Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2020, Vol. 11 Issue (11) : 809-824    https://doi.org/10.1007/s13238-020-00740-8
RESEARCH ARTICLE
Generation of a Hutchinson–Gilford progeria syndrome monkey model by base editing
Fang Wang1,2, Weiqi Zhang3,4,5,6, Qiaoyan Yang7, Yu Kang1, Yanling Fan4,5, Jingkuan Wei1, Zunpeng Liu6,8, Shaoxing Dai1, Hao Li4,5,6, Zifan Li1, Lizhu Xu1, Chu Chu1,2, Jing Qu3,6,8, Chenyang Si1,2, Weizhi Ji1(), Guang-Hui Liu3,6,9,10(), Chengzu Long7,11,12(), Yuyu Niu1,2()
1. Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
2. Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
3. Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing 100101, China
4. CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
5. China National Center for Bioinformation, Beijing 100101, China
6. University of Chinese Academy of Sciences, Beijing 100049, China
7. The Leon H Charney Division of Cardiology, New York University School of Medicine, New York, NY 10016, USA
8. State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
9. State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
10. Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
11. Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, USA
12. Department of Neurology, New York University School of Medicine, New York, NY 10016, USA
 Download: PDF(6536 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Many human genetic diseases, including Hutchinson-Gilford progeria syndrome (HGPS), are caused by single point mutations. HGPS is a rare disorder that causes premature aging and is usually caused by a de novo point mutation in the LMNA gene. Base editors (BEs) composed of a cytidine deaminase fused to CRISPR/Cas9 nickase are highly efficient at inducing C to T base conversions in a programmable manner and can be used to generate animal disease models with single amino-acid substitutions. Here, we generated the first HGPS monkey model by delivering a BE mRNA and guide RNA (gRNA) targeting the LMNA gene via microinjection into monkey zygotes. Five out of six newborn monkeys carried the mutation specifically at the target site. HGPS monkeys expressed the toxic form of lamin A, progerin, and recapitulated the typical HGPS phenotypes including growth retardation, bone alterations, and vascular abnormalities. Thus, this monkey model genetically and clinically mimics HGPS in humans, demonstrating that the BE system can efficiently and accurately generate patient-specific disease models in non-human primates.

Keywords base editing      non-human primate      HGPS     
Corresponding Author(s): Weizhi Ji,Guang-Hui Liu,Chengzu Long,Yuyu Niu   
Online First Date: 22 September 2020    Issue Date: 07 December 2020
 Cite this article:   
Fang Wang,Weiqi Zhang,Qiaoyan Yang, et al. Generation of a Hutchinson–Gilford progeria syndrome monkey model by base editing[J]. Protein Cell, 2020, 11(11): 809-824.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-020-00740-8
https://academic.hep.com.cn/pac/EN/Y2020/V11/I11/809
1 S Aktas, M Kiyak, K Ozdil, I Kurtca, S Kibar, S Ahbab, Y Karadeniz, T Saler (2013) Gastrointestinal tract hemorrhage due to angiodysplasia in hutchinson gilfort Progeria syndrome. J Med Cases 4(8):576–578
https://doi.org/10.4021/jmc1379w
2 S Anders, PT Pyl, W Huber (2015) HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics 31:166–169
https://doi.org/10.1093/bioinformatics/btu638
3 S Bae, J Park, JS Kim (2014) Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNAguided endonucleases. Bioinformatics 30:1473–1475
https://doi.org/10.1093/bioinformatics/btu048
4 BC Capell, FS Collins (2006) Human laminopathies: nuclei gone genetically awry. Nat Rev Genet 7:940–952
https://doi.org/10.1038/nrg1906
5 AWS Chan (2013) Progress and prospects for genetic modification of nonhuman primate models in biomedical research. ILAR J 54:211–223
https://doi.org/10.1093/ilar/ilt035
6 S Chen, Y Zhou, Y Chen, J Gu (2018) fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884–i890
https://doi.org/10.1093/bioinformatics/bty560
7 Y Chu, Z-G Xu, Z Xu, L Ma (2015) Hutchinson-Gilford progeria syndrome caused by an LMNA mutation: a case report. Pediatr Dermatol 32:271–275
https://doi.org/10.1111/pde.12406
8 F Debacq-Chainiaux, JD Erusalimsky, J Campisi, O Toussaint (2009) Protocols to detect senescence-associated beta-galactosidase (SA-betagal) activity, a biomarker of senescent cells in culture and in vivo. Nat Protoc 4:1798–1806
https://doi.org/10.1038/nprot.2009.191
9 Z Ding, L Sui, R Ren, Y Liu, X Xu, L Fu, R Bai, T Yuan, Y Hao, W Zhanget al. (2015) A widely adaptable approach to generate integration-free iPSCs from non-invasively acquired human somatic cells. Protein Cell 6:386–389
https://doi.org/10.1007/s13238-014-0117-1
10 B Dorado, GG Ploen, A Barettino, A Macias, P Gonzalo, MJ AndresManzano, C Gonzalez-Gomez, C Galan-Arriola, JM Alfonso, M Loboet al. (2019) Generation and characterization of a novel knockin minipig model of Hutchinson–Gilford progeria syndrome. Cell Discov 5:16
https://doi.org/10.1038/s41421-019-0084-z
11 Y Doubaj, A Lamzouri, SC Elalaoui, FZ Laarabi, A Sefiani (2011) Syndrome d’Hutchinson-Gilford (progéria). À propos de 3 cas. Archives de Pédiatrie 18:156–159
https://doi.org/10.1016/j.arcped.2010.11.014
12 N Erdem, AT Güneş, O Avcı, E Osma (1994) A case of Hutchinson– Gilford progeria syndrome mimicking scleredema in early infancy. Dermatology 188:318–321
https://doi.org/10.1159/000247175
13 JG Fleischer, R Schulte, HH Tsai, S Tyagi, A Ibarra, MN Shokhirev, L Huang, MW Hetzer, S Navlakha (2018) Predicting age from the transcriptome of human dermal fibroblasts. Genome Biol 19:221
https://doi.org/10.1186/s13059-018-1599-6
14 A Giangreco, M Qin, JE Pintar, FM Watt (2008) Epidermal stem cells are retained in vivo throughout skin aging. Aging Cell 7:250–259
https://doi.org/10.1111/j.1474-9726.2008.00372.x
15 CM Gordon, LB Gordon, BD Snyder, A Nazarian, N Quinn, S Huh, A Giobbie-Hurder, D Neuberg, R Cleveland, M Kleinmanet al. (2011) Hutchinson–gilford progeria is a skeletal dysplasia. J Bone Miner Res 26:1670–1679
https://doi.org/10.1002/jbmr.392
16 LB Gordon, IA Harten, ME Patti, AH Lichtenstein (2005) Reduced adiponectin and HDL cholesterol without elevated C-reactive protein: clues to the biology of premature atherosclerosis in Hutchinson–Gilford progeria syndrome. J Pediatr 146:336–341
https://doi.org/10.1016/j.jpeds.2004.10.064
17 B Gordon Leslie, E Kleinman Monica, J Massaro, B D’Agostino Ralph, H Shappell, M Gerhard-Herman, B Smoot Leslie, M Gordon Catherine, H Cleveland Robert, A Nazarianet al. (2016) Clinical trial of the protein farnesylation inhibitors lonafarnib, pravastatin, and zoledronic acid in children with Hutchinson–Gilford progeria syndrome. Circulation 134:114–125
https://doi.org/10.1161/CIRCULATIONAHA.116.022188
18 RCM Hennekam (2006) Hutchinson-Gilford progeria syndrome: review of the phenotype. Am J Med Genet A 140A:2603–2624
https://doi.org/10.1002/ajmg.a.31346
19 H-J Jung, C Coffinier, Y Choe, AP Beigneux, BSJ Davies, SH Yang, RH Barnes, J Hong, T Sun, SJ Pleasureet al. (2012) Regulation of prelamin A but not lamin C by miR-9, a brain-specific microRNA. Proc Natl Acad Sci USA 109:E423–E431
https://doi.org/10.1073/pnas.1111780109
20 Y Kang, C Chu, F Wang, Y Niu (2019) CRISPR/Cas9-mediated genome editing in nonhuman primates. Dis Models Mech 12:39982
https://doi.org/10.1242/dmm.039982
21 MM Khalifa (1989) Hutchinson-Gilford progeria syndrome: report of a Libyan family and evidence of autosomal recessive inheritance. Clin Genet 35:125–132
https://doi.org/10.1111/j.1399-0004.1989.tb02917.x
22 D Kim, B Langmead, SL Salzberg (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360
https://doi.org/10.1038/nmeth.3317
23 K Kim, S-M Ryu, S-T Kim, G Baek, D Kim, K Lim, E Chung, S Kim, J-S Kim (2017) Highly efficient RNA-guided base editing in mouse embryos. Nat Biotechnol 35:435
https://doi.org/10.1038/nbt.3816
24 S Kim, K Scheffler, AL Halpern, MA Bekritsky, E Noh, M Kallberg, X Chen, Y Kim, D Beyter, P Kruscheet al. (2018) Strelka2: fast and accurate calling of germline and somatic variants. Nat Methods 15:591–594
https://doi.org/10.1038/s41592-018-0051-x
25 LW Koblan, JL Doman, C Wilson, JM Levy, T Tay, GA Newby, JP Maianti, A Raguram, DR Liu (2018a) Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nat Biotechnol 36:843–846
https://doi.org/10.1038/nbt.4172
26 LW Koblan, JL Doman, C Wilson, JM Levy, T Tay, GA Newby, JP Maianti, A Raguram, DR Liu (2018b) Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nat Biotechnol 36:843–846
https://doi.org/10.1038/nbt.4172
27 AC Komor, YB Kim, MS Packer, JA Zuris, DR Liu (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533:420
https://doi.org/10.1038/nature17946
28 B Korf (2008) Hutchinson–Gilford progeria syndrome, aging, and the nuclear lamina. N Engl J Med 358:552–555
https://doi.org/10.1056/NEJMp0800071
29 N Kubben, W Zhang, L Wang, TC Voss, J Yang, J Qu, GH Liu, T Misteli (2016) Repression of the antioxidant NRF2 pathway in premature aging. Cell 165:1361–1374
https://doi.org/10.1016/j.cell.2016.05.017
30 MJ Landrum, JM Lee, M Benson, G Brown, C Chao, S Chitipiralla, B Gu, J Hart, D Hoffman, J Hooveret al. (2016) ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res 44:D862–D868
https://doi.org/10.1093/nar/gkv1222
31 H Li, R Durbin (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–1760
https://doi.org/10.1093/bioinformatics/btp324
32 H Li, B Handsaker, A Wysoker, T Fennell, J Ruan, N Homer, G Marth, G Abecasis, R Durbin, Genome Project Data Processing, S (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079
https://doi.org/10.1093/bioinformatics/btp352
33 P Liang, C Ding, H Sun, X Xie, Y Xu, X Zhang, Y Sun, Y Xiong, W Ma, Y Liuet al. (2017) Correction of β-thalassemia mutant by base editor in human embryos. Protein Cell 8:811–822
https://doi.org/10.1007/s13238-017-0475-6
34 GH Liu, BZ Barkho, S Ruiz, D Diep, J Qu, SL Yang, AD Panopoulos, K Suzuki, L Kurian, C Walshet al. (2011a) Recapitulation of premature ageing with iPSCs from Hutchinson–Gilford progeria syndrome. Nature 472:221–225
https://doi.org/10.1038/nature09879
35 GH Liu, K Suzuki, J Qu, I Sancho-Martinez, F Yi, M Li, S Kumar, E Nivet, J Kim, RD Soligallaet al. (2011b) Targeted gene correction of laminopathy-associated LMNA mutations in patientspecific iPSCs. Cell Stem Cell 8:688–694
https://doi.org/10.1016/j.stem.2011.04.019
36 Z Liu, M Chen, S Chen, J Deng, Y Song, L Lai, Z Li (2018a) Highly efficient RNA-guided base editing in rabbit. Nat Commun 9:2717
https://doi.org/10.1038/s41467-018-05232-2
37 Z Liu, M Chen, S Chen, J Deng, Y Song, L Lai, Z Li (2018b) Highly efficient RNA-guided base editing in rabbit. Nat Commun 9:2717
https://doi.org/10.1038/s41467-018-05232-2
38 MI Love, W Huber, S Anders (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550
https://doi.org/10.1186/s13059-014-0550-8
39 MA Merideth, LB Gordon, S Clauss, V Sachdev, ACM Smith, MB Perry, CC Brewer, C Zalewski, HJ Kim, B Solomonet al. (2008) Phenotype and course of Hutchinson–Gilford progeria syndrome. N Engl J Med 358:592–604
https://doi.org/10.1056/NEJMoa0706898
40 JUV Monu, LBO Benka-Coker, Y Fatunde (1990) Hutchinson– Gilford progeria syndrome in siblings. Skeletal Radiol 19:585–590
https://doi.org/10.1007/BF00241281
41 National Genomics Data Center, M., and Partners (2020) Database Resources of the National Genomics Data Center in 2020. Nucleic Acids Res 48:D24–D33
42 Y Niu, Y Yu, A Bernat, S Yang, X He, X Guo, D Chen, Y Chen, S Ji, W Siet al. (2010) Transgenic rhesus monkeys produced by gene transfer into early-cleavage-stage embryos using a simian immunodeficiency virus-based vector. Proc Natl Acad Sci USA 107:17663–17667
https://doi.org/10.1073/pnas.1006563107
43 FG Osorio, CL Navarro, J Cadinanos, IC Lopez-Mejia, PM Quiros, C Bartoli, J Rivera, J Tazi, G Guzman, I Varelaet al. (2011) Splicing-directed therapy in a new mouse model of human accelerated aging. Sci Transl Med 3:106ra107
https://doi.org/10.1126/scitranslmed.3002847
44 MB Ozonoff, AR Clemett (1967) Progressive osteolysis in progeria. Am J Roentgenol 100:75–79
https://doi.org/10.2214/ajr.100.1.75
45 A Pickar-Oliver, CA Gersbach (2019) The next generation of CRISPR–Cas technologies and applications. Nat Rev Mol Cell Biol 20:490–507
https://doi.org/10.1038/s41580-019-0131-5
46 A Prakash, LB Gordon, ME Kleinman, EB Gurary, J Massaro, R Sr D’Agostino, MW Kieran, M Gerhard-Herman, L Smoot (2018) Cardiac abnormalities in patients with Hutchinson–Gilford progeria syndrome. JAMA Cardiol 3:326–334
https://doi.org/10.1001/jamacardio.2017.5235
47 R Rastogi, S Chander Mohan (2008) Progeria syndrome: a case report. Indian J Orthopaedics 42:97–99
https://doi.org/10.4103/0019-5413.38591
48 J Rivera-Torres, CJ Calvo, A Llach, G Guzmán-Martínez, R Caballero, C González-Gómez, LJ Jiménez-Borreguero, JA Guadix, FG Osorio, C López-Otínet al. (2016) Cardiac electrical defects in progeroid mice and Hutchinson–Gilford progeria syndrome patients with nuclear lamina alterations. Proc Natl Acad Sci USA 113:E7250–E7259
https://doi.org/10.1073/pnas.1603754113
49 JF Rork, JT Huang, LB Gordon, M Kleinman, MW Kieran, MG Liang (2014) Initial cutaneous manifestations of Hutchinson–Gilford progeria syndrome. Pediatr Dermatol 31:196–202
https://doi.org/10.1111/pde.12284
50 E Selvin, SS Najjar, TC Cornish, MK Halushka (2010) A comprehensive histopathological evaluation of vascular medial fibrosis: insights into the pathophysiology of arterial stiffening. Atherosclerosis 208:69–74
https://doi.org/10.1016/j.atherosclerosis.2009.06.025
51 VM Silvera, LB Gordon, DB Orbach, SE Campbell, JT Machan, NJ Ullrich (2013) Imaging characteristics of cerebrovascular arteriopathy and stroke in Hutchinson-Gilford progeria syndrome. Am J Neuroradiol 34:1091–1097
https://doi.org/10.3174/ajnr.A3341
52 WE Stehbens, SJ Wakefield, E Gilbert-Barness, RE Olson, J Ackerman (1999) Histological and ultrastructural features of atherosclerosis in progeria. Cardiovasc Pathol 8:29–39
https://doi.org/10.1016/S1054-8807(98)00023-4
53 A Tarasov, AJ Vilella, E Cuppen, IJ Nijman, P Prins (2015) Sambamba: fast processing of NGS alignment formats. Bioinformatics 31:2032–2034
https://doi.org/10.1093/bioinformatics/btv098
54 NJ Ullrich, LB Gordon (2015) Chapter 18 – Hutchinson–Gilford progeria syndrome. In: Islam MP, Roach ES (eds) Handbook of clinical neurology. Elsevier, Amsterdam, pp 249–264
https://doi.org/10.1016/B978-0-444-62702-5.00018-4
55 NJ Ullrich, VM Silvera, SE Campbell, LB Gordon (2012) Craniofacial abnormalities in Hutchinson–Gilford progeria syndrome. Am J Neuroradiol 33:1512–1518
https://doi.org/10.3174/ajnr.A3088
56 Y Wang, F Song, J Zhu, S Zhang, Y Yang, T Chen, B Tang, L Dong, N Ding, Q Zhanget al. (2017) GSA: genome sequence archive. Genomics Proteomics Bioinform 15:14–18
https://doi.org/10.1016/j.gpb.2017.01.001
57 Q Wei, X Zhan, X Zhong, Y Liu, Y Han, W Chen, B Li (2015) A Bayesian framework for de novo mutation calling in parentsoffspring trios. Bioinformatics 31:1375–1381
https://doi.org/10.1093/bioinformatics/btu839
58 Z Wu, W Zhang, M Song, W Wang, G Wei, W Li, J Lei, Y Huang, Y Sang, P Chanet al. (2018) Differential stem cell aging kinetics in Hutchinson–Gilford progeria syndrome and Werner syndrome. Protein Cell 9:333–350
https://doi.org/10.1007/s13238-018-0517-8
59 S Xu, Z-G Jin (2019) Hutchinson–Gilford progeria syndrome: cardiovascular pathologies and potential therapies. Trends Biochem Sci 44:561–564
https://doi.org/10.1016/j.tibs.2019.03.010
60 M Zhang, C Zhou, Y Wei, C Xu, H Pan, W Ying, Y Sun, Y Sun, Q Xiao, N Yaoet al. (2019a) Human cleaving embryos enable robust homozygotic nucleotide substitutions by base editors. Genome Biol 20:101
https://doi.org/10.1186/s13059-019-1703-6
61 W Zhang, H Wan, G Feng, J Qu, J Wang, Y Jing, R Ren, Z Liu, L Zhang, Z Chenet al. (2018) SIRT6 deficiency results in developmental retardation in cynomolgus monkeys. Nature 560:661–665
https://doi.org/10.1038/s41586-018-0437-z
62 X Zhang, Z Liu, X Liu, S Wang, Y Zhang, X He, S Sun, S Ma, N ShyhChang, F Liuet al. (2019b) Telomere-dependent and telomereindependent roles of RAP1 in regulating human stem cell homeostasis. Protein Cell 10:649–667
https://doi.org/10.1007/s13238-019-0610-7
63 C Zhou, M Zhang, Y Wei, Y Sun, Y Sun, H Pan, N Yao, W Zhong, Y Li, W Liet al. (2017) Highly efficient base editing in human tripronuclear zygotes. Protein Cell 8:772–775
https://doi.org/10.1007/s13238-017-0459-6
64 Y Zhou, B Zhou, L Pache, M Chang, AH Khodabakhshi, O Tanaseichuk, C Benner, SK Chanda (2019) Metascape provides a biologistoriented resource for the analysis of systems-level datasets. Nat Commun 10:1523
https://doi.org/10.1038/s41467-019-09234-6
65 E Zuo, Y Sun, W Wei, T Yuan, W Ying, H Sun, L Yuan, LM Steinmetz, Y Li, H Yang (2019) Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science. 364(6437):289
https://doi.org/10.1126/science.aav9973
[1] PAC-0809-20917-NYY_suppl_1 Download
[2] PAC-0809-20917-NYY_suppl_2 Download
[3] PAC-0809-20917-NYY_suppl_3 Download
[1] Zeming Wu, Weiqi Zhang, Moshi Song, Wei Wang, Gang Wei, Wei Li, Jinghui Lei, Yu Huang, Yanmei Sang, Piu Chan, Chang Chen, Jing Jing, Keiichiro Suzuki, Juan Carlos Izpisua Belmonte, Guang-Hui Liu. Differential stem cell aging kinetics in Hutchinson-Gilford progeria syndrome and Werner syndrome[J]. Protein Cell, 2018, 9(4): 333-350.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed