|
|
Structures of a P4-ATPase lipid flippase in lipid bilayers |
Yilin He1,2, Jinkun Xu1, Xiaofei Wu1, Long Li1( ) |
1. State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China 2. Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China |
|
|
|
Corresponding Author(s):
Long Li
|
Issue Date: 17 June 2020
|
|
1 |
RD Baldridge, TR Graham (2013) Two-gate mechanism for phospholipid selection and transport by type IV P-type ATPases. Proc Natl Acad Sci USA 110:E358–367
https://doi.org/10.1073/pnas.1216948110
|
2 |
TH Bayburt, YV Grinkova, SG Sligar (2002) Self-assembly of discoidal phospholipid bilayer nanoparticles with membrane scaffold proteins. Nano Lett 2:853–856
https://doi.org/10.1021/nl025623k
|
3 |
S Bryde, H Hennrich, PM Verhulst, PF Devaux, G Lenoir, JC Holthuis (2010) CDC50 proteins are critical components of the human class-1 P4-ATPase transport machinery. J Biol Chem 285:40562–40572
https://doi.org/10.1074/jbc.M110.139543
|
4 |
S Feng, S Dang, TW Han, W Ye, P Jin, T Cheng, J Li, YN Jan, LY Jan, Y Cheng (2019) Cryo-EM studies of TMEM16F calciumactivated ion channel suggest features important for lipid scrambling. Cell Rep 28:567–579
https://doi.org/10.1016/j.celrep.2019.06.023
|
5 |
M Hiraizumi, K Yamashita, T Nishizawa, O Nureki (2019) Cryo-EM structures capture the transport cycle of the P4-ATPase flippase. Science 365:1149–1155
https://doi.org/10.1126/science.aay3353
|
6 |
MS Jensen, SR Costa, AS Duelli, PA Andersen, LR Poulsen, LD Stanchev, P Gourdon, M Palmgren, T Günther Pomorski, RL López-Marqués (2017) Phospholipid flipping involves a central cavity in P4 ATPases. Sci Rep 7:17621
https://doi.org/10.1038/s41598-017-17742-y
|
7 |
LW Klomp, JC Vargas, SW van Mil, L Pawlikowska, SS Strautnieks, MJ van Eijk, JA Juijn, C Pabón-Peña, LB Smith, JA DeYounget al. (2004) Characterization of mutations in ATP8B1 associated with hereditary cholestasis. Hepatology 40:27–38
https://doi.org/10.1002/hep.20285
|
8 |
S Lu, W Huang, Q Wang, Q Shen, S Li, R Nussinov, J Zhang (2014) The structural basis of ATP as an allosteric modulator. PLoS Comput Biol 10(9):e1003831
https://doi.org/10.1371/journal.pcbi.1003831
|
9 |
M Radji, JM Kim, T Togan, H Yoshikawa, K Shirahige (2001) The cloning and characterization of the CDC50 gene family in Saccharomyces cerevisiae. Yeast 18:195–205
https://doi.org/10.1002/1097-0061(200102)18:3<195::AID-YEA660>3.0.CO;2-L
|
10 |
BP Roland, T Naito, JT Best, C Arnaiz-Yépez, H Takatsu, RJ Yu, HW Shin, TR Graham (2019) Yeast and human P4-ATPases transport glycosphingolipids using conserved structural motifs. J Biol Chem 294:1794–1806
https://doi.org/10.1074/jbc.RA118.005876
|
11 |
M Timcenko, JA Lyons, D Januliene, JJ Ulstrup, T Dieudonné, C Montigny, MR Ash, JL Karlsen, T Boesen, W Kühlbrandtet al. (2019) Structure and autoregulation of a P4-ATPase lipid flippase. Nature 571:366–370
https://doi.org/10.1038/s41586-019-1344-7
|
12 |
G van Meer, DR Voelker, GW Feigenson (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9:112–124
https://doi.org/10.1038/nrm2330
|
13 |
AL Vestergaard, JA Coleman, T Lemmin, SA Mikkelsen, LL Molday, B Vilsen, RS Molday, M Dal Peraro, JP Andersen (2014) Critical roles of isoleucine-364 and adjacent residues in a hydrophobic gate control of phospholipid transport by the mammalian P4-ATPase ATP8A2. Proc Natl Acad Sci USA 111:E1334–1343
https://doi.org/10.1073/pnas.1321165111
|
14 |
X Zhou, TR Graham (2009) Reconstitution of phospholipid translocase activity with purified Drs2p, a type-IV P-type ATPase from budding yeast. Proc Natl Acad Sci USA 106:16586–16591
https://doi.org/10.1073/pnas.0904293106
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|