10.1038/nrc2734
233 SS Yu, CM Lau, WJ Barham, HM Onishko, CE Nelson, H Li, CA Smith, FE Yull, CL Duvall, TD Giorgio (2013) Macrophage-specific RNA interference targeting via “click”, mannosylated polymeric micelles. Mol Pharm 10:975–987
https://doi.org/10.1021/mp300434e
234 P Yue, J Turkson (2009) Targeting STAT3 in cancer: how successful are we? Expert Opin Investig Drugs 18:45–56
https://doi.org/10.1517/13543780802565791
235 E Zanini, LS Louis, J Antony, E Karali, IS Okon, AB McKie, S Vaughan, M El-Bahrawy, J Stebbing, C Recchiet al. (2017) The Tumor-Suppressor Protein OPCML Potentiates Anti-EGFR- and Anti-HER2-Targeted Therapy in HER2-Positive Ovarian and Breast Cancer. Mol Cancer Ther 16:2246–2256
https://doi.org/10.1158/1535-7163.MCT-17-0081
236 Q Zhang, J Tang, L Fu, R Ran, Y Liu, M Yuan, Q He (2013) A pHresponsive alpha-helical cell penetrating peptide-mediated liposomal delivery system. Biomaterials 34:7980–7993
https://doi.org/10.1016/j.biomaterials.2013.07.014
237 P Zhao, T Grabinski, C Gao, RS Skinner, T Giambernardi, Y Su, E Hudson, J Resau, M Gross, GF Vande Woudeet al. (2007) Identification of a met-binding peptide from a phage display library. Clin Cancer Res 13:6049–6055
https://doi.org/10.1158/1078-0432.CCR-07-0035
238 C Zheng, Y Qiu, Q Zeng, Y Zhang, D Lu, D Yang, J Feng, X Yan (2009) Endothelial CD146 is required for in vitro tumor-induced angiogenesis: the role of a disulfide bond in signaling and dimerization. Int J Biochem Cell Biol 41:2163–2172
https://doi.org/10.1016/j.biocel.2009.03.014
239 W Zhou, SQ Ke, Z Huang, W Flavahan, X Fang, J Paul, L Wu, AE Sloan, RE McLendon, X Liet al. (2015) Periostin secreted by glioblastoma stem cells recruits M2 tumour-associated macrophages and promotes malignant growth. Nat Cell Biol 17:170–182
https://doi.org/10.1038/ncb3090
240 W Zou, JD Wolchok, L Chen (2016) PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: mechanisms, response biomarkers, and combinations. Sci Transl Med 8:328rv4
https://doi.org/10.1126/scitranslmed.aad7118
241 AJ Zurita, W Arap, R Pasqualini (2003) Mapping tumor vascular diversity by screening phage display libraries. J Control Release 91:183–186
https://doi.org/10.1016/S0168-3659(03)00236-0
[1] Boyi Zhang, Fei Chen, Qixia Xu, Liu Han, Jiaqian Xu, Libin Gao, Xiaochen Sun, Yiwen Li, Yan Li, Min Qian, Yu Sun. Revisiting ovarian cancer microenvironment: a friend or a foe?[J]. Protein Cell, 2018, 9(8): 674-692.
[2] Yu Ping, Chaojun Liu, Yi Zhang. T-cell receptor-engineered T cells for cancer treatment: current status and future directions[J]. Protein Cell, 2018, 9(3): 254-266.
[3] Fei Chen,Xinyi Qi,Min Qian,Yue Dai,Yu Sun. Tackling the tumor microenvironment: what challenge does it pose to anticancer therapies?[J]. Protein Cell, 2014, 5(11): 816-826.
[4] Meng Xu, Xuexiang Du, Mingyue Liu, Sirui Li, Xiaozhu Li, Yang-Xin Fu, Shengdian Wang. The tumor immunosuppressive microenvironment impairs the therapy of anti-HER2/neu antibody[J]. Prot Cell, 2012, 3(6): 441-449.
[5] Ruth K. Moysey, Yi Li, Samantha J. Paston, Emma E. Baston, Malkit S. Sami, Brian J. Cameron, Jessie Gavarret, Penio Todorov, Annelise Vuidepot, Steven M. Dunn, Nicholas J. Pumphrey, Katherine J. Adams, Fang Yuan, Rebecca E. Dennis, Deborah H. Sutton, Andy D. Johnson, Joanna E. Brewer, Rebecca Ashfield, Nikolai M. Lissin, Bent K. Jakobsen. High affinity soluble ILT2 receptor: a potent inhibitor of CD8+ T cell activation[J]. Prot Cell, 2010, 1(12): 1118-1127.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed