|
|
|
The p21-activated kinases in neural cytoskeletal remodeling and related neurological disorders |
Kaifan Zhang1,2, Yan Wang1( ), Tianda Fan2, Cheng Zeng1,3, Zhong Sheng Sun1,2,3,4( ) |
1. Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China 2. Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China 3. CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China 4. State Key Laboratory of Integrated Management of Pest Insects and Rodents, Chinese Academy of Sciences, Beijing 100101, China |
|
|
|
|
Abstract The serine/threonine p21-activated kinases (PAKs), as main effectors of the Rho GTPases Cdc42 and Rac, represent a group of important molecular switches linking the complex cytoskeletal networks to broad neural activity. PAKs show wide expression in the brain, but they differ in specific cell types, brain regions, and developmental stages. PAKs play an essential and differential role in controlling neural cytoskeletal remodeling and are related to the development and fate of neurons as well as the structural and functional plasticity of dendritic spines. PAK-mediated actin signaling and interacting functional networks represent a common pathway frequently affected in multiple neurodevelopmental and neurodegenerative disorders. Considering specific small-molecule agonists and inhibitors for PAKs have been developed in cancer treatment, comprehensive knowledge about the role of PAKs in neural cytoskeletal remodeling will promote our understanding of the complex mechanisms underlying neurological diseases, which may also represent potential therapeutic targets of these diseases.
|
| Keywords
p21-activated kinases
expression pattern
synaptic cytoskeletal remodeling
neuronal function
neurological diseases
|
|
Corresponding Author(s):
Yan Wang,Zhong Sheng Sun
|
|
Online First Date: 11 January 2021
Issue Date: 14 February 2022
|
|
| 1 |
KM Allen, JG Gleeson, S Bagrodia, MW Partington, JC MacMillan, RA Cerione, JC Mulley, CA Walsh (1998) PAK3 mutation in nonsyndromic X-linked mental retardation. Nat Genet 20:25–30
https://doi.org/10.1038/1675
|
| 2 |
S Arber, FA Barbayannis, H Hanser, C Schneider, CA Stanyon, O Bernard, P Caroni (1998) Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature 393:805–809
https://doi.org/10.1038/31729
|
| 3 |
LE Arias-Romero, J Chernoff (2008) A tale of two Paks. Biol Cell 100:97–108
https://doi.org/10.1042/BC20070109
|
| 4 |
D Arsenault, A Dal-Pan, C Tremblay, DA Bennett, MJ Guitton, Y De Koninck, S Tonegawa, F Calon (2013) PAK inactivation impairs social recognition in 3xTg-AD Mice without increasing brain deposition of tau and Abeta. J Neurosci 33:10729–10740
https://doi.org/10.1523/JNEUROSCI.1501-13.2013
|
| 5 |
S Asrar, Y Meng, Z Zhou, Z Todorovski, WW Huang, Z Jia (2009) Regulation of hippocampal long-term potentiation by p21-activated protein kinase 1 (PAK1). Neuropharmacology 56:73–80
https://doi.org/10.1016/j.neuropharm.2008.06.055
|
| 6 |
C Aston, L Jiang, BP Sokolov (2005) Transcriptional profiling reveals evidence for signaling and oligodendroglial abnormalities in the temporal cortex from patients with major depressive disorder. Mol Psychiatry. 10:309–322
https://doi.org/10.1038/sj.mp.4001565
|
| 7 |
MR Banko, JJ Allen, BE Schaffer, EW Wilker, P Tsou, JL White, J Villén, B Wang, SR Kim, K Sakamotoet al. (2011) Chemical genetic screen for AMPKα2 substrates uncovers a network of proteins involved in mitosis. Mol Cell 44:878–892
https://doi.org/10.1016/j.molcel.2011.11.005
|
| 8 |
B Barton, K North (2004) Social skills of children with neurofibromatosis type 1. Dev Med Child Neurol 46:553–563
https://doi.org/10.1017/S0012162204000921
|
| 9 |
A Bhattacharya, H Kaphzan, AC Alvarez-Dieppa, JP Murphy, P Pierre, E Klann (2012) Genetic removal of p70 S6 kinase 1 corrects molecular, synaptic, and behavioral phenotypes in fragile X syndrome mice. Neuron 76:325–337
https://doi.org/10.1016/j.neuron.2012.07.022
|
| 10 |
T Bienvenu, V des Portes, N McDonell, A Carrié, R Zemni, P Couvert, HH Ropers, C Moraine, H van Bokhoven, JP Frynset al. (2000) Missense mutation in PAK3, R67C, causes X-linked nonspecific mental retardation. Am J Med Genet 93:294–298
https://doi.org/10.1002/1096-8628(20000814)93:4<294::AID-AJMG8>3.0.CO;2-F
|
| 11 |
O Bozdagi, T Sakurai, D Papapetrou, X Wang, DL Dickstein, N Takahashi, Y Kajiwara, M Yang, AM Katz, ML Scattoniet al. (2010) Haploinsufficiency of the autism-associated Shank3 gene leads to deficits in synaptic function, social interaction, and social communication. Mol Autism 1:15
https://doi.org/10.1186/2040-2392-1-15
|
| 12 |
MD Brown, BJ Cornejo, TB Kuhn, JR Bamburg (2000) Cdc42 stimulates neurite outgrowth and formation of growth cone filopodia and lamellipodia. J Neurobiol 43:352–364
https://doi.org/10.1002/1097-4695(20000615)43:4<352::AID-NEU4>3.0.CO;2-T
|
| 13 |
A Brunet, A Bonni, MJ Zigmond, MZ Lin, P Juo, LS Hu, MJ Anderson, KC Arden, J Blenis, ME Greenberg (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96:857–868
https://doi.org/10.1016/S0092-8674(00)80595-4
|
| 14 |
KM Byrne, N Monsefi, JC Dawson, A Degasperi, JC Bukowski-Wills, N Volinsky, M Dobrzynski, MR Birtwistle, MA Tsyganov, A Kiyatkinet al. (2016) Bistability in the Rac1, PAK, and RhoA Signaling Network Drives Actin Cytoskeleton Dynamics and Cell Motility Switches. Cell Syst. 2:38–48
https://doi.org/10.1016/j.cels.2016.01.003
|
| 15 |
F Causeret, M Terao, T Jacobs, YV Nishimura, Y Yanagawa, K Obata, M Hoshino, M Nikolic (2009) The p21-activated kinase is required for neuronal migration in the cerebral cortex. Cereb Cortex 19:861–875
https://doi.org/10.1093/cercor/bhn133
|
| 16 |
LY Chen, CS Rex, AH Babayan, EA Kramár, G Lynch, CM Gall, JC Lauterborn (2010) Physiological activation of synaptic Rac>PAK (p-21 activated kinase) signaling is defective in a mouse model of fragile X syndrome. J Neurosci 30:10977–10984
https://doi.org/10.1523/JNEUROSCI.1077-10.2010
|
| 17 |
Q Chen, TJ Chen, PC Letourneau, F Costa Lda, D Schubert (2005) Modifier of cell adhesion regulates N-cadherin-mediated cell-cell adhesion and neurite outgrowth. J Neurosci 25:281–290
https://doi.org/10.1523/JNEUROSCI.3692-04.2005
|
| 18 |
Q Chen, CA Peto, GD Shelton, A Mizisin, PE Sawchenko, D Schubert (2009) Loss of modifier of cell adhesion reveals a pathway leading to axonal degeneration. J Neurosci 29:118–130
https://doi.org/10.1523/JNEUROSCI.3985-08.2009
|
| 19 |
SY Chen, PH Huang, HJ Cheng (2011) Disrupted-in-Schizophrenia 1-mediated axon guidance involves TRIO-RAC-PAK small GTPase pathway signaling. Proc Natl Acad Sci U S A. 108:5861–5866
https://doi.org/10.1073/pnas.1018128108
|
| 20 |
EJ Chenette, NY Mitin, CJ Der (2006) Multiple sequence elements facilitate Chp Rho GTPase subcellular location, membrane association, and transforming activity. Mol Biol Cell 17:3108–3121
https://doi.org/10.1091/mbc.e05-09-0896
|
| 21 |
L Civiero, MD Cirnaru, A Beilina, U Rodella, I Russo, E Belluzzi, E Lobbestael, L Reyniers, G Hondhamuni, PA Lewiset al. (2015) Leucine-rich repeat kinase 2 interacts with p21-activated kinase 6 to control neurite complexity in mammalian brain. J Neurochem 135:1242–1256
https://doi.org/10.1111/jnc.13369
|
| 22 |
I Cobos, U Borello, JL Rubenstein (2007) Dlx transcription factors promote migration through repression of axon and dendrite growth. Neuron 54:873–888
https://doi.org/10.1016/j.neuron.2007.05.024
|
| 23 |
JA Cooper (2013) Cell biology in neuroscience: mechanisms of cell migration in the nervous system. J Cell Biol 202:725–734
https://doi.org/10.1083/jcb.201305021
|
| 24 |
RM Costa, NB Federov, JH Kogan, GG Murphy, J Stern, M Ohno, R Kucherlapati, T Jacks, AJ Silva (2002) Mechanism for the learning deficits in a mouse model of neurofibromatosis type 1. Nature 415:526–530
https://doi.org/10.1038/nature711
|
| 25 |
Y Cui, RM Costa, GG Murphy, Y Elgersma, Y Zhu, DH Gutmann, LF Parada, I Mody, AJ Silva (2008) Neurofibromin regulation of ERK signaling modulates GABA release and learning. Cell 135:549–560
https://doi.org/10.1016/j.cell.2008.09.060
|
| 26 |
X Dai, H Iwasaki, M Watanabe, S Okabe (2014) Dlx1 transcription factor regulates dendritic growth and postsynaptic differentiation through inhibition of neuropilin-2 and PAK3 expression. Eur J Neurosci 39:531–547
https://doi.org/10.1111/ejn.12413
|
| 27 |
RH Daniels, GM Bokoch (1999) p21-activated protein kinase: a crucial component of morphological signaling? Trends Biochem Sci 24:350–355
https://doi.org/10.1016/S0968-0004(99)01442-5
|
| 28 |
JC Darnell, E Klann (2013) The translation of translational control by FMRP: therapeutic targets for FXS. Nat Neurosci 16:1530–1536
https://doi.org/10.1038/nn.3379
|
| 29 |
JC Darnell, SJ Van Driesche, C Zhang, KY Hung, A Mele, CE Fraser, EF Stone, C Chen, JJ Fak, SW Chiet al. (2011) FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell 146:247–261
https://doi.org/10.1016/j.cell.2011.06.013
|
| 30 |
W Dauer, S Przedborski (2003) Parkinson’s disease: mechanisms and models. Neuron 39:889–909
https://doi.org/10.1016/S0896-6273(03)00568-3
|
| 31 |
L de la Torre-Ubieta, B Gaudilliere, Y Yang, Y Ikeuchi, T Yamada, S DiBacco, J Stegmuller, U Schuller, DA Salih, D Rowitchet al. (2010) A FOXO-Pak1 transcriptional pathway controls neuronal polarity. Genes Dev 24:799–813
https://doi.org/10.1101/gad.1880510
|
| 32 |
L de la Torre-Ubieta, H Won, JL Stein, DH Geschwind (2016) Advancing the understanding of autism disease mechanisms through genetics. Nat Med 22:345–361
https://doi.org/10.1038/nm.4071
|
| 33 |
BM Dolan, SG Duron, DA Campbell, B Vollrath, BS Shankaranarayana Rao, HY Ko, GG Lin, A Govindarajan, SY Choi, S Tonegawa (2013) Rescue of fragile X syndrome phenotypes in Fmr1 KO mice by the small-molecule PAK inhibitor FRAX486. Proc Natl Acad Sci U S A. 110:5671–5676
https://doi.org/10.1073/pnas.1219383110
|
| 34 |
X Dong, Z Liao, D Gritsch, Y Hadzhiev (2018) Enhancers active in dopamine neurons are a primary link between genetic variation and neuropsychiatric disease. Nat Neurosci 21:1482–1492
https://doi.org/10.1038/s41593-018-0223-0
|
| 35 |
K Duarte, S Heide, S Poea-Guyon, V Rousseau, C Depienne, A Rastetter, C Nava, T Attie-Bitach, F Razavi, J Martinovicet al. (2020) PAK3 mutations responsible for severe intellectual disability and callosal agenesis inhibit cell migration. Neurobiol Dis 136:104709
https://doi.org/10.1016/j.nbd.2019.104709
|
| 36 |
A Dubos, G Combeau, Y Bernardinelli, JV Barnier, O Hartley, H Gaertner, B Boda, D Muller (2012) Alteration of synaptic network dynamics by the intellectual disability protein PAK3. J Neurosci 32:519–527
https://doi.org/10.1523/JNEUROSCI.3252-11.2012
|
| 37 |
LJ Duffney, J Wei, J Cheng, W Liu, KR Smith, JT Kittler, Z Yan (2013) Shank3 deficiency induces NMDA receptor hypofunction via an actin-dependent mechanism. J Neurosci 33:15767–15778
https://doi.org/10.1523/JNEUROSCI.1175-13.2013
|
| 38 |
J Eswaran, M Soundararajan, R Kumar, S Knapp (2008) UnPAKing the class differences among p21-activated kinases. Trends Biochem Sci 33:394–403
https://doi.org/10.1016/j.tibs.2008.06.002
|
| 39 |
J Feng, S Chen, Y Wang, Q Liu, M Yang, X Li, C Nie, J Qin, H Chen, X Yuanet al. (2019) Maternal exposure to cadmium impairs cognitive development of male offspring by targeting the Coronin1a signaling pathway. Chemosphere 225:765–774
https://doi.org/10.1016/j.chemosphere.2019.03.094
|
| 40 |
M Fromer, AJ Pocklington, DH Kavanagh, HJ Williams, S Dwyer, P Gormley, L Georgieva, E Rees, P Palta, DM Ruderferet al. (2014) De novo mutations in schizophrenia implicate synaptic networks. Nature 506:179–184
https://doi.org/10.1038/nature12929
|
| 41 |
Y Fukata, H Adesnik, T Iwanaga, DS Bredt, RA Nicoll, M Fukata (2006) Epilepsy-related ligand/receptor complex LGI1 and ADAM22 regulate synaptic transmission. Science 313:1792–1795
https://doi.org/10.1126/science.1129947
|
| 42 |
J Gao, BH Ha, HJ Lou, EM Morse, R Zhang, DA Calderwood, BE Turk, TJ Boggon (2013) Substrate and inhibitor specificity of the type II p21-activated kinase, PAK6. PLoS ONE 8:e77818
https://doi.org/10.1371/journal.pone.0077818
|
| 43 |
S Garg, J Green, K Leadbitter, R Emsley, A Lehtonen, DG Evans, SM Huson (2013) Neurofibromatosis type 1 and autism spectrum disorder. Pediatrics 132:e1642–e1648
https://doi.org/10.1542/peds.2013-1868
|
| 44 |
AK Gedeon, J Nelson, J Gécz, JC Mulley (2003) X-linked mild nonsyndromic mental retardation with neuropsychiatric problems and the missense mutation A365E in PAK3. Am J Med Genet A 120a:509–517
https://doi.org/10.1002/ajmg.a.20131
|
| 45 |
LA Glantz, DA Lewis (2001) Dendritic spine density in schizophrenia and depression. Arch Gen Psychiatry 58:203
https://doi.org/10.1001/archpsyc.58.2.203
|
| 46 |
P Gottle, JK Sabo, A Heinen, G Venables, K Torres (2015) Oligodendroglial maturation is dependent on intracellular protein shuttling. J Neurosci 35:906–919
https://doi.org/10.1523/JNEUROSCI.1423-14.2015
|
| 47 |
M Gotz, YA Barde (2005) Radial glial cells defined and major intermediates between embryonic stem cells and CNS neurons. Neuron 46:369–372
https://doi.org/10.1016/j.neuron.2005.04.012
|
| 48 |
Z Gu, J Cheng, P Zhong, L Qin, W Liu, Z Yan (2014) Abeta selectively impairs mGluR7 modulation of NMDA signaling in basal forebrain cholinergic neurons: implication in Alzheimer’s disease. J Neurosci 34:13614–13628
https://doi.org/10.1523/JNEUROSCI.1204-14.2014
|
| 49 |
D Guo, YC Tan, D Wang, KS Madhusoodanan, Y Zheng, T Maack, JJ Zhang, XY Huang (2007) A Rac-cGMP signaling pathway. Cell. 128:341–355
https://doi.org/10.1016/j.cell.2006.11.048
|
| 50 |
BH Ha, TJ Boggon (2018) CDC42 binds PAK4 via an extended GTPase-effector interface. Proc Natl Acad Sci U S A. 115:531–536
https://doi.org/10.1073/pnas.1717437115
|
| 51 |
BH Ha, MJ Davis, C Chen, HJ Lou, J Gao, R Zhang, M Krauthammer, R Halaban, J Schlessinger, BE Turket al. (2012) Type II p21activated kinases (PAKs) are regulated by an autoinhibitory pseudosubstrate. Proc Natl Acad Sci U S A. 109:16107–16112
https://doi.org/10.1073/pnas.1214447109
|
| 52 |
FL Harms, K Kloth, A Bley, J Denecke, R Santer, D Lessel, M Hempel, K Kutsche (2018) Activating Mutations in PAK1, Encoding p21-Activated Kinase 1, Cause a Neurodevelopmental Disorder. Am J Hum Genet 103:579–591
https://doi.org/10.1016/j.ajhg.2018.09.005
|
| 53 |
A Hayashi-Takagi, Y Araki, M Nakamura, B Vollrath, SG Duron, Z Yan, H Kasai, RL Huganir, DA Campbell, A Sawa (2014) PAKs inhibitors ameliorate schizophrenia-associated dendritic spine deterioration in vitro and in vivo during late adolescence. Proc Natl Acad Sci U S A. 111:6461–6466
https://doi.org/10.1073/pnas.1321109111
|
| 54 |
ML Hayashi, SY Choi, BS Rao, HY Jung, HK Lee, D Zhang, S Chattarji, A Kirkwood, S Tonegawa (2004) Altered cortical synaptic morphology and impaired memory consolidation in forebrainspecific dominant-negative PAK transgenic mice. Neuron 42:773–787
https://doi.org/10.1016/j.neuron.2004.05.003
|
| 55 |
ML Hayashi, BS Rao, JS Seo, HS Choi, BM Dolan, SY Choi, S Chattarji, S Tonegawa (2007) Inhibition of p21-activated kinase rescues symptoms of fragile X syndrome in mice. Proc Natl Acad Sci U S A. 104:11489–11494
https://doi.org/10.1073/pnas.0705003104
|
| 56 |
ST Henderson, TE Johnson (2001) daf-16 integrates developmental and environmental inputs to mediate aging in the nematode Caenorhabditis elegans. Curr Biol 11:1975–1980
https://doi.org/10.1016/S0960-9822(01)00594-2
|
| 57 |
H Hing, J Xiao, N Harden, L Lim, SL Zipursky (1999) Pak functions downstream of Dock to regulate photoreceptor axon guidance in Drosophila. Cell 97:853–863
https://doi.org/10.1016/S0092-8674(00)80798-9
|
| 58 |
MF Hoekman, FM Jacobs, MP Smidt, JP Burbach (2006) Spatial and temporal expression of FoxO transcription factors in the developing and adult murine brain. Gene Expr Patterns 6:134–140
https://doi.org/10.1016/j.modgep.2005.07.003
|
| 59 |
S Horn, M Au, L Basel-Salmon, P Bayrak-Toydemir, A Chapin, L Cohen, MW Elting, JM Graham, C Gonzaga-Jauregui, O Konenet al. (2019) De novo variants in PAK1 lead to intellectual disability with macrocephaly and seizures. Brain 142:3351–3359
https://doi.org/10.1093/brain/awz264
|
| 60 |
B Hu, S Arpag, X Zhang, W Möbius, H Werner, G Sosinsky, M Ellisman, Y Zhang, A Hamilton, J Chernoffet al. (2016) Tuning PAK Activity to Rescue Abnormal Myelin Permeability in HNPP. PLoS Genet 12:e1006290
https://doi.org/10.1371/journal.pgen.1006290
|
| 61 |
W Huang, Z Zhou, S Asrar, M Henkelman, W Xie, Z Jia (2011) p21Activated kinases 1 and 3 control brain size through coordinating neuronal complexity and synaptic properties. Mol Cell Biol 31:388–403
https://doi.org/10.1128/MCB.00969-10
|
| 62 |
S Huijbregts, R Jahja, L De Sonneville, S de Breij, H Swaab-Barneveld (2010) Social information processing in children and adolescents with neurofibromatosis type 1. Dev Med Child Neurol 52:620–625
https://doi.org/10.1111/j.1469-8749.2010.03639.x
|
| 63 |
SC Huijbregts, LM de Sonneville (2011) Does cognitive impairment explain behavioral and social problems of children with neurofibromatosis type 1? Behav Genet 41:430–436
https://doi.org/10.1007/s10519-010-9430-5
|
| 64 |
NK Hussain, GM Thomas, J Luo, RL Huganir (2015) Regulation of AMPA receptor subunit GluA1 surface expression by PAK3 phosphorylation. Proc Natl Acad Sci U S A. 112:E5883–E5890
https://doi.org/10.1073/pnas.1518382112
|
| 65 |
T Jacobs, F Causeret, YV Nishimura, M Terao, A Norman, M Hoshino, M Nikolic (2007) Localized activation of p21-activated kinase controls neuronal polarity and morphology. J Neurosci 27:8604–8615
https://doi.org/10.1523/JNEUROSCI.0765-07.2007
|
| 66 |
ZM Jaffer, J Chernoff (2002) p21-activated kinases: three more join the Pak. Int J Biochem Cell Biol 34:713–717
https://doi.org/10.1016/S1357-2725(01)00158-3
|
| 67 |
YN Jan, LY Jan (2003) The control of dendrite development. Neuron 40:229–242
https://doi.org/10.1016/S0896-6273(03)00631-7
|
| 68 |
MB Johnson, YI Kawasawa, CE Mason, Z Krsnik, G Coppola, D Bogdanović, DH Geschwind, SM Mane, MW State, N Sestan (2009) Functional and evolutionary insights into human brain development through global transcriptome analysis. Neuron 62:494–509
https://doi.org/10.1016/j.neuron.2009.03.027
|
| 69 |
A Kamiya, K Kubo, T Tomoda, M Takaki, R Youn, Y Ozeki, N Sawamura, U Park, C Kudo, M Okawaet al. (2005) A schizophrenia-associated mutation of DISC1 perturbs cerebral cortex development. Nat Cell Biol 7:1167–1178
https://doi.org/10.1038/ncb1328
|
| 70 |
D Kamiyama, R McGorty, R Kamiyama, MD Kim, A Chiba, B Huang (2015) Specification of Dendritogenesis Site in Drosophila aCC Motoneuron by Membrane Enrichment of Pak1 through Dscam1. Dev Cell 35:93–106
https://doi.org/10.1016/j.devcel.2015.09.007
|
| 71 |
HJ Kang, YI Kawasawa, F Cheng, Y Zhu, X Xu, M Li, AM Sousa, M Pletikos, KA Meyer, G Sedmaket al. (2011) Spatio-temporal transcriptome of the human brain. Nature 478:483–489
https://doi.org/10.1038/nature10523
|
| 72 |
LM Kennedy, SC Pham, A Grishok (2013) Nonautonomous regulation of neuronal migration by insulin signaling, DAF-16/FOXO, and PAK-1. Cell Rep. 4:996–1009
https://doi.org/10.1016/j.celrep.2013.07.045
|
| 73 |
MJ Kim, J Biag, DM Fass, MC Lewis, Q Zhang, M Fleishman, SP Gangwar, M Machius, M Fromer, SM Purcellet al. (2017) Functional analysis of rare variants found in schizophrenia implicates a critical role for GIT1-PAK3 signaling in neuroplasticity. Mol Psychiatry. 22:417–429
https://doi.org/10.1038/mp.2016.98
|
| 74 |
UG Knaus, GM Bokoch (1998) The p21Rac/Cdc42-activated kinases (PAKs). Int J Biochem Cell Biol 30:857–862
https://doi.org/10.1016/S1357-2725(98)00059-4
|
| 75 |
D Kong, Y Dagon, JN Campbell, Y Guo, Z Yang, X Yi, P Aryal, K Wellenstein, BB Kahn, BL Sabatiniet al. (2016) A Postsynaptic AMPK→p21-Activated Kinase Pathway Drives Fasting-Induced Synaptic Plasticity in AgRP Neurons. Neuron 91:25–33
https://doi.org/10.1016/j.neuron.2016.05.025
|
| 76 |
P Kreis, JV Barnier (2009) PAK signalling in neuronal physiology. Cell Signal 21:384–393
https://doi.org/10.1016/j.cellsig.2008.11.001
|
| 77 |
C Kuijl, ND Savage, M Marsman, AW Tuin, L Janssen, DA Egan, M Ketema, R van den Nieuwendijk, SJ van den Eeden, A Geluket al. (2007) Intracellular bacterial growth is controlled by a kinase network around PKB/AKT1. Nature 450:725–730
https://doi.org/10.1038/nature06345
|
| 78 |
P Lamoureux, ZF Altun-Gultekin, C Lin, JA Wagner, SR Heidemann (1997) Rac is required for growth cone function but not neurite assembly. J Cell Sci 110(Pt 5):635–641
|
| 79 |
JC Lauterborn, CD Cox, SW Chan, PW Vanderklish, G Lynch, CM Gall (2020) Synaptic actin stabilization protein loss in Down syndrome and Alzheimer disease. Brain Pathol 30:319–331
https://doi.org/10.1111/bpa.12779
|
| 80 |
RY Lee, J Hench, G Ruvkun (2001) Regulation of C. elegans DAF-16 and its human ortholog FKHRL1 by the daf-2 insulin-like signaling pathway. Curr Biol 11:1950–1957
https://doi.org/10.1016/S0960-9822(01)00595-4
|
| 81 |
A Lehtonen, E Howie, D Trump, SM Huson (2013) Behaviour in children with neurofibromatosis type 1: cognition, executive function, attention, emotion, and social competence. Dev Med Child Neurol 55:111–125
https://doi.org/10.1111/j.1469-8749.2012.04399.x
|
| 82 |
M Lei, W Lu, W Meng, MC Parrini, MJ Eck, BJ Mayer, SC Harrison (2000) Structure of PAK1 in an autoinhibited conformation reveals a multistage activation switch. Cell 102:387–397
https://doi.org/10.1016/S0092-8674(00)00043-X
|
| 83 |
ES Lein, MJ Hawrylycz, N Ao, M Ayres, A Bensinger, A Bernard, AF Boe, MS Boguski, KS Brockway, EJ Byrneset al. (2007) Genome-wide atlas of gene expression in the adult mouse brain. Nature 445:168–176
https://doi.org/10.1038/nature05453
|
| 84 |
C Leung, F Cao, R Nguyen, K Joshi, AJ Aqrabawi, S Xia, MA Cortez, OC 3rd Snead, JC Kim, Z Jia (2018) Activation of Entorhinal Cortical Projections to the Dentate Gyrus Underlies Social Memory Retrieval. Cell Rep. 23:2379–2391
https://doi.org/10.1016/j.celrep.2018.04.073
|
| 85 |
DA Lewis, LA Glantz, JN Pierri, RA Sweet (2003) Altered cortical glutamate neurotransmission in schizophrenia: evidence from morphological studies of pyramidal neurons. Ann N Y Acad Sci 1003:102–112
https://doi.org/10.1196/annals.1300.007
|
| 86 |
DA Lewis, P Levitt (2002) Schizophrenia as a disorder of neurodevelopment. Annu Rev Neurosci 25:409–432
https://doi.org/10.1146/annurev.neuro.25.112701.142754
|
| 87 |
S Li, I Leshchyns’ka, Y Chernyshova, M Schachner, V Sytnyk (2013) The neural cell adhesion molecule (NCAM) associates with and signals through p21-activated kinase 1 (Pak1). J Neurosci 33:790–803
https://doi.org/10.1523/JNEUROSCI.1238-12.2013
|
| 88 |
K Lin, H Hsin, N Libina, C Kenyon (2001) Regulation of the Caenorhabditis elegans longevity protein DAF-16 by insulin/IGF1 and germline signaling. Nat Genet 28:139–145
https://doi.org/10.1038/88850
|
| 89 |
J Liu, Y Liu, J Shao, Y Li, L Qin, H Shen, Y Xie, W Xia (2019) Zeb1 is important for proper cleavage plane orientation of dividing progenitors and neuronal migration in the mouse neocortex. Cell Death Differ 26:2479–2492
https://doi.org/10.1038/s41418-019-0314-9
|
| 90 |
M Lucanic, M Kiley, N Ashcroft, N L’Etoile, HJ Cheng (2006) The Caenorhabditis elegans P21-activated kinases are differentially required for UNC-6/netrin-mediated commissural motor axon guidance. Development. 133:4549–4559
https://doi.org/10.1242/dev.02648
|
| 91 |
QL Ma, F Yang, F Calon, OJ Ubeda, JE Hansen, RH Weisbart, W Beech, SA Frautschy, GM Cole (2008) p21-activated kinaseaberrant activation and translocation in Alzheimer disease pathogenesis. J Biol Chem 283:14132–14143
https://doi.org/10.1074/jbc.M708034200
|
| 92 |
MRL Maglorius Renkilaraj, L Baudouin, CM Wells, M Doulazmi, R Wehrle, V Cannaya, C Bachelin, JV Barnier, Z Jia, B Nait Oumesmaret al. (2017) The intellectual disability protein PAK3 regulates oligodendrocyte precursor cell differentiation. Neurobiol Dis 98:137–148
https://doi.org/10.1016/j.nbd.2016.12.004
|
| 93 |
E Manser, T Leung, H Salihuddin, ZS Zhao, L Lim (1994) A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature 367:40–46
https://doi.org/10.1038/367040a0
|
| 94 |
O Marin, M Valiente, X Ge, LH Tsai (2010) Guiding neuronal cell migrations. Cold Spring Harb Perspect Biol. 2:a001834
https://doi.org/10.1101/cshperspect.a001834
|
| 95 |
FJ Martini, M Valiente, G Lopez Bendito, G Szabo, F Moya, M Valdeolmillos, O Marin (2009) Biased selection of leading process branches mediates chemotaxis during tangential neuronal migration. Development. 136:41–50
https://doi.org/10.1242/dev.025502
|
| 96 |
J Meng, Y Meng, A Hanna, C Janus, Z Jia (2005) Abnormal longlasting synaptic plasticity and cognition in mice lacking the mental retardation gene Pak3. J Neurosci 25:6641–6650
https://doi.org/10.1523/JNEUROSCI.0028-05.2005
|
| 97 |
AI Molosh, PL Johnson, JP Spence, D Arendt, LM Federici, C Bernabe, SP Janasik, ZM Segu, R Khanna, C Goswamiet al. (2014) Social learning and amygdala disruptions in Nf1 mice are rescued by blocking p21-activated kinase. Nat Neurosci 17:1583–1590
https://doi.org/10.1038/nn.3822
|
| 98 |
Y Murata, M Constantine-Paton (2013) Postsynaptic density scaffold SAP102 regulates cortical synapse development through EphB and PAK signaling pathway. J Neurosci 33:5040–5052
https://doi.org/10.1523/JNEUROSCI.2896-12.2013
|
| 99 |
Y Nakai, Y Zheng, M MacCollin, N Ratner (2006) Temporal control of Rac in Schwann cell-axon interaction is disrupted in NF2-mutant schwannoma cells. J Neurosci 26:3390–3395
https://doi.org/10.1523/JNEUROSCI.4865-05.2006
|
| 100 |
T Nekrasova, ML Jobes, JH Ting, GC Wagner, A Minden (2008) Targeted disruption of the Pak5 and Pak6 genes in mice leads to deficits in learning and locomotion. Dev Biol 322:95–108
https://doi.org/10.1016/j.ydbio.2008.07.006
|
| 101 |
TV Nguyen, V Galvan, W Huang, S Banwait, H Tang, J Zhang, DE Bredesen (2008) Signal transduction in Alzheimer disease: p21-activated kinase signaling requires C-terminal cleavage of APP at Asp664. J Neurochem 104:1065–1080
https://doi.org/10.1111/j.1471-4159.2007.05031.x
|
| 102 |
M Nikolic, MM Chou, W Lu, BJ Mayer, LH Tsai (1998) The p35/Cdk5 kinase is a neuron-specific Rac effector that inhibits Pak1 activity. Nature 395:194–198
https://doi.org/10.1038/26034
|
| 103 |
CD Nobes, A Hall (1995) Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81:53–62
https://doi.org/10.1016/0092-8674(95)90370-4
|
| 104 |
CD Nobes, A Hall (1999) Rho GTPases control polarity, protrusion, and adhesion during cell movement. J Cell Biol 144:1235–1244
https://doi.org/10.1083/jcb.144.6.1235
|
| 105 |
RB Noll, J Reiter-Purtill, BD Moore, EK Schorry, AM Lovel, K Vannatta, CA Gerhardt (2007) Social, emotional, and behavioral functioning of children with NF1. Am J Med Genet A 143a:2261–2273
https://doi.org/10.1002/ajmg.a.31923
|
| 106 |
M O’Donnell, RK Chance, GJ Bashaw (2009) Axon growth and guidance: receptor regulation and signal transduction. Annu Rev Neurosci 32:383–412
https://doi.org/10.1146/annurev.neuro.051508.135614
|
| 107 |
WT O’Donnell, ST Warren (2002) A decade of molecular studies of fragile X syndrome. Annu Rev Neurosci 25:315–338
https://doi.org/10.1146/annurev.neuro.25.112701.142909
|
| 108 |
MC Parrini, J Camonis, M Matsuda, J de Gunzburg (2009) Dissecting activation of the PAK1 kinase at protrusions in living cells. J Biol Chem 284:24133–24143
https://doi.org/10.1074/jbc.M109.015271
|
| 109 |
MC Parrini, M Lei, SC Harrison, BJ Mayer (2002) Pak1 kinase homodimers are autoinhibited in trans and dissociated upon activation by Cdc42 and Rac1. Mol Cell 9:73–83
https://doi.org/10.1016/S1097-2765(01)00428-2
|
| 110 |
J Peca, C Feliciano, JT Ting, W Wang, MF Wells, TN Venkatraman, CD Lascola, Z Fu, G Feng (2011) Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature 472:437–442
https://doi.org/10.1038/nature09965
|
| 111 |
M Peippo, AM Koivisto, T Särkämö, M Sipponen, H von Koskull, T Ylisaukko-oja, K Rehnström, G Froyen, J Ignatius, I Järvelä (2007) PAK3 related mental disability: further characterization of the phenotype. Am J Med Genet A 143a:2406–2416
https://doi.org/10.1002/ajmg.a.31956
|
| 112 |
D Pensold, J Symmank, A Hahn, T Lingner, G Salinas-Riester, BR Downie, F Ludewig, A Rotzsch, N Haag, N Andreaset al. (2017) The DNA Methyltransferase 1 (DNMT1) Controls the Shape and Dynamics of Migrating POA-Derived Interneurons Fated for the Murine Cerebral Cortex. Cereb Cortex 27:5696–5714
https://doi.org/10.1093/cercor/bhw341
|
| 113 |
P Penzes, A Beeser, J Chernoff, MR Schiller, BA Eipper, RE Mains, RL Huganir (2003) Rapid induction of dendritic spine morphogenesis by trans-synaptic ephrinB-EphB receptor activation of the Rho-GEF kalirin. Neuron 37:263–274
https://doi.org/10.1016/S0896-6273(02)01168-6
|
| 114 |
W Pereanu, EC Larsen, I Das, MA Estevez, AA Sarkar, S SpringPearson, R Kollu, SN Basu, S Banerjee-Basu (2018) AutDB: a platform to decode the genetic architecture of autism. Nucleic Acids Res 46:D1049–D1054
https://doi.org/10.1093/nar/gkx1093
|
| 115 |
M Pirruccello, H Sondermann, JG Pelton, P Pellicena, A Hoelz, J Chernoff, DE Wemmer, J Kuriyan (2006) A dimeric kinase assembly underlying autophosphorylation in the p21 activated kinases. J Mol Biol 361:312–326
https://doi.org/10.1016/j.jmb.2006.06.017
|
| 116 |
M Pletikos, AM Sousa, G Sedmak, KA Meyer, Y Zhu, F Cheng, M Li, YI Kawasawa, N Sestan (2014) Temporal specification and bilaterality of human neocortical topographic gene expression. Neuron 81:321–332
https://doi.org/10.1016/j.neuron.2013.11.018
|
| 117 |
NA Pride, MS Korgaonkar, B Barton, JM Payne, S Vucic, KN North (2014) The genetic and neuroanatomical basis of social dysfunction: lessons from neurofibromatosis type 1. Hum Brain Mapp 35:2372–2382
https://doi.org/10.1002/hbm.22334
|
| 118 |
SM Purcell, JL Moran, M Fromer, D Ruderfer, N Solovieff, P Roussos, C O’Dushlaine, K Chambert, SE Bergen, A Kahleret al. (2014) A polygenic burden of rare disruptive mutations in schizophrenia. Nature 506:185–190
https://doi.org/10.1038/nature12975
|
| 119 |
A Pyronneau, Q He, JY Hwang (2017) Aberrant Rac1-cofilin signaling mediates defects in dendritic spines, synaptic function, and sensory perception in fragile X syndrome. Sci Signal 10eaan0852
https://doi.org/10.1126/scisignal.aan0852
|
| 120 |
J Qu, X Li, BG Novitch, Y Zheng, M Kohn, JM Xie, S Kozinn, R Bronson, AA Beg, A Minden (2003) PAK4 kinase is essential for embryonic viability and for proper neuronal development. Mol Cell Biol 23:7122–7133
https://doi.org/10.1128/MCB.23.20.7122-7133.2003
|
| 121 |
F Quintero-Rivera, P Sharifi-Hannauer, JA Martinez-Agosto (2010) Autistic and psychiatric findings associated with the 3q29 microdeletion syndrome: case report and review. Am J Med Genet A 152a:2459–2467
https://doi.org/10.1002/ajmg.a.33573
|
| 122 |
M Radu, G Semenova, R Kosoff, J Chernoff (2014) PAK signalling during the development and progression of cancer. Nat Rev Cancer 14:13–25
https://doi.org/10.1038/nrc3645
|
| 123 |
CI Ramos, O Igiesuorobo, Q Wang, M Serpe (2015) Neto-mediated intracellular interactions shape postsynaptic composition at the Drosophila neuromuscular junction. PLoS Genet 11:e1005191
https://doi.org/10.1371/journal.pgen.1005191
|
| 124 |
CK Rane, A Minden (2014) P21 activated kinases: structure, regulation, and functions. Small GTPases. 5:1–11
https://doi.org/10.4161/sgtp.28003
|
| 125 |
T Rashid, M Banerjee, M Nikolic (2001) Phosphorylation of Pak1 by the p35/Cdk5 kinase affects neuronal morphology. J Biol Chem 276:49043–49052
https://doi.org/10.1074/jbc.M105599200
|
| 126 |
I Rejeb, Y Saillour, L Castelnau, C Julien, T Bienvenu, P Taga, H Chaabouni, J Chelly, L Ben Jemaa, N Bahi-Buisson (2008) A novel splice mutation in PAK3 gene underlying mental retardation with neuropsychiatric features. Eur J Hum Genet 16:1358–1363
https://doi.org/10.1038/ejhg.2008.103
|
| 127 |
L Richier, K Williton, L Clattenburg, K Colwill, M O’Brien, C Tsang, A Kolar, N Zinck, P Metalnikov, WS Trimbleet al. (2010) NOS1AP associates with Scribble and regulates dendritic spine develop-ment. J Neurosci 30:4796–4805
https://doi.org/10.1523/JNEUROSCI.3726-09.2010
|
| 128 |
CA Ross, RL Margolis, SA Reading, M Pletnikov, JT Coyle (2006) Neurobiology of schizophrenia. Neuron 52:139–153
https://doi.org/10.1016/j.neuron.2006.09.015
|
| 129 |
MD Rubio, V Haroutunian, JH Meador-Woodruff (2012) Abnormalities of the Duo/Ras-related C3 botulinum toxin substrate 1/p21activated kinase 1 pathway drive myosin light chain phosphorylation in frontal cortex in schizophrenia. Biol Psychiatry 71:906–914
https://doi.org/10.1016/j.biopsych.2012.02.006
|
| 130 |
LC Sanders, F Matsumura, GM Bokoch, P de Lanerolle (1999) Inhibition of myosin light chain kinase by p21-activated kinase. Science 283:2083–2085
https://doi.org/10.1126/science.283.5410.2083
|
| 131 |
E Santini, TN Huynh, F Longo, SY Koo, E Mojica, MJ Anderson, C Bagni, E Klann (2017) Reducing eIF4E-eIF4G interactions restores the balance between protein synthesis and actin dynamics in fragile X syndrome model mice. Science Signaling 10:eaan0665
https://doi.org/10.1126/scisignal.aan0665
|
| 132 |
MA Sells, J Chernoff (1997) Emerging from the Pak: the p21activated protein kinase family. Trends Cell Biol 7:162–167
https://doi.org/10.1016/S0962-8924(97)01003-9
|
| 133 |
S Sivanesan, A Tan, J Rajadas (2013) Pathogenesis of Abeta oligomers in synaptic failure. Curr Alzheimer Res 10:316–323
https://doi.org/10.2174/1567205011310030011
|
| 134 |
KR Smith, EC Davenport, J Wei, X Li, M Pathania, V Vaccaro, Z Yan, JT Kittler (2014) GIT1 and βPIX are essential for GABA (A) receptor synaptic stability and inhibitory neurotransmission. Cell Rep. 9:298–310
https://doi.org/10.1016/j.celrep.2014.08.061
|
| 135 |
J Souopgui, M Solter, T Pieler (2002) XPak3 promotes cell cycle withdrawal during primary neurogenesis in Xenopus laevis. EMBO J 21:6429–6439
https://doi.org/10.1093/emboj/cdf644
|
| 136 |
TI Strochlic, S Concilio, J Viaud, RA Eberwine, LE Wong, A Minden, BE Turk, M Plomann, JR Peterson (2012) Identification of neuronal substrates implicates Pak5 in synaptic vesicle trafficking. Proc Natl Acad Sci U S A. 109:4116–4121
https://doi.org/10.1073/pnas.1116560109
|
| 137 |
PF Sullivan, KS Kendler, MC Neale (2003) Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch Gen Psychiatry 60:1187–1192
https://doi.org/10.1001/archpsyc.60.12.1187
|
| 138 |
B Tabanifar, Z Zhao, E Manser (2016) PAK5 is auto-activated by a central domain that promotes kinase oligomerization. Biochem J. 473:1777–1789
https://doi.org/10.1042/BCJ20160132
|
| 139 |
N Tyagi, A Bhardwaj, AP Singh, S McClellan, JE Carter, S Singh (2014) p-21 activated kinase 4 promotes proliferation and survival of pancreatic cancer cells through AKTand ERK-dependent activation of NF-κB pathway. Oncotarget. 5:8778–8789
https://doi.org/10.18632/oncotarget.2398
|
| 140 |
H Udo, I Jin, JH Kim, HL Li, T Youn, RD Hawkins, ER Kandel, CH Bailey (2005) Serotonin-induced regulation of the actin network for learning-related synaptic growth requires Cdc42, N-WASP, and PAK in Aplysia sensory neurons. Neuron 45:887–901
https://doi.org/10.1016/j.neuron.2005.01.044
|
| 141 |
KS Walsh, JI Velez, PG Kardel, DM Imas, M Muenke, RJ Packer, FX Castellanos, MT Acosta (2013) Symptomatology of autism spectrum disorder in a population with neurofibromatosis type 1. Dev Med Child Neurol 55:131–138
https://doi.org/10.1111/dmcn.12038
|
| 142 |
W Wang, L Lim, Y Baskaran, E Manser, J Song (2013) NMR binding and crystal structure reveal that intrinsically-unstructured regulatory domain auto-inhibits PAK4 by a mechanism different from that of PAK1. Biochem Biophys Res Commun 438:169–174
https://doi.org/10.1016/j.bbrc.2013.07.047
|
| 143 |
Y Wang, C Zeng, J Li, Z Zhou, X Ju, S Xia, Y Li, A Liu, H Teng, K Zhanget al. (2018) PAK2 Haploinsufficiency Results in Synaptic Cytoskeleton Impairment and Autism-Related Behavior. Cell Rep. 24:2029–2041
https://doi.org/10.1016/j.celrep.2018.07.061
|
| 144 |
L Willatt, J Cox, J Barber, ED Cabanas, A Collins, D Donnai, DR FitzPatrick, E Maher, H Martin, J Parnauet al. (2005) 3q29 microdeletion syndrome: clinical and molecular characterization of a new syndrome. Am J Hum Genet 77:154–160
https://doi.org/10.1086/431653
|
| 145 |
SY Won, MH Park, ST You, SW Choi, HK Kim, C McLean, SC Bae, SR Kim, BK Jin, KH Leeet al. (2016) Nigral dopaminergic PAK4 prevents neurodegeneration in rat models of Parkinson's disease. Sci Transl Med 8:367ra170
https://doi.org/10.1126/scitranslmed.aaf1629
|
| 146 |
S Xia, Z Zhou, C Leung, Y Zhu, X Pan, J Qi, M Morena, MN Hill, W Xie, Z Jia (2016) p21-activated kinase 1 restricts tonic endocannabinoid signaling in the hippocampus. eLife 14:e14653
https://doi.org/10.7554/eLife.14653
|
| 147 |
Z Yan, E Kim, D Datta, DA Lewis, SH Soderling (2016) Synaptic Actin Dysregulation, a Convergent Mechanism of Mental Disorders? J Neurosci 36:11411–11417
https://doi.org/10.1523/JNEUROSCI.2360-16.2016
|
| 148 |
N Yang, O Higuchi, K Ohashi, K Nagata, A Wada, K Kangawa, E Nishida, K Mizuno (1998) Cofilin phosphorylation by LIMkinase 1 and its role in Rac-mediated actin reorganization. Nature 393:809–812
https://doi.org/10.1038/31735
|
| 149 |
H Yasui, H Katoh, Y Yamaguchi, J Aoki, H Fujita, K Mori, M Negishi (2001) Differential responses to nerve growth factor and epidermal growth factor in neurite outgrowth of PC12 cells are determined by Rac1 activation systems. J Biol Chem 276:15298–15305
https://doi.org/10.1074/jbc.M008546200
|
| 150 |
A Zeisel, H Hochgerner, P Lönnerberg, A Johnsson, F Memic, J van der Zwan, M Häring, E Braun, LE Borm, G La Mannoet al. (2018) Molecular Architecture of the Mouse Nervous System. Cell 174:999–1014.e1022
https://doi.org/10.1016/j.cell.2018.06.021
|
| 151 |
L Zhao, QL Ma, F Calon, ME Harris-White, F Yang, GP Lim, T Morihara, OJ Ubeda, S Ambegaokar, JE Hansenet al. (2006) Role of p21-activated kinase pathway defects in the cognitive deficits of Alzheimer disease. Nat Neurosci 9:234–242
https://doi.org/10.1038/nn1630
|
| 152 |
JL Zhong, MD Banerjee, M Nikolic (2003) Pak1 and its T212 phosphorylated form accumulate in neurones and epithelial cells of the developing rodent. Dev Dyn 228:121–127
https://doi.org/10.1002/dvdy.10351
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|